Asymptotic study of Leray solution of 3D-Navier-Stokes equations with exponential damping
We study the uniqueness, the continuity in $L^2$ and the large time decay for the Leray solutions of the $3D$ incompressible Navier-Stokes equations with the nonlinear exponential damping term $a (e^{b |u|^{\bf 2}}-1)u$, ($a,b>0$).
اسم الناشر
De Gruyter Open Access
رقم المجلد
56
رقم الانشاء
20220208
مجلة/صحيفة
Demonstratio Mathematica
Lamiri and M.Ouni state some characterization theorems for d-orthogonal polynomials
of Hermite, Gould-Hopper and Charlier type polynomials. In [3] Y.Ben Cheikh I. Lamiri and M.Ouni
…
We study the uniqueness, the continuity in $L^2$ and the large time decay for the Leray solutions of the $3D$ incompressible Navier-Stokes equations with the nonlinear exponential damping term $a…
De Gruyter Open Access