Skip to main content
User Image

Dr Ammar TIGHEZZA

Associate Professor

Faculty

كلية العلوم
2 A 146 Building 5

Electrochemically Polymerized DL-Phenylalanine-Deposited Graphene Paste Electrode for the Detection of Rutin

ChemistrySelect

Graphical abstract

Abstract

The sensitive, economical, green, and simple voltammetric sensor for the detection of the redox behaviour of rutin (RT) was prepared by the electrochemical polymerization approach. The constructed polymerized DL-phenylalanine (DL-PN) modified graphene paste electrode (MGPE) and bare graphene paste electrode (BGPE) were elucidated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopic (EIS) and field emission scanning electron microscopic (FE-SEM) approaches. The analysis of RT in phosphate-buffered saline (PBS) of pH 6.5 was demonstrated by the application of a modified electrode (Poly(DL-PN)MGPE) with higher electrocatalytic activity and active sites as compared to BGPE. The important electrochemical parameters such as the influence of PBS, pH, scan rate, and concentration of RT on Poly(DL-PN)MGPE were evaluated. The variation of scan rate and PBS pH assessment discloses that the RT redox nature at Poly(DL-PN)MGPE surface has proceeded via pH-dependant and adsorption-controlled pathways. The Poly(DL-PN)MGPE senses RT in the range from 0.2 to 10.0 μM with a lower limit of detection (LOD) value of 8.31 nM and a limit of quantification (LOQ) of 27.70 nM. The Poly(DL-PN)MGPE shows excellent reproducibility, antifouling nature, repeatability, and stability for the detection of RT. Also, the Poly(DL-PN)MGPE analytical applicability was discussed for RT detection in citrus fruit juice samples.

Publication Work Type
Research
Publisher Name
Chemistry Europe
more of publication
publications

The focus in recent years has been on developing innovative, green technologies for energy production and storage. Nanocomposite materials are attractive due to their exceptional performance,…

by Tayaba Tahsen, Ravia Irshad, Ayesha Hareem, Irsa Kanwal, Talib K. Ibrahim, Khalid Mehmood, Ammar M. Tighezza, Shahid Hussain
2025
publications

With the rapid development of biomedical technology, biodegradable and implantable energy storage devices for …

by Xiaofeng Zhang a , Muhammad Sufyan Javed, Hongjia Ren, Xinze Zhang, Salamat Ali, Kaiming Han , Awais Ahmad, Ammar M. Tighezza, Weihua Han, Kui-Qing Peng
2024
publications

Electrochemical energy storage devices are vital for renewable energy integration and the deployment of electric vehicles. Ongoing research seeks to create new materials with innovative…

by Dhananjaya Merum, Rosaiah Pitcheri, Nipa Roy, Naveen Kumar Kilari, Ammar Mohamed Tighezza, Soumyendu Roy, Sang Woo Joo
2024
Published in:
Wiley