Work Sheet (\#1)

1. Find the arc length of the parametrized curve

$$
x=t^{2}, \quad y=t \sin t, \quad z=t \text { cos } t, \quad 0 \leq t \leq 1
$$

2. If f and u are differentiable with sutably restricted domains, prove the chain rule:

$$
[u f(t)]^{\prime}=f(t)^{\prime} u^{\prime}(f(t))
$$

3. Find $r(t)$ subject to the given conditions

$$
r^{\prime}(t)=2 i-4 t^{3} j+6 \sqrt{t} k \quad r(0)=i+5 j+3 k .
$$

4. Find the curvature of the curve $y=\cos (2 x)$ at $P(0,1)$.
5. Find the points on the given curve at which the curvature is a maximum $y=\cosh x$
6. Find general formulas for the tangential and normal components of acceleration and for the curvatureof curve C determine by

$$
r(t)=4 t i+t^{2} j+2 t^{2} k
$$

7. Let C be the curve determined by $r(t)=\left(e^{t} \sin t\right) i+\left(e^{t} \cos t\right) j+e^{t} k \quad 0 \leq t \leq 1$ a- Find a unit tangent vector to C at the point corresponding to $\mathrm{t}=0$.
b- Find an equation of the tangent line to C at the point corresponding to $\mathrm{t}=0$.
