تجاوز إلى المحتوى الرئيسي
User Image

Prof. Dr. Akhlaq Ahmad Siddiqui

Professor

Faculty

كلية العلوم
Building 4, Floor 2, Office No. A 149
المنشورات
مقال فى مجلة
2025

Peirce Decomposition of Quasi Jordan Algebras

 Idempotents play a basic role in the study of algebras. Peirce decomposition induced by an idempotent is
an important tool in the structure theory of non-associative algebras. In this note, we investigate the Peirce decomposition
of a unital quasi Jordan algebra.

نوع عمل المنشور
Research
اسم الناشر
Universal Wiser Publisher / Contemporary Mathematics
رقم المجلد
6
رقم الانشاء
1
الصفحات
543 - 550
مزيد من المنشورات
publications

We initiate a study of involutions in the setting of complex quasi Jordan algebras and discuss the notions of self-adjoint and unitary elements; besides other results, we also obtain a Russo-Dye…

بواسطة Reem K. Alhefthi, Akhlaq A. Siddiqui, Fatmah B. Jamjoom
2021
تم النشر فى:
Springer / Indian Journal of Pure and Applied Mathematics
publications

The notion of quasi-Jordan algebras was originally proposed by R. Velasquez and R. Fellipe. Later, M. R. Bremner provided a modification called K-B quasi-Jordan algebras; these include all Jordan…

بواسطة Reem K. Alhefthi, Akhlaq A. Siddiqui and Fatmah B. Jamjoom
2023
تم النشر فى:
MDPI / axioms
publications

 Idempotents play a basic role in the study of algebras. Peirce decomposition induced by an idempotent is
an important tool in the structure theory of non-associative algebras. In this note…

بواسطة Reem K. Alhefthi, Akhlaq A. Siddiqui, Haifa M. Tahlawi
2025
تم النشر فى:
Universal Wiser Publisher / Contemporary Mathematics