حلل الأرقام التالية في نظام العد العشري:

925	3214
3345.5	75.25

حلل الأرقام التالية في نظام العد الثنائي:

11010	10110
11.011	100.01

حول الأرقام التالية من نظام العد الثنائي إلى نظام العد العشري

111	1101
11001	10001

حول الأرقام التالية من نظام العد الثنائي إلى نظام العد العشري

1.01	100.1
1011.001	10010.111

حول الأرقام التالية من نظام العد العشري إلى نظام العد الثانئي

27	025	120	124
37	925	128	124
55.25	33.625	227	101
00.20	00.020	,	101

حول الأرقام التالية بين أنظمة العد

(1001.01)2=()10	(0.11) ₂ = ()10
(33.75) ₁₀ = ()2	(0.33) ₁₀ = ()2
		ظاء المدالة المدائ	نفذ عمليات الجمع التالية في نا

10101111+1110001=	110.01101+110.1=
1 1 0 1 . 0 1 + 1 1 1 0 0 1 =	0.110101+0.0010=

نفذ عمليات الطرح التالية في نظام العد الثنائي

1 1 0 - 1 1 =	1 1 0 1 0 . 0 1 – 1 1 1 =
1 0 0 0 1 0 - 1 1 1 . 1=	0.1110-0.1101=

نفذ عمليات الضرب التالية في نظام العد الثنائي

11.011 x 111 =	10010 x 11.001 =
0.111 x 11 =	0 . 1 0 1 x 0 . 0 0 1 =
0.111 x 11 =	0 . 1 0 1 x 0 . 0 0 1 =
0.111 x 11 =	0 . 1 0 1 x 0 . 0 0 1 =
0.111 x 11 =	0 . 1 0 1 x 0 . 0 0 1 =
0.111 x 11 =	0 . 1 0 1 x 0 . 0 0 1 =
0.111 x 11 =	0 . 1 0 1 x 0 . 0 0 1 =

حول الأعداد التالية من نظام العد الثماني إلى نظام العد الثنائي:

(536)8=	(2153)8=
(7610.13) ₈ =	(0.17005) ₈ =
	ما الأمرام البالة خان الما الماك الماك عنان الما

حول الأعداد التالية من نظام العد الثنائي إلى نظام العد الثماني

(10111) ₂ =	(1011.01) ₂ =
10001	0.04404
(10001.01)2=	(0.01101) ₂ =

حول الأعداد التالية من نظام العد الست عشري إلى نظام العد الثنائي:

(A 2 C 5 ₎₁₆ =	(4512.2 ₎₁₆ =
(1 0 1 0 1 ₎₁₆ =	(0. A B 1) ₁₆ =

	مد الست عشري	نائي إلى نظام ال	من نظام العد الث	التالية	ول الأعداد
--	--------------	------------------	------------------	---------	------------

	حول الا عداد التالية من نظام العد الثنائي إلى نظام العد السب عسري
(10111)2=	(1011.01) ₂ =
(10001.01)2=	(0.01101)2=
	حول الأعداد التالية من نظام العد الست عشري إلى نظام العد الثماني:
$(A 2 C 1. 2)_{16} = ($ $)_8$	(42BF) ₁₆ = () ₈
	حول الأعداد التالية من نظام العد الثماني إلى نظام العد العشري
$(723.5)_8 = ()_{10}$	(44.3)8=()10
	حول الأعداد التاليةمن نظام العد الثماني إلى نظام العد الست عشري:
$(723.5)_8 = ()$	(4 4 . 3) ₈ = () ₁₆

أوجد المتمم الأحادي والثنائي للأعداد التالية:

المتمم الثنائي	المتمم الأخادي	الرقم
		11011000
		0011010
		110010010
		110010101

أوجد متمم التسعات ومتمم الالعشرات للأعداد التالية:

متمم العشرات	متمم التسعات	الرقم
		925
		1425
		36224

أوجد ناتج عملية الطرح التالية باستخدام طريقة المتممات:

1010-0110=	1 1 0 0 - 1 1 1 =
1245-716=	142 – 133=

لا:	تقرير أم	كانت	إذاما	التالية	الجمل	من	حدد
-----	----------	------	-------	---------	-------	----	-----

- 1- المسجد الأقصى أولى القبلتين
 - 2- العدد 15 عدد أولي
 - 3- كم الساعة الآن؟
 - 4- مع السلامة
 - 5- العدد 7 عدد أولى
- 6- الأمم المتحدة مؤسسة عربية
- 7- أنت مدعو لحضور الافتتاح

أوجد جدول الصواب للعلاقات التالية:

p	q	p∨q	p	q	p ^ q	q	~q

إذا كان: " Pالجو بارد" و " qهي تمطر"، أوجد الجمل البسيطة التي تمثل كلاً من التقارير التالية:

- ~q -1
- p ∨ q -2
- ~q ^ p -3

حول التقارير التالية إلى الصورة الرمزية التي تمثلها:

- 1- الجو بارد والسماء تمطر.
- 2- السماء تمطر ولكن الجو غير بارد.
 - 3- لا الجو بارد و لا السماء تمطر.

أوجد جدول الصواب للعلاقتين التاليتين:

p	q	p→q

p	q	p⇔q

أثبت أن العلاقتين التاليتين متكافئتين:

$p \to q \equiv \sim q \to \sim p$	$\neg (p \lor q) \equiv \neg p \land \neg q$

أوجد جدول الصواب للعلاقات التالية

$p \to q \equiv \sim p \vee q$	$[p \land (p \rightarrow q)] \rightarrow q$
$(p \lor q) \leftrightarrow_{(} q \land p)$	$\neg p \to (p \to q)$
$(\mathbf{q} \wedge \mathbf{r}) \vee \sim (\mathbf{q} \wedge \mathbf{r})$	$(p \land q) \land \sim (p \lor q)$

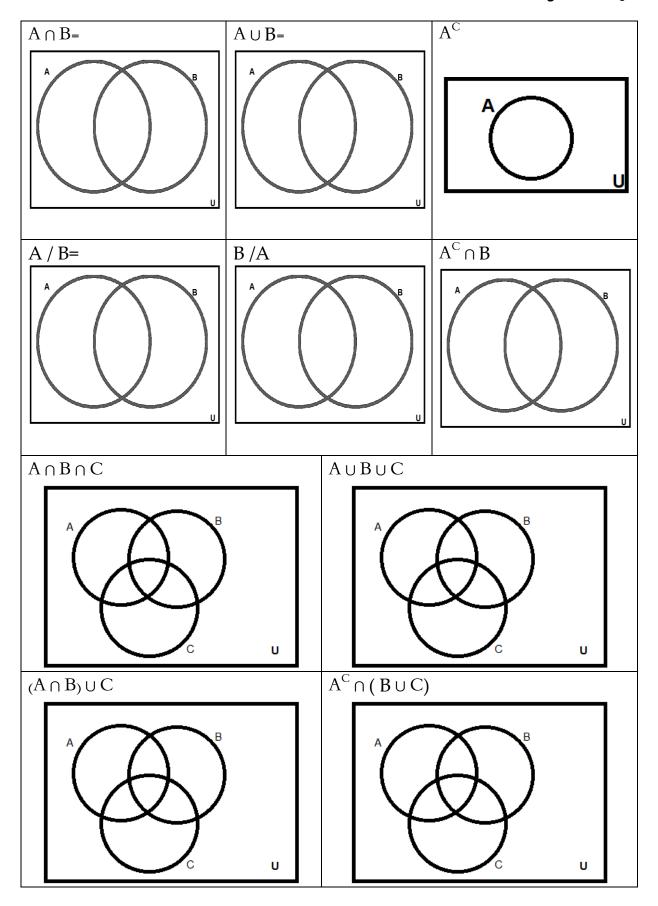
أوجد عناصر المجموعات التالية:

 $A = \{ x: وجي x \}$

B= $\{x: صحیح x, x>0\}$

 $C = \{ x: \{ y \in X \} \}$

 $E = \{ x: 5 \text{ و } 3 \text{ و } x: 5 \}$


$A=\{a,b,c\}, \quad B=\{\ b\}, \quad C=\{d,c,f\}$: بفرض لدينا المجموعات التالية: فرض لدينا أوجد مايلي:

A ∩ B=	A ∩ C=	A ∪ B=
B ∪ C=	A ∪ C=	C / B=
A / B=	B /A=	A / C=
$(A \cap B) \cup C =$	$(A \cup B) \cap C=$	(A U B)/ C=

بفرض لدينا المجموعة الشاملة التالية: $\{1,2,3,4,5,6,7,8,9,10\}$ $\{1,2,3,4,5\}$, $\{$

		ਜ਼-
A ∩ B=	A ∩ C=	B ∪ C=
A ∪ B=	A ^C =	B^{C} =
A / B=	A / C=	C^{C} =
B /A=	C / A=	C / B=
$A \cap C^C =$	$B^{C} \cup C=$	$B^{C}/C=$

أوجد مخطط فن للعلاقات التالية:

 $\mathbf{U}=\{1,2,3,\,\ldots\,,8,9\}:\mathbf{U}$ بفرض أن لدينا المجموعة الشاملة $\mathbf{A}=\{1,\,4,\,5,\,9\},\;\;\mathbf{B}=\{3,\,5,\,7\},\;\mathbf{C}=\{2,\,4,\,5,\,6,\,9\}$ والمجموعات الجزئية التالية:

A ∩ B=	A ∩ C=	B ∪ C=
A ∪ B=	A ^C =	B ^C =
A / B=	A / C=	C^{C} =
$A \cap C^{C}=$	$B^{C} \cup C=$	$B^{C}/C=$

 $A=\{1,4,6\},\ B=\{a,b,d\}$ إذا كان لدينا المجموعة A,B ومعرقة بالشكل التالي: AxB

 $A=\{4,6\},\ B=\{a,b,d\},\ C=\{1,2\}$ إذا كان لدينا المجموعة A,B,C ومعرقة بالشكل التالي: AxBxC أوجد

 $R=\{(a,b)\colon 2 imes a-b \le 4\}$ إذا عرفنا العلاقة R على المجموعة $A=\{1,2,3,4\}$ كما هو مبين

AxA=	R=
مدى العلاقة	نطاق العلاقة
R ⁻¹	

 $\mathbf{R} = \{(\mathbf{a}, \mathbf{b}): \mathbf{a}^* \mathbf{b} \leq 7)\}$ و لتكن $B = \{(\mathbf{a}, \mathbf{b}): \mathbf{a}^* \mathbf{b} \leq 7\}$ معرفة التالي: $\mathbf{A} = \{(\mathbf{a}, \mathbf{b}): \mathbf{a}^* \mathbf{b} \leq 7\}$

AxB=	R=
مدى العلاقة	نطاق العلاقة
R ⁻¹	•

إذا عرفنا العلاقتين R,S على المجموعة $Z=\{1,2,3,4,5\}$ كما هو مبين $S=\{(1,1),\,(2,2)\,,(2,3),\,(3,4),\,(5,5)\},$ $R=\{(1,1),\,(1,2),\,(3,3),\,(3,4),\,(4,5)\}$

أوجد صورة R بطريقة الأسهم	أوجد صورة R بالشكل الإحداثي
أوجد صورة S بالشكل الإحداثي	أوجد S بطريقة المصفوفات
	$A = \{12346\}$

لتكن المجموعة \mathbf{R} المعروفة بالشكل \mathbf{R} ولتكن \mathbf{R} هي العلاقة على \mathbf{R} المعروفة بالشكل \mathbf{R} ={ $(\mathbf{x},\mathbf{y}): \mathbf{x}/\mathbf{y}=$ عدد صحيح

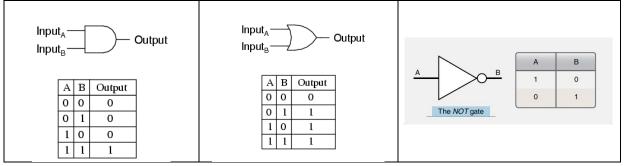
أوجد R	أوحد AxA
أوجد صورة R بطريقة الأسهم	أوجد صورة R بالشكل الإحداثي
أوجد صورة R بالشكل الموجه	أوجد R بطريقة المصفوفات

الدارات المنطقية الأساسية:

a	b	a+b	a	b	a.b	X	x'

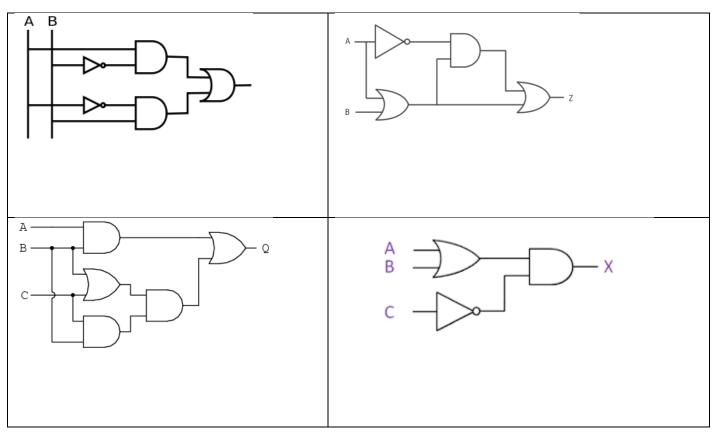
أوجد جدول الصواب للدوال التالية:

$F = (A + B) \cdot A'$	$F = A \cdot B' + A' \cdot B$								
F = A' . B' + A . B	$F = (A \cdot B)' + A$								
F = (A . B) . (A + B)'	$F = (A + B') \cdot B$								


أوجد متمم (طبق قانون ديمورغان) على العلاقات التالية:

F = [(A + B) . C]	$F = [A + (A \cdot C')]$
F' =	F' =
$E = X' \cdot Z + Y'$	E = (X . Y . Z) . Z' + Y . Z
E'=	E' =

أوجد جدول الصواب للدوال التالية:


$F = (A + B) \cdot C$	$F = (A + B) \cdot (B + C)$
F = A' . B' + (B . C)'	F = A . B . C + A' . B + A .C
	A B C A' A.B.C A'.B A.C F

الدرارت المنطقية الاساسية:

أرسم الدوائر المنطقية التالية:

F = (A + B). A'	F = A . B' + A' . B
F = A' . B' + A . B	F = (A . B)' + A
F = (A . B) . (A + B)'	F = (A + B') . B

أوجد الدالة المعبرة عن جداول الصواب التالية على شكل مجاميع جداءات (SOP)

0	0 1 1 1 0 (0 0 1	1 0	F 1 0 1		0 0 1	B0101	F 1 0 0		A 0 0 1	B0101	F 0 1 0 0	
A	В	С	F	A	В	С	F	A	В	С	F	A	В	С	F
0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
0	0	1	0	0	0	1	0	0	0	1	1	0	0	1	0
0	1	0	1	0	1	0	1	0	1	0	0	0	1	0	0
0	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	1
1	0	1	1	1	0	1	0	1	0	1	0	1	0	1	1
1	1	0	0	1	1	0	1	1	1	0	0	1	1	0	0
1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0

ورقة عمل 10

حول جداول الصواب التالية إلى جداول كانوف (K-map)

A B F 0 0 1 0 1 1 1 0 0 1 1 0	A B F 0 0 1 0 1 0 1 0 1 1 1 0	A B F 0 0 1 0 1 0 1 0 0 1 1 1	A B F 0 0 0 0 1 1 1 0 0 1 1 0
A B 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A B 0 1 0 1 1 1	A B 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A B 0 0 1 1 1
A B C F 0 0 0 0		A B C F 0 0 0 1	A B C F 0 0 0 0
0 0 1 0 0 1 0 1		0 0 1 1 0 0	0 0 1 0 0 1 0 0
0 1 1 1 1 1 1 0 0 0		0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0		1 0 1 0 1 1 0 0	1 0 1 1 1 1 0 0
1 1 1 Bc 00 01 11 10		1 1 1 1 Bc 00 01 11 10	1 1 1 0 Bc 00 01 11 10
0 1	0	A \ 0 \ 1	A 0 1

أوجد الدالة المعبرة عن حدول الصواب التالي عن طريق جداول كارنوف (K-map)

A B F 0 0 1 0 1 1 1 0 0 1 1 0 A B 0 1 0 1	A B F 0 0 1 0 1 0 1 0 1 1 1 0 A B 0 1 0 1	A B F 0 0 1 0 1 0 1 0 0 1 1 1	A B F 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
A B C F 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0	A B C F 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1	0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 Bc 00 01 11 10	A B C F 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1
Bc 00 01 11 10 0 1 1 1 1 1 1 1			Bc 00 01 11 10 A 0 1 1 1 1 1 1 1 1