. Interpolating Scaling Functions Tau Method for Solving Space–Time Fractional Partial Differential Equations
This paper is devoted to an innovative and efficient technique for solving space–time fractional differential equations (STFPDEs). To this end, we apply the Tau method such that the bases used are interpolating scaling functions (ISFs). The operational metrics for the derivative operator and fractional integration operator are used to introduce the operational matrix for the Caputo fractional derivative. Due to some characteristics of ISFs, such as interpolation, computation costs can be significantly reduced. We investigate the convergence of the technique, and some numerical implementations show that the method is effective for solving such equations
We offer a wavelet collocation method for solving the weakly singular integro-differential equations with fractional derivatives (WSIDE). Our approach is based on the…
We aim to implement the pseudospectral method on fractional Telegraph equation. To implement this method, Chebyshev cardinal functions (CCFs) are considered bases.
This paper is devoted to an innovative and efficient technique for solving space–time fractional differential equations (STFPDEs). To this end, we apply the Tau…