تجاوز إلى المحتوى الرئيسي
User Image

Dr Ammar TIGHEZZA

Associate Professor

Faculty

كلية العلوم
2 A 146 Building 5
المنشورات
مقال فى مجلة
2022

Facile synthesis of hierarchical ZnS@ FeSe2 nanostructures as new energy-efficient cathode material for advanced asymmetric supercapacitors

We have effectively synthesized ZnS, FeSe2, and their nanocomposite in this study using a straightforward and affordable solvothermal process. We also investigate for the first time their ideal electrochemical performance for supercapacitors. The ZnS and FeSe2 positive electrodes exhibit capacitances of 266.2 F g-1 and 294.3 F g-1, respectively, with fascinating nanostructures and morphology. Their respective nanocomposites, AZ-1, AZ-2, and AZ-3, deliver capacitances of 356.8, 444.4, and 326.1 F g-1 with significant rate performance in aqueous solution in three-electrode assembly. The lowest ESR and Rct values of AZ-2 electrodes, which improved conductivity and charge transport kinetics and created a synergistic effect between ZnS and FeSe2 electrodes, are responsible for their exceptional capacitative performance. We built an asymmetric supercapacitor (AZ-2/AC) with an optimal voltage of 1.6 V, which demonstrated great power density (6250 W kg-1) and energy density (33 Wh kg-1) with remarkable cycling stability (88.1%) in an aqueous electrolyte after 12,000 cycles. As a result, FeSe2-based nanocomposites are strong contenders for realizing high energy and power delivery for practical applications.

Image Abstract

 

نوع عمل المنشور
Research
اسم الناشر
ScienceDIrect
مجلة/صحيفة
Journal of Science: Advanced Materials and Devices
مزيد من المنشورات
publications

We investigate the structural, optoelectronic, and thermoelectric properties of halide double perovskite X2GeSnI6 (X = Rb, Cs) compounds employing the full potential linearized augmented plane…

بواسطة Malak Azmat Ali, M. Musa Saad H.‑E., Ammar M. Tighezza, Shaukat Khattak, Samah Al‑Qaisi, Muhammad Faizan
2023
publications

The research was done on the creation and use of bi-metal sulfide thin film, Nd2S3:Ni9S8. 41 nm-sized crystallites with 80% crystallinity were found in the material. The evaluated optical…

بواسطة Mahwash Mahar Gul, Khuram Shahzad Ahmad, Andrew Guy Thomas, Ammar Mohamed Tighezza
2023
publications

Perovskite solar cell (PSC) technology is extensively used in commercial sectors, but concerns about the use of lead and degradable components in cells are increasing.

بواسطة Farhana Bari Sumona, Muhammad Kashif, Eli Danladi, Ammar M. Tighezza, Nahid Al-Mahmud, Gazi F. I. Toki, Rahul Pandey, and M. Khalid Hossain
2023