تجاوز إلى المحتوى الرئيسي
User Image

أ.د. ناجي بن مرضي بن ناجي آل صويان

Professor

عضو هيئة تدريس

كلية علوم الأغذية والزراعة
كلية علوم الأغذية والزراعة, الدور الثاني-المبنى الجديد, مكتب رقم 68S026
المنشورات
مقال فى مجلة
2019
تم النشر فى:

Modelling the unsaturated hydraulic conductivity of a sandy loam soil using Gaussian process regression

Al-Dosary, Naji Mordi N. . 2019

Unsaturated soil hydraulic conductivity is a main parameter in agricultural and environmental studies, necessary for predicting and managing water and solute transport in soils. This parameter is difficult to measure in agricultural fields; thus, a simple and practical estimation method would be preferable, and quantitative methods (analytical and numerical) to predict the field parameters should be developed. Field experiments were conducted to collect water quality data to model the unsaturated hydraulic conductivity of a sandy loam soil. A mini disk infiltrometer (MDI) was used to measure soil infiltration rate. Input variables included electrical conductivity and the sodium adsorption ratio of irrigation water. Suction rate (pressure head), soil bulk density, and soil moisture content acted as inputs, with unsaturated soil hydraulic conductivity as output. The performance of Gaussian process regression (GPR) was analysed, with multiple linear regression (LR) and multi-layer perceptron (MLP) models used for comparison. Three performance criteria were compared: correlation coefficient (r), root mean square error (RMSE), and mean absolute error (MAE). The simulations employed the Waikato environment for knowledge analysis (WEKA) open source tool. The results indicate that the GPR with Pearson VII function-based universal kernel (PUK kernel), cache size 250007, Omega 1.0 and Sigma 1.0 performs better than other kernels when evaluating test split data, with a correlation coefficient of 0.9646. The RMSEs for GPR (PUK kernel), MLP, and LR were 1.16 × 10-04, 1.87 × 10-04, and 2.22 × 10-04 cm·s-1, respectively. Predictive data mining algorithms (DMA) enable an estimate of unknown values based on patterns in a database. Therefore, the present methodology can be put to use in predictive tools to manage water and solute transport in soils, as the GPR model provides much greater accuracy than the LR and MLP models in predicting the unsaturated hydraulic conductivity of a sandy loam soil.

نوع عمل المنشور
ورقة بحثية (علمية)
رقم المجلد
45
رقم الانشاء
1
مجلة/صحيفة
Water SA
الصفحات
121 إلى 130
مزيد من المنشورات
publications

Water  uniformity  is  affected  by  sprinklers  in  a  self-propelled  center-pivot  irrigation  system.  Thus  sprinklers  acceptability  is  very  important  in  water  management  of  such  …

بواسطة Naji Mordi N. Al-Dosary, Hussein M Al-Ghobari, Abdulwahed Mohamed Aboukarima, Mohamed S El Marazky
2018
publications

Most important farm operations require a significant amount of energy, and this consumes a major portion of the farm's budget. Consequently, analyzing the fuel consumption of…

بواسطة Naji Mordi N. Al-Dosary, Saad Abdulrahman Al-Hamed, Abdulwahed Mohamed Aboukarima
2019
publications

Unsaturated soil hydraulic conductivity is a main parameter in agricultural and environmental studies, necessary for predicting and managing water and solute transport in soils.

بواسطة Naji Mordi N. Al-Dosary, Mohammed A. Al-Sulaiman, Abdulwahed M. Aboukarima
2019