ME 304 Mechanical Engineering Design (1)
Course Description
Introduction to design: design process, problem formulation, engineering model, factors of safety and codes, overall design considerations; Stresses: stress concentration factors, residual stresses; Deflection and Stiffness; Stability and Buckling; Theories of failure: failure under static loading, fatigue loading; fracture mechanics.
Credits Hours
3(3,2,0)
Prerequisites Courses
ME 352
Textbooks:
- R.C.Hibbeler. Mechanics of Materials, SI 8th Edition.
- J. E. Shigley, C. R. Mischke and R. G. Budynas, Mechanical Engineering Design, SI 9th Edition, McGraw Hill, 2008.
Reference Books
1. Mechanical Analysis and Design, By Arthur B. Burr, Elsevier
2. Fundamentals of Machine component Design, By Robert Juvinall and Kurt Marshek, Wiley
Course Topics
- Shaft Design
- Theory of Failure: Static Loading
- Deflection of Beams and shafts
- Stability of Structures: Column Buckling
- Energy Methods
- Theory of Failure: Dynamic Loading
- Introduction to Fracture Mechanics
Week (1) : Introduction
Week (2) : Chapter 10
Week (3) : Chapter 10
Week (4) : Chapter 10
Week (5) : Chapter 11
Week (6) : Chapter 11
Week (7) : Chapter 11
Week (8) : Chapter 12
Week (9) : Chapter 12
Week (10) : Chapter 14
Week (11) : Chapter 14
Week (12) : Chapter 14
Week (13) : Chapter 6
Week (14) : Chapter 6
Week (15) : Chapter 6
Week (16) : Chapter 6
Class/Laboratory Schedule
Three 50 minutes lecture sessions, two 50 minutes tutorials per week.
Computer Applications
Microsoft Office
Laboratory Projects
Term project
Assessment Tools
- Quizzes + Homework 15 %
- Project report 5%
- MID – I 20%
- MID – II 20%
- Final Examinations 40%
Problems Activities:
1.Introduction to design; Process, Tools, Codes and Standards ( Chapter 1: Mechanical Engineering Design)
2.Shaft Design: (11.4, 11.13, 11.17, 11.30, 11.44, 11.45, 11.48, 11.52, R.C. Hibbeler. Mechanics of Materials)
3.Theory of Failure for Static Loading: (10.69, 10.72, 10.74, 10.76, 10.82, 10.83, 10.90, 10.91, 10.92, 11.39, 11.40, 11.46; R.C. Hibbeler. Mechanics of Materials)
4.Deflection of Beams and Shafts: (F12.4, F12.8, F12.11, 12.15, 12.24, 12.38, 12.46, 12.49, 12.55, 12.67, 12.78, 12.86, 12.92, 12.93, 12.95); R.C. Hibbeler. Mechanics of Materials)
5.Buckling: (F13.6, 13.4, 13.19, 13.21, 13.36, 13.37, 13.97, 13.98, 13.99, 13.120, 13.133, 13.134; R.C. Hibbeler. Mechanics of Materials)
6.Energy Methods: (14.3, 14.4, 14.11, 14.15, 14.20, 14.21, 14.28, 14.39, 14.41, 14.44, 14.52, 14.54, 14.58, 14.63, 14.150, 14.151, 14.152, 14.153; R.C. Hibbeler. Mechanics of Materials)
7.Fatigue: ( Crack Growth, life prediction, 6.12, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21 ; Mechanical Engineering Design)
8.Fracture Mechanics: ( KIC Testing; Mechanical Engineering Design)
9.Contact Stresses