Skip to main content
User Image

د. يوسف بن أحمد العوهلي

عميد عمادة التعاملات الإلكترونية والاتصالات، استاذ مشارك كلية علوم الحاسب والمعلومات

course

CSC361

 

Artificial Intelligence                

CSC361

Spring 2011

 

Project Grading (Phase 1)

Game rules for the project (New)

Course outline

Project Deliverables,Semester Schedule and Rubrics

Attendence & Bonus: Any discripencies send an e-mail to basit@ksu.edu.sa

Course Code: CSC 361

Course Title: Artificial Intelligence

Credit Hours:   3(3,0,1)

 Lecture Time: 1:0 - 3:0 Sunday  &  1:0 - 3:0 Tuesday

Pre-requisites: CSC 212

Course Description:

This course provides a general introduction to AI (Artificial Intelligence): Its techniques and its main sub-fields. It gives an overview of underlying ideas, such as search, knowledge representation, expert systems and learning.

Course Objective:

The objective of the course is to enable students to learn about the tools and techniques for understanding and applying their knowledge to solve real world problems. The course will focus on sharpening the practical skills of the students alongwith providing them the theoratical knowledge.

 

  Syllabus (Course in Progress)

Week

H date

Week #

Chapter

Topic/Readings

Assignment/

Homework

Note

 

1

Course Description

Course Description

 

 

 

2

1   Introduction

What is Artificial Intelligence?

 Blogr

eCorrect Service

 

 

 

Introduction

 

 

 

3

2  Problem Search Solving

Problem Solving by Searching

 

 

 

 

 

Problem formulation

 

 

 

4

Uninformed Search

Breadth First Search (BFS)

 Assignment2

 

 

 

 

Uniform Cost Search (UCS)

 

 

 

5

 Un-informed Blind search

Depth First Search (DFS)

 

 

 

 

 

Iterative Deepening Search (IDS)

 Assignment3

 

 

6

Informed Search

Heuristic Functions

 Assignment4

 

 

 

 

Greedy Search

 

 

 

7

 

A* Search

 

 

 

 

 

Iterative Deepening A*

 

 

 

8

Optimization

Hill Climbing

 

 

 

 

 

Simulated Annealing,

 

 

 

 

Rest

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

3  Constraint Satisfaction Problems (CSP)

Backtracking Search

 

 

 

 

 

 

 

 

 

10

4  Game Playing 

Dersarial Search and Game Playing examples

Game Playing

 

 

 

 

 

Alpha-beta Game Playing

 

 

 

11

 Knowledge Representation

Propositional Logic

 

 

 

 

 

Inference Propositional Logic

 

 

 

12

-First Order Logic

First Order Logic

 

 

 

 

 

Inference First Order Logic

 

 

 

13

6  Neural Netorkws

Introduction to Neural Networks

 

 

 

 

7 Machine Learning

 

 

 

  Recommended Books

1.      “Artificial Intelligence: A modern approach

Stuart Russell, Peter Norvig, Prentice Hall, 2003 (new edition 2006)

2. "Artificial Intelligence - Structures and Strategies for Complex Problem Solving", George F. Luger, Pearson Internationl Edition, 2009

3.      “Artificial Intelligence Illuminated

Ben Coppin, Jones andBartlett Publishers, 2004

4.      “Artificial Intelligence: A new synthesis”

Nils Nilsson, Morgan Kaufmann, 1998

5.      “Introduction to expert systems”

Peter Jackson, Addison Wesley, 1999

6.      Lecture slides and your lecture notes!

Grading

Exam

Score Ratio

Time

Place

MedTirm1

20%

1:00 - 3:00 , Sunday 5th December 2010

CCIS Building,   Room # 30

MedTirm2

20%

1:00 - 3:00 , Sunday
26th December 2010

CCIS Building,   Room # 30

Final exam

40%

TBD

 

Homework, Quizzes, Project

20%

TBD

CCIS Building,   Room # 30

 

Score of Midtem1

Score of Midtem2

Tutorials & Project

1. Course project for current term (updated 10-05-2010)

2. Problem Formulation: Assignment, Solution

3. Blind Search : AssignmentSolution

4. Heuristic Search : Assignment, Solution, Assignment2

5. Optimization: Assignment, Solution

6. Constraint Satisfaction Problems: Assignment, Solution

7. Game Playing 

8. Knowledge Representation & Expert System: Assignment, Solution

9. Prolog language and Samples 

10. Machine Learning: Assignment, Solution

 Homework 

1- Record Blog. , and eCorrect site Service

2- Assignment2 

3- Assignment3

4-Assignment4

 

5-Assignment5

6-Assignment6

Exams - Solutions 

  • MIDTERM I: Exam  -2--Solution-- ScoreMIDTERM II: Exam - Solution   Score
  • FINAL EXAM: Exam - Solution 

Old Exams  

  • FINAL EXAM: Exam - Solution 

 Office Hours

        Monday                   9:00 am ------  11:00 am

       Tuesday                   9:00 am -------  10:00 am

Selected Topics for Presentation

  • Problem Solving Using AI Techniques: TSP, N-Queens, 8-Puzzle ... 
  • AI and Robotics
  • Computers playing games (Chess, Checkers, BackGammon ...)
  • Swarm Intelligence and Problem Solving
  • Artificial Immune System and Security
  • Datamining (knowledge Discovery)

Additional Information

  • Robotics Institute of CMU 
course attachements