تجاوز إلى المحتوى الرئيسي
User Image

عمار بن عبدالرحمن العمار

أستاذ مساعد

عضو هيئة تدريس

كلية العمارة والتخطيط
كلية العمارة والتخطيط - المبنى 32 - الدور الثاني - المكتب 2052
المنشورات
ورقة مؤتمر
2024

Building Energy Efficiency Estimations with Random Forest for Single and Multi-Zones

Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves defining numerous parameters, disrupting the architect's creative flow due to extended simulation run times. Therefore, this research explores integrating building energy analysis with advanced machine learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings. To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's (2014) methodology. This dataset encompasses multiple building forms, each with unique topological connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical factor in building energy efficiency. Following that, A random search approach is utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads (KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of machine learning in optimizing building designs for energy efficiency.

اسم الناشر
eCAADe
مزيد من المنشورات
publications

In this paper, we introduce graph machine learning to enhance the estimation of heating and cooling loads in buildings, a critical factor in building energy efficiency. Traditional methods often…

بواسطة Wassim Jabi , Abdulrahman Alymani, Ammar Alammar
2025
تم النشر فى:
Buildings
publications

In hot, arid climates, educational buildings often face the challenge of limited outdoor space usage.

بواسطة Jamil Binabid, Abdulrahman Alymani, Ammar Alammar
2024
تم النشر فى:
Buildings
publications

Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept…

بواسطة Ammar Alammar , Wassim Jabi, Abdulrahman Alymani
2024
تم النشر فى:
eCAADe