Bovine liver catalase into three conformational states after exposure to an anionic surfactant
The mechanism by which anionic surfactants promote amyloid fibril is not well understood. Here, we investigated how sodium dodecyl sulfate (SDS), a negatively charged surfactant, affects the fibrillation of the partially unfolded random-coiled bovine liver catalase (BLC) at a pH of 2.0. We used several methods, including turbidity, RLS kinetics, intrinsic fluorescence, ThT fluorescence, far-UV CD, and TEM imaging, to evaluate the conformational changes of BLC in vitro in response to SDS treatment. BLC is a multimeric protein and well folded at physiological pH but forms a random coil structure at pH 2.0. Intrinsic fluorescence and far-UV CD data showed that below 0.1 mM SDS, random coiled BLC turned into a native-like structure. BLC incubated with an SDS concentration ranging from 0.1 to 2.0 mM led to the formation of aggregates. The ThT fluorescence intensity was enhanced in the aggregated BLC samples (0.1–2.0 mM SDS), and cross beta-sheeted structure was detected by the far UV CD measurements. BLC adopts a complete alpha-helical structure upon interacting with SDS at a more than 2.0 mM concentration at pH 2.0. Understanding the mechanism of surfactant- or lipid-induced fibrillation is important for therapeutic purposes.
A major commercial fruit in Pakistan, citrus plays an important role in the economy of the country.
Protein aggregation is implicated in different human diseases. It also makes the protein less desirable candidate for industry as they exhibit reduced biological activity. Proteins tend to…