Spin Seebeck Effect from Antiferromagnetic Magnons and Critical Spin Fluctuations in Epitaxial FeF2 Films
We report a longitudinal spin Seebeck effect (SSE) study in epitaxially grown FeF2ð110Þ antiferromagnetic (AFM) thin films with strong uniaxial anisotropy over the temperature range of 3.8–250 K. Both the magnetic-field and temperature-dependent SSE signals below the N´eel temperature (TN ¼ 70 K) of the FeF2 films are consistent with a theoretical model based on the excitations of AFM magnons without any net induced static magnetic moment. In addition to the characteristic low-temperature SSE peak associated with the AFM magnons, there is another SSE peak at TN which extends well into the paramagnetic phase. All the SSE data taken at different magnetic fields up to 12 T near and above the critical point TN follow the critical scaling law very well with the critical exponents for magnetic susceptibility of 3D Ising systems, which suggests that the AFM spin correlation is responsible for the observed SSE near TN.
Among van der Waals (vdW) layered ferromagnets, Fe3GeTe2 (FGT) is an excellent candidate material to form FGT/heavy metal heterostructures for studying the effect of spin−orbit torques (SOT).
We report a longitudinal spin Seebeck effect (SSE) study in epitaxially grown FeF2ð110Þ antiferromagnetic (AFM) thin films with strong uniaxial anisotropy over the temperature range of 3.8–250 K…
Electrical currents in a magnetic-insulator/heavy-metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy-metal side and spin-orbit…