The effects of IL-17 upon human natural killer cells
SE, . Al Omar S, Flanagan BF, Almehmadi M, Christmas . 2013
These experiments were designed to investigate the effects of IL-17 upon the phenotype and function of human Natural Killer (NK) cells. Peripheral blood mononuclear cells from healthy subjects were cultured in the presence or absence of different combinations of IL-17s and changes in relative numbers and cell surface phenotype of NK cells and CD56+CD3+ cells measured by flow cytometry. Real time PCR was used to measure changes in expression of the cytotoxicity-related genes perforin A and granzymes A and B and IL-17 receptors. A chromium release assay was used to measure cytotoxic function against K562 tumour cells. IL-17D, IL-17A, IL-17F or the combination of both of the latter had little effect upon NK cell surface expression of Killer Immunoglobulin-like Receptors, although IL-17A modestly increased NK cell numbers. Slight but not significant increases in expression of perforin and granzymes were induced by IL-17A and/or IL-17F. Both IL-17A and D significantly increased cytotoxic function of NK cells at some E:T ratios. Similarly, numbers of NK cells induced to express CD107a after interaction with K562 cells were increased, but not significantly, by all combinations of IL-17s tested. IL-17RC was not found at the NK cell surface but was expressed at the message level and the protein detected intracellularly. NK cells are known to produce IL-17 but here we report that there is little response to this cytokine although some isoforms may moderately enhance cytotoxic function. There may therefore be some enhancement of NK cell function resulting from Th17 cell activation.
Frequencies of natural killer (NK) cells from patients with non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) did not differ from healthy controls.
CD56+ T cells were studied in samples of peripheral blood from small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) patients compared with healthy controls.
These experiments were designed to investigate the effects of IL-17 upon the phenotype and function of human Natural Killer (NK) cells.