Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction
Khan, Mujeeb . 2014
Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report a facile and eco-friendly method for the synthesis of palladium (Pd) nanoparticles (NPs) using an aqueous solution of Pulicaria glutinosa, a plant widely found in a large region of Saudi Arabia, as a bioreductant. The as-prepared Pd NPs were characterized using ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). The hydroxyl groups of the plant extract (PE) molecules were found mainly responsible for the reduction and growth of Pd NPs.
FT-IR analysis confirmed the dual role of the PE, both as a bioreductant as well as a capping ligand, which stabilizes the surface of Pd NPs. The crystalline nature of the Pd NPs was identified using XRD analysis which confirmed the formation of a face-centered cubic structure (JCPDS: 87-0641, space group: Fm3m (225)). Furthermore, the as-synthesized Pd NPs demonstrated excellent catalytic activity towards the Suzuki coupling reaction under aqueous and aerobic conditions. Kinetic studies of the catalytic reaction monitored using GC confirmed that the reaction completes in less than 5 minutes.
Current energy crisis and environmental issues, including depletion of fossil fuels, rapid industrialization, and undesired CO2 emission resulting in global warming has created havoc for the…
The formation of a C-C bond through Mizoroki-Heck cross-coupling reactions in water with efficient heterogeneous catalysts is a challenging task. In this current study, a highly reduced graphene…
Pollution and global warming are a few of the many reasons for environmental problems, due to industrial wastes and greenhouse gases, hence there are efforts to bring down such emissions to reduce…