تجاوز إلى المحتوى الرئيسي
User Image

سطام بن فهد بن سلطان المعجل

Assistant Professor

عضو هيئة تدريس

كلية الهندسة
College of Engineering - Department of Civil Engineering
المنشورات
مقال فى مجلة
2017

Superhydrophilic Functionalization of Microfiltration Ceramic Membranes Enables Separation of Hydrocarbons from Frac and Produced Water

The environmental impact of shale oil and gas production by hydraulic fracturing (fracking) is of increasing concern. The biggest potential source of environmental contamination is flowback and produced water, which is highly contaminated with hydrocarbons, bacteria and particulates, meaning that traditional membranes are readily fouled. We show the chemical functionalisation of alumina ceramic microfiltration membranes (0.22 μm pore size) with cysteic acid creates a superhydrophilic surface, allowing for separation of hydrocarbons from frac and produced waters without fouling. The single pass rejection coefficients was >90% for all samples. The separation of hydrocarbons from water when the former have hydrodynamic diameters smaller than the pore size of the membrane is due to the zwitter ionically charged superhydrophilic pore surface. Membrane fouling is essentially eliminated, while a specific flux is obtained at a lower pressure (<2 bar) than that required achieving the same flux for the untreated membrane (4–8 bar).

نوع عمل المنشور
Scientific Report
مجلة/صحيفة
Nature
الصفحات
9
مزيد من المنشورات
publications

The environmental impact of shale oil and gas production by hydraulic fracturing (fracking) is of increasing concern. The biggest potential source of environmental contamination is flowback and…

2017
publications

Three topics related to the degradation of hydrophobic and hydrophilic compounds in percarbonate systems were studied.

بواسطة Sattam Fahad Almojil
2015