135-Multiplex heteroatoms doped carbon nano dots with enhanced catalytic reduction of ionic dyes and QR code security label for anti-spurious applications
Herein, a simple hydrothermal approach was used to make multiplex heteroatoms doped carbon dots from Tinospora cordifolia miers plant extract. Their ability to the catalytic activity of dyes and anti-spurious applications was evaluated. The formation of NBCNDs and source of (T. cordifolia miers) study the optical properties, and functional groups are investigated using UV–Visible spectroscopy and FT-IR techniques. The synthesized NBCNDs structure and elemental compositions were examined via HR-TEM, XRD, and XPS, respectively. According to the HRTEM images, the average particle size of the NBCNDs was around 4.3± 1 nm, with d-spacing of 0.19 nm. The obtained NBCNDs were exposed under 395 nm UV light to emit bluish-green tuneable fluorescence with QY (quantum yield) of 23.7%. The prepared NBCNDs as a potential catalyst for the AYR and CV dye reduction process using freshly prepared NaBH4, with determined rate constant values at 0.1220 and 0.1521 min−1, respectively. Lastly, we constructed a quick response (QR) code security label for anti-spurious applications using stencil techniques. The “confidential info” was encrypted using a QR code digital system, and the decryption was read using a smartphone under 365 nm l
Herein, a simple hydrothermal approach was used to make multiplex heteroatoms doped carbon dots from Tinospora cordifolia miers plant extract. Their ability to the catalytic activity of dyes and…
Recent research is focused on biomass-derived porous carbon materials for energy harvesting (hydrogen evolution reaction) because of their cost-effective synthesis, enriched with heteroatoms,…
The production of biofuels from crop biomass is now seen as a practical renewable energy alternative, reducing overdependence on fossil fuels and limiting global warming from greenhouse gases.