Skip to main content
User Image

Khalil M El Hindi

Professor

Faculty memeber

علوم الحاسب والمعلومات
Room 2189, Building 31

A Selective LVQ Algorithm for Improving Instance Reduction Techniques and its Application for Text Classification Journal of Intelligent & Fuzzy Systems, accepted by the Journal of Intelligent & Fuzzy Systems, Rafa Hayel, Khalil El Hindi , Manar Hosny and

Journal of Intelligent & Fuzzy Systems

 

Instance-Based Learning, such as the k Nearest Neighbor (kNN), offers a straightforward and effective solution for text classification. However, as a lazy learner, kNN’s performance heavily relies on the quality and quantity of training instances, often leading to time and space inefficiencies. This challenge has spurred the development of instance-reduction techniques aimed at retaining essential instances and discarding redundant ones. While such trimming optimizes computational demands, it might adversely affect classification accuracy. This study introduces the novel Selective Learning Vector Quantization (SLVQ) algorithm, specifically designed to enhance the performance of datasets reduced through such techniques. Unlike traditional LVQ algorithms that employ random vector weights (codebook vectors), SLVQ utilizes instances selected by the reduction algorithm as the initial weight vectors. Importantly, as these instances often contain nominal values, SLVQ modifies the distances between these nominal values, rather than modifying the values themselves, aiming to improve their representation of the training set. This approach is crucial because nominal attributes are common in real-world datasets and require effective distance measures, such as the Value Difference Measure (VDM), to handle them properly. Therefore, SLVQ adjusts the VDM distances between nominal values, instead of altering the attribute values of the codebook vectors. Hence, the innovation of the SLVQ approach lies in its integration of instance reduction techniques for selecting initial codebook vectors and its effective handling of nominal attributes. Our experiments, conducted on 17 text classification datasets with four different instance reduction algorithms, confirm SLVQ’s effectiveness. It significantly enhances the kNN’s classification accuracy of reduced datasets. In our empirical study, the SLVQ method improved the performance of these datasets, achieving average classification accuracies of 82.55%, 84.07%, 78.54%, and 83.18%, compared to the average accuracies of 76.25%, 79.62%, 66.54%, and 78.19% achieved by non-fine-tuned datasets, respectively.

Volume Number
46
Issue Number
5
Magazine \ Newspaper
Journal of Intelligent & Fuzzy Systems
more of publication
publications

The combination of collaborative deep learning and Cyber-Physical Systems (CPSs) has the potential to improve decision-making, adaptability, and efficiency in dynamic and distributed environments…

by Alya Alshammari, and Khalil El Hindi
Published in:
Applied Sciences
publications

Naïve Bayes (NB) classification performance degrades if the conditional independence assumption is not satisfied or if the conditional probability estimate is not realistic due to the attributes…

by Fahad S. Alenazi, Khalil El Hindi, and Basil AsSadhan