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ABSTRACT
The validation of simulation models (e.g., of electronic con-
trol units for vehicles) in industry is becoming increasingly
challenging due to their growing complexity. To systemati-
cally assess the quality of such models, software metrics seem
to be promising. In this paper we explore the use of software
metrics and outlier analysis as a means to assess the quality of
model-based software. More specifically, we investigate how
results from regression analysis applied to measurement data
received from size and complexity metrics can be mapped
to software quality. Using the moving averages approach,
models were fit to data received from over 65,000 software
revisions for 71 simulation models that represent different
electronic control units of real premium vehicles. Consecutive
investigations using studentized deleted residuals and Cook’s
Distance revealed outliers among the measurements. From
these outliers we identified a subset, which provides mean-
ingful information (anomalies) by comparing outlier scores
with expert opinions. Eight engineers were interviewed sepa-
rately for outlier impact on software quality. Findings were
validated in consecutive workshops. The results show cor-
relations between outliers and their impact on four of the
considered quality characteristics. They also demonstrate
the applicability of this approach in industry.

CCS Concepts
•General and reference→Metrics; •Computing method-
ologies → Model verification and validation;
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1. INTRODUCTION
In the automotive industry, software models are used

to simulate vehicle functionality of electronic control units
(ECUs). In modern cars, ECUs comprise software and hard-
ware for actual vehicle functionality (e.g., engine control,
driver assistance functionality, and safety features). Simula-
tions of ECUs are key elements for validation and verification
of the real software and hardware during integration testing
phases.

1.1 Problem Statement
Simulation models are extensive and complex software.

At the studied company, their size ranges from 4k to 400k
lines of code measured on the model files. They are also
highly interconnected. For example, the simulation for the
electronic stabilization control (ESC) is strongly connected to
engine and braking functionality, distributed over up to nine
different simulation models. In their study [25], Schroeder
et al. highlighted complexity and issues among creating
and using simulation models during integration testing in
the same domain as prevailing challenges. This growing
complexity and the interconnected nature of the models ask
for rigorous assessment strategies in order to control current
quality levels and to allocate test resources.

Furthermore, functional and non-functional requirements
are clearly specified only for the real ECUs. In contrast
thereto, simulation models are typically less extensively spec-
ified and focus rather on the expected core functional behav-
ior. Simulation specifications are continuously evolved when
new features emerge during integration testing. Reliably
validating a model’s functional and non-functional attributes
in this volatile and growlingly complex environment is a
challenge. Validation using software metrics, complementing
pure specification-based approaches, is a promising alterna-
tive in the domain. However, existing approaches for quality
assessment based on software metrics are mostly covering
only reliability and maintainability (cf. [20] and [9]). Addi-
tionally, solutions are usually designed for object oriented
code and not directly applicable to model-based software.
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1.2 Research Objectives
The goal of this study is to extend current model valida-

tion approaches using software metrics. On measurement
data received from historic model revisions (software versions
based on commits), statistical outlier detection shall reveal
anomalous observation. By adding qualitative data received
by domain experts, we aim for showing that these calculated
outlying observations highlight revisions with high impact on
model quality. Additionally, we intend to show the applica-
bility of such an approach in the automotive domain. These
objectives are addressed in the following research questions:

1. How can existing linear regression / model fitting and
respective outlier analysis be applied to revision data
from an industrial context?

2. Which anomalies and patterns can be detected applying
the above approaches to measurement data in form of
software revision time series?

3. Which correlations between outlying values in the mea-
surements and the domain expert opinions can be
found?

4. Which combination of measurements and outlier detec-
tion produces meaningful observations about software
quality?

1.3 Context
We perform an exploratory case study at the integration

testing department at a major German premium car manu-
facturer, producing around two million vehicles per year. The
department manages the development of simulation models
and performs integration tests for all interconnected ECUs in
their product lines. Currently, the department is responsible
for 71 ECU simulation models. Each simulation model covers
multiple vehicle variants and is implemented as model based
software in Simulink. Simulink is a software tool commonly
used in the investigated domain to model physical behavior,
process signals, and apply control theory.

We investigate our research questions in this context by
applying traditional regression analysis. First, software met-
rics which are selected based on previous experience in the
domain, are applied to the models. Following, regression
models are created to fit the measurement data using an au-
toregressive integrated moving average approach (ARIMA),
as we can show its suitability in the context. Thereafter,
the well established residual analysis techniques studentized
deleted residuals and Cook’s distance are used to detect
outliers. Finally, we assess the impact of the outliers on
software quality through semi-structured interviews with the
engineers at the studied company and validate our findings
in consecutive workshops.

1.4 Contributions
This study demonstrates the applicability of regression

based outlier analysis in industry. Additionally, knowledge
on outlier data and their correlation to software quality is
gathered. We show that correlations between outlier values
and four quality criteria can be detected. Furthermore, we
provide findings on types and reasons of detected outlying
revisions. Altogether, the presented approach complements
current validation approaches in the domain as it accounts
for information on past, current, and future model quality.

1.5 Structure of this Study
In this study we followed Runeson and Höst’s recommen-

dation on structuring case studies (cf. [24]). Hence, the paper
is outlined as follows: In Section 2, we describe the necessary
background on all approaches applied in this study and dis-
cuss related work. The study design in Section 3 outlines the
concept applied to investigate the study’s research objectives.
Results are presented in Section 4, analyzed in Section 5,
and assessed for validity in Section 6. We conclude our study
in Section 7 and comment on possible future work.

2. BACKGROUND AND RELATED WORK
The investigations in this study focus on ECU simulation

models replacing real ECU behavior. These simulations
exhibit varying complexity and usage patterns on hardware-
in-the-loop (HIL) test rigs. More functionality is added to
these simulation models on request and hence, continuously
extending them. Even if a vehicle development project ends,
new models usually build upon existing ones and inherit
features to a large extent. The Simulink models allow for a
graphical representation of physical behavior using blocks and
connectors. In layers, blocks can contain further functionality,
enabling the creation of interconnected subsystems.

2.1 Measurement
For this study, two complexity and two size metrics are

used to assess the simulation models. As one objective of
this study is the assessment of applicability of the approach
in the domain, metrics were chosen that have been proven
applicable in the domain before (cf. [26]).

2.1.1 Size
We applied two size metrics: Firstly, we count lines of

code (LOC) in the model files. The model files are generated
by Simulink and store the graphical model in an XML-like
format. Every line is evaluated as equally important. The
files do not contain empty lines or comments. The second
metric is counting blocks contained in the models. It is based
on a Simulink internal function called “sldiagnostics”. We
are using Matlab and Simulink in version 8.4. This block
count metric (BC) counts each block in the model, even those
that are inside subsystems, including the lowest layers of the
model [21]. Both size measurements are performed offline on
the model files.

2.1.2 Complexity
By today it is widely understood that no single-valued

measurement can satisfy all ideas of software complexity.
Briand et al. [5] emphasized the difficulty of defining com-
plexity metrics. Fenton & Bieman ([12], pp. 425) refer to
Zuse’s paper [30], proving that the list of properties for com-
plexity measurements established by Weyuker [29] cannot be
satisfied by a single-value measure.

In this study we interpret complexity measurements as
assessing models in a structural and a local way. We use two
measurements first introduced by Card & Agresti [6] in 1988.
Plaska & Waldén [23] applied the metrics, which were origi-
nally intended for software design, to model-based software.
In Schroeder et al. [26], they were used in the automotive
domain in an industrial context. The two metrics measure
the structural complexity (SC) and the data complexity (DC)
of a model.
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Structural complexity (SC) aims for assessing the inter-
actions between blocks in a model. Therefore, the fanout
value (f) of each block i in a model is measured. Fanout is
determined by counting the blocks that are connected to the
output of block i. The final metric is the sum of all squared
fanouts of a model, divided by the number of blocks (n), as
shown in Equation 1.

SC =

∑
f2
i

n
(1)

Data complexity (DC) evaluates the workload each block
inside a model performs, individually. Additionally to the
fanout value (f), it counts input and output variables of a
model’s blocks. For each block i, the number of inputs and
outputs (v) is divided by its fanout value. The sum off all
divisions is again divided by the number of blocks in the
model (n). Equation 2 shows the definition of this metric.

DC =

∑ vi
fi+1

n
(2)

Both equations conform to their definition according to
Card & Agresti [6]. Similar to the size metrics, the complexity
metrics can be performed offline by parsing the model files.

2.2 Anomaly Detection
Outlier detection in general is well studied. Surveys by

Chandola et al. [7] and specifically for time series data by
Gupta et al. [14] collect research and establish taxonomies
for outlier detection. For defining anomalies among outliers,
we follow Aggarwal [1]. When assessing measurement data
for outliers, the observations can be divided into three classes.
Figure 1 shows that most of the data indicates normal be-
havior. Next to the normal data, there is data that behaves4 OUTLIER ANALYSIS

INCREASING OUTLIERNESS SCORE FROM LEFT TO RIGHT

NORMAL DATA NOISE ANOMALIES

WEAK OR STRONG OUTLIERS

Figure 1.2. The spectrum from normal data to outliers

clusters. In the case of Figure 1.1(a), a single data point (marked by
‘A’) seems to be very different from the remaining data, and is therefore
very obviously an anomaly. The situation in Figure 1.1(b) is much more
subjective. While the corresponding data point ‘A’ in Figure 1.1(b) is
also in a sparse region of the data, it is much harder to state confidently
that it represents a true deviation from the remaining data set. It is quite
likely that this data point represents randomly distributed noise in the
data. This is because the point ‘A’ seems to fit a pattern represented by
other randomly distributed points. Therefore, throughout this book the
term “outlier” refers to a data point, which could either be considered
an abnormality or noise, whereas an “anomaly” refers to a special kind
of outlier, which is of interest to an analyst.

In the unsupervised scenario, where previous examples of interesting
anomalies are not available, the noise represents the semantic boundary
between normal data and true anomalies– noise is often modeled as a
weak form of outliers, which does not always meet the strong criteria
necessary for a data point to be considered interesting or anomalous
enough. For example, data points at the boundaries of clusters may
often be considered noise. Typically, most outlier detection algorithms
use some quantified measure of the outlierness of a data point, such as
the sparsity of the underlying region, nearest neighbor based distance,
or the fit to the underlying data distribution. Every data point lies on a
continuous spectrum from normal data to noise, and finally to anomalies,
as illustrated in Figure 1.2. The separation of the different regions of this
spectrum is often not precisely defined, and is chosen on an ad-hoc basis
according to application-specific criteria. Furthermore, the separation
between noise and anomalies is not pure, and many data points created
by a noisy generative process may be deviant enough to be interpreted

Figure 1: Graphic from [1] showing difference be-
tween outliers and anomalies.

differently. These observations are called outliers. In our
case, those are measurement values, which are in some way
different from the others. Among those outliers is stochastic
noise. The noise is naturally present in all measurements
and is uninteresting for follow-up investigations. Other ob-
servations, which are interesting to the observer are called
anomalies; if an observation is interesting or not, does de-
pend on the context. The topic to unveil those interesting
outliers among the measurement data in the study’s context
is addressed in our research questions.

Outlier analysis is well studied and applied in multiple
fields. Hartmann et al. [16] investigated already in 1980 the
specific field of outliers time series, discussed characteristics
of analyzing them, and recommended models to use. In
this study, we fit models to the measured observations and
perform analysis on resulting residual, to detect outliers in
the time series of measurement data.

2.2.1 Model Fitting
Model fitting and linear regression are common approaches

to detect outliers in many kinds of data. For time series data,
Hartmann et al. [16] discuss the use of autoregressive inte-
grated moving average (ARIMA) models, which are used in
this study as well. Box & Jenkins are known to be the first
to apply ARIMA approaches to time series data [4]. Today it
is a common approach in general and used in statistics, eco-
nomics, and electrical engineering, but also areas of computer
science, like artificial intelligence.

ARIMA is a combination of three methods; auto regression
(AR), moving averages (MA), and integration/differentiation
(I). In this study, the MA method is applied to create models
fitting the measured time series. A model based on MA is
created building the mean value of a set of previous values,
as shown in Figure 2. In the figure, three values are used for
the average resulting in a MA(3) model.

ARIMA 
• AR – Auto Regression 
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Figure 2: Visualization of a moving average model.
The model is created building the average of three
previous observations: MA(3).

2.2.2 Residual Analysis
Once a model is fitted to the data, outliers are detected

by analyzing the differences between data and model (the
residuals). The two methods used in this study are studen-
tized deleted residuals (SDR) and Cook’s distance measure.
Both are commonly used methods in practice (cf. [3]).

A regular residual is the difference between an observation
in the measured data and a corresponding value predicted
by the model. A deleted residual is created by subtracting a
predicted value based on an estimate using all observations
but the current one. This reduces influence, caused by single
data points of the measurements. To create a studentized
deleted residual, the standard error of the current residual is
subtracted therefrom to create more precise results. Cook’s
distance measure is an approach combining residuals and
leverage values, which can in our case be described as extreme
changes in the measurement data.

Both residual calculations can be computed using common
statistical packages like R or SPSS. The thresholds, for when
one of the residual values should be marked as outlying, are
taken from Bowerman et al. [3] and are explained below for
replicability reasons.

For SDR, we calculate the t distribution point t0.025 with
n− k − 2 degrees of freedom. A residual greater than that
value is marked as outlier. The number of observations n in
our collected data is always between 100 and 150 and the
number of independent variables k is always one. Hence, our
calculated minimum value for SDR outliers is between 1.985
and 1.976, depending on n.

The threshold for Cook’s distance is calculated similarly.
The 50th percentile of a F distribution based on k + 1 and
n − (k + 1) degrees of freedom is calculated. A Cook’s
distance for an observation greater than this value is marked
as outlying. Using the same values as above, the threshold
for Cook’s distance values is always between 0.696 and 0.698.
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2.3 Similar Studies
Outlier detection is used in fraud and intrusion detection

in signal analysis as well as network and system security.
In the software engineering domain we found that outliers
are used for fault prediction. Alan and Catal [2] detect
outliers in results of software metrics applied on different
class files. They do not use statistical approaches but their
own outlier definition, based on measurement thresholds.
Detected outliers are used to improve the fault prediction
algorithms. In Hangal and Lam’s study, anomaly detection
is used for tracking bugs[15]. Their anomaly detection is not
based on measurement data but on extracting and refining
invariants from running programs. Both studies do not look
into the artifacts’ development over time or look into other
software quality characteristics.

Other studies investigate how well metrics can assess soft-
ware quality. Many use metrics and apply regression analysis
for assessing reliability and predicting faults. Khoshgoftaar
and Szabo’s study [20] is close to ours as they develop regres-
sion models based on complexity measurements. Using neural
networks, they predict reliability and faults of software. They
are not using outliers for their predictions, though. Herzig et
al. [17] analyze software version histories and combine related
revisions for a prediction of software defects. They apply
software metrics and regression analysis but do use outliers
either. Garcia and Shihab [28] use software metrics together
with decision trees to detect particularly severe bugs among
their data set. They present their prediction model and
important factors to determine blocking bugs in software.

Instead of reliability, some studies focus on metrics predict-
ing maintainability. Schroeder et al. [26] assess complexity
and size metrics and test them for correlation with stake-
holder understandings of maintainability. They showed a
preference for size metrics for predicting maintainability in
their domain. Based on object oriented metrics, Dagpinar
and Jahnke [9] use regression analysis and history data to pre-
dict maintainability. Using quantitative maintenance data,
they reveal metrics that are able to predict maintainability.
Similarly, Gil et al. [13] validate metrics and their assump-
tions using past software versions. All three studies do not
look into outliers among the measurement data.

Software project risk is also investigated and predicted.
Choetkiertikul et al. [8] analyze historic data with regression
models to detect risks in software projects. Their model
detects risk impact and likelihood with certain precision. Pika
et al. [22] apply outlier analysis to risk event logs to improve
risks indicators for process delays. They do not employ
software metrics but improve predictions using statistical
outlier detection.

We found that if regression analysis on metrics is used,
models are usually based on the measurement data and not
on outliers. On the other hand, papers on outlier detection
mostly do not assess software quality and sometimes do
not apply statistical approaches but own interpretations of
outliers. We could not identify studies combining statistical
outlier detection based on measurement data for assessing
model quality. Additionally, studies mostly assess object-
oriented software and hesitate to involve stakeholder opinions.

3. STUDY DESIGN
In order to cope with our research goal in the context of

automotive model-based software, the research is performed

using an exploratory case study. Thereby, we intend to
achieve insights into phenomena observable in the field while
avoiding researcher intervention and bias at the same time.
Still, we keep the approach as general and clear as possible in
order to enable generalizability to similar model-based soft-
ware as well as replicability in other fields. This is achieved
by applying established methods as outlined in Section 2, and
reporting on all steps of our study. The general approach cho-
sen for the case study is outlined in six steps. Explanations
for these steps follow in the remainder of this Section.

1. We measure all available model revisions, using two
software complexity and two size metrics, and get quan-
titative data in form of four time series;

2. We employ outlier detection approaches thereto and
get four lists of outlying revisions for each simulation
model;

3. We split the measurement results equally in two sets,
a test set and a validation set;

4. Using the test set, we conduct interviews on the impact
of the outlying observations and receive qualitative
data of impact estimations in form of Likert-scaled
stakeholder assessments;

5. We compare the impact of outliers based on measure-
ments and the evaluation of engineers. Based on the
observations, we draw conclusions about the mean-
ingfulness of the detected outliers and their ability to
indicate changes in software quality; and

6. Using the validation set, stakeholder workshops are
conducted to validate results.

The purpose of these steps is to collect evidence on the
research questions and to address the first study objective
of detecting and evaluating anomalous observations with
impact on software quality. An analysis of the approach
combined with stakeholder discussions from the last step,
address the second objective of assessing the applicability in
an industrial context. In this study, we follow the ideas from
Eisenhardt [10], to derive general knowledge from this case
study. Therefore, we analyze the data received from the field
before any hypotheses are shaped, according to her model.

In summary, we apply existing approaches from measure-
ment theory and statistics in industry, observe outcomes,
and draw conclusions about their meaningfulness and appli-
cability by including qualitative data from domain experts.
Finally, we report about derived explanations and experiences
to unveil findings on the goal of exploring possible valida-
tion approaches for model-based software in the automotive
industry.

3.1 Case and Subject Selection
The first step in the study design regards measurement

of the simulation models. We use all 71 Simulink models
available at the department of the company described in
Section 1.3. Each model represents one real ECU in the
vehicle. All historic versions of these models covering a
period of four years are stored in over 65,000 revisions, from
which about 5,000 revisions concern direct changes to the
models.

For the interviews, engineers were selected who are able
to substantially assess the models. Therefore, the engineers
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were selected using department managers as proxies to help
identifying them. All engineers responsible for software de-
velopment and testing of one or more of the models were
interviewed. The selected engineers hold different respon-
sibilities among the models. An engineer can either be in
the role of a developer or a model lead for a given model.
A developer is an engineer who has made functional adjust-
ments to the model at least once; a model lead on the other
hand has an overview over all activities among the model
and decides for strategic development activities. All model
leads perform development tasks as well. The responsibilities
were extracted using a management overview sheet. The
developers were extracted from the actual commit logs where
each commit contains a unique identifier for the respective
committer.

Four model leads and four model developers were identified.
They were selected from eleven developers altogether. Three
developers had less than one year of development experience
and were excluded. The limit of one year experience was
set because it takes time for new engineers to get confident
with the models. In addition, recently employed engineers
themselves were not comfortable enough to make substanti-
ated statements about the models. It would also have been
difficult for them to compare changes, which occurred lately
in the model, to changes that happened in the past. The
interviewees’ modeling experience ranges from two to seven
years, with an average of a little less than five years.

3.2 Data Collection Procedure
Following our study design, the data collection starts with

measuring size and complexity.

3.2.1 Measurement
Two size and two complexity measurements as explained in

Section 2 were performed on all revisions of the 71 simulation
models.

Firstly, a script retrieved a revision from the central repos-
itory followed by selecting the Simulink model. All four mea-
surements were performed offline directly on the Simulink
model files, which contain the model information in a struc-
tured format. Figure 3 shows the graph for the collected
data of all revisions and all measurements for one exemplified
simulation model. The figure shows four time series with
the revisions numbers on the shared x-axis and measurement
results on the four y-axes covering a duration of almost four
years.

We consider the size metrics that we used as reliable as
they base on just counting lines or blocks; the complexity
metrics on the other hand require the model to be parsed and
interpreted. Thus, these metrics are susceptible to bugs in
the models: For example, links in Simulink models without
a source or destination block lead to parsing errors. Simple
parsing errors could be fixed easily by adjusting in the model,
but this is not possible for all revisions in general. Therefore,
some measurements resulted in missing values for complexity
and lead to a reduced sample size by 12% compared to the
size measurements. We do not expect a big influence, because
of the availability of the size measurements for respective
revisions and the large sample size in general. The result
of this step is a list of revisions and four measurements for
each revision. Hence, we receive a data set represented by
four time series of measurement results as previously seen in
Figure 3, for all 71 simulation models.

Figure 3: Example of measurement result for one
anonymized model. It is illustrating a possible data
set for the subsequent outlier detection. With re-
vision numbers on the x-axis and measurement val-
ues on the y-axes covering a duration of almost four
years.

3.2.2 Outlier Detection
From the resulting 71 data sets, a test and a validation set

is manually created by random. The 35 data sets received
as test set are used for all the following analyses and the
remaining validation set is used at the very end of our study.
During the preliminary analysis, nine simulation models are
discovered to be legacy. These models were not updated in
the last two years and are removed from the test set before
starting outlier detection, as insights gained from outliers
in these models might skew the results. Additionally, it is
more difficult for engineers to assess models updated more
than two years ago. Furthermore, we excluded one model
that did not contain any functionality as it is considered as
a future extension and thus, not implemented yet. In total,
we performed outlier analysis on the test set containing 25
simulation models.

We also excluded revisions where the actual model files
were not changed. In many revisions, tooling, parameters,
or similar adjustments where made, which do not affect
the model itself. These revisions were excluded from the
evaluation, leaving 2,188 revisions for the further analysis.

The outlier detection in this study is conducted in two
steps. First, a model is fitted to each time series in the mea-
surement data set. Second, the differences between original
data and fitted model are compared. For the first step we
began to fit common models, like linear, quadratic, cubic,
and logarithmic models. We found that all of them have a
common problem fitting our data. For example, if there is a
strong increase in lines of code from one revision to the next
one, shaping an edge, followed by a series of minor changes,
we would be mostly interested in the largely rising edge in
the beginning, as there must have happened something influ-
ential. Figure 4 shows that common models fail in this case.
The measured time series represents LOC observations of
one exemplified model and is highlighted as scattered circles.
When comparing the fitted model and data values, it can be
seen that many values following the peak at revision 32000
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Figure 4: Common models fitted to example LOC
measurement data.

would count as outliers as well, although the measurement
values change only little after the peak.

We decided to use ARIMA models instead and found that a
model generated by an average from two prior values MA(2)
detects the rising or falling edges of interest in the data
robustly. Figure 5 shows a MA(2) model fitted to the same
data set as used before. Comparing the MA(2) model with
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Figure 5: MA(2) model fitted to example LOC mea-
surement data

the measurement data of all models in the test set results
in a list of values representing the differences of the fitted
model and data values for our four measurements. Using the
same model fitting approach on all simulation models might
result in models that do not fit all data perfectly and would
in this case lead to detecting more outliers. This reduction
of the precision of the outlier detection is acceptable in this
study, as the MA(2) model generally adjusted quickly to our
data and more outliers for the analysis are not a drawback.
We had to limit the MA value to a low number, as we are
mainly interested in rising or falling edges. High MA values
would produce more noise among the calculated outliers.

Statistics provide multiple different approaches comparing

a fitted model with real data. Typical approaches are for
example, Cook’s distance value, leverage values, and different
kinds of residual values. We decided to use two different
approaches, studentized deleted residuals (SDR) and Cook’s
Distance (Cook’s D) as they are both common approaches
to analyze residuals. Figure 6 shows residuals as they are
received during the analysis for the MA(2) model fit to the
example data shown in Figure 5. Blue circles represent SDR
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Figure 6: SDR and Cook’s D for the example model
fit in Figure 5

and green squares Cook’s D. Outlier thresholds are calculated
as described in Section 2.2.2 and visualized as blue lines for
SDR and a green dashed line for Cook’s D. It can be seen,
that Cook’s D is more rigorous than SDR and results in less
outliers. When using SDR, more outliers are produced, which
in turn result in more noise. For example, SDR produces
high outlier values, even for small changes if there are only
few changes within the model. As, our first intention was to
use Cook’s D only, we also included SDR to extend the set of
outliers to be discussed with the engineers in our qualitative
analysis.

Outliers received from Cook’s D were directly usable. For
results received from SDR, absolute values had to be cal-
culated, as negative outliers result in negative values. This
would lead to wrong correlations, as outlier impact was eval-
uated only positively by the engineers. Eventually, these two
approaches result in two severity assessments of the outlying
revisions in each of the four measurements. Thus, we could
determine for every revision how outlying it is in respect
to each of the four measurements. Hence, it is possible to
rank the revision by severity on a interval scale. As there
are SDR values and Cook’s D values for each of the four
measurements, we get eight lists of calculated outliers. This
statistical approach is intended as a tool to provide ranked
outlying observations automatically, based on the raw data.

3.2.3 Interviews
The ranked list of outliers provided quantitative data. In

the next step we complemented it with qualitative data
by conducting expert interviews. In interviews, engineers
were asked to assess the impact of each revision on six soft-
ware quality categories. The categories were taken from the
ISO/IEC standard 9126 [18]. The interviews were conducted
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in a semi-structured manner, following the guidelines from
Shull et al. [27]. Semi-structured interviews were chosen to
not limit the stakeholders in starting discussions or providing
additional insights. The interviews were performed individ-
ually by one researcher on-site and took 60 to 90 minutes.
To avoid bias through communication between the engineers,
interviews on the same models are conducted consecutively.
To assess each revision, the engineers were allowed to use all
information they required, including commit logs, personal
notes, and source files. Hand-written notes were taken as
audio recordings were not allowed on the company’s premises.
The questions used for all engineers were identical. For each
outlying revision, we asked:

1. What happened?

2. What was the reason for the changes in that revision?

3. On a scale from 1 to 5 (1 - no impact, 2 - low impact, 3
- average impact, 4 - higher impact, 5 - strong impact),
how severe do you estimate the impact the revision had
on:

(a) Functionality

(b) Reliability

(c) Usability

(d) Efficiency

(e) Maintainability

(f) Portability

4. Are there revisions related to this one; in this or other
simulation models?

5. Did we miss a revision, which you think had a strong
influence?

Asking for the impact on the software quality in that way
forces estimations relative to the respective simulation model.
It is not possible to compare impact between two models.
This is not a restriction as the outlier measurements are
calculated relative to each respective model as well.

We asked each engineer for which models they felt com-
fortable to make an assessment of impact. It became obvious
in the interviews that investigating revisions from more than
two years ago involved mainly guessing. Thus, revisions older
than two year were not discussed if the engineer did not feel
comfortably enough with providing reliable information.

For each model, we aimed for at least two engineers to
be interviewed. In about 50% of the cases it turned out
being not possible as, for example, developers have left the
department.

The answers for the first two questions were grouped into
similar keywords in order to make them comparable. After
this grouping, the answers from the first three questions on
each revision were directly comparable to the quantitative
results received from the measurements. Thus, for each
detected outlier we have a quantitative impact from the
measurements and a qualitative assessment of description,
reason, and impact on software quality.

Additionally, the interviews are used to determine the per-
formance of the outlier detection. We calculated precision
and recall based on the interview results. An outlier in a
measurement is not valid, if one or more engineers evalu-
ated them with none or only marginal impact in all quality

categories. Additionally, recall is calculated using the fifth
question, which asks for missed revisions that might also
have a strong influence as well.

3.3 Analysis Procedure
We receive eight lists of calculated outliers from the mea-

surements and six Likert-based quality impact assessments
and descriptive information (description and reason) from
the interviews. Both, measurement data and interview data
is relative to each model. Table 1 visualizes how the col-
lected results are compared. Each outlying revision has
eight calculated outlier values (Rloc to Csc) and at least
six impacts on quality (IF to IP ) assessed by one ore more
engineers. Additionally, there are descriptions and reasons
for each outlier. Comparing the measured outliers, which
are assessed to be on an interval scale with ordinal scale,
Likert-based impact assessments requires non-parametric
correlation analysis; therefore, we calculated the Spearman
correlation coefficient. All calculations were conducted in
SPSS and R.

With both data sets being comparable, we are able to
perform multiple analyses on:

1. correlation between raw outlier data and impacts;

2. correlation between combinations of outlier data and
impact;

3. correlations between principal components among the
outlier data and impact;

4. dependencies between outliers and descriptions and
reasons for the revision provided by the engineers; and

5. similarities between results received from size and com-
plexity measurements.

Consecutive workshops were conducted with the four lead
engineers. The intention of the workshops was to confirm
and validate the unveiled evidence and evaluate the methods.
This step shall ensure that feedback captured from stake-
holders remained consistent and that conclusions were drawn
correctly. To achieve that, results and theories received from
the analysis are discussed. Furthermore, results received
from measurements and interviews are combined in a predic-
tion model, which is applied to the validation set. Thus, the
most likely outliers in the validation set and their most likely
impact are presented to the engineers for confirmation.

3.4 Validity Procedure
This study is susceptible to bias as we intended to not

restrict the study to one single focus and instead accept the
possibility of multiple outcomes. Hence, it is important to
follow rigorous approaches in all steps and to employ a strict
validity procedure. A key aspect for the study’s validity is
using triangulation, achieved by:

• Multiple measurements and outlier detection methods;

• Combination of stakeholder feedback and measurement
values;

• Combination of interviews and workshops; and

• Multiple engineers per model and revision, if possible.
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Table 1: Illustration of how results were compared. For each revision in each model, measurement outliers
(R for residuals, C for Cook’s D) are juxtaposed with the impacts (i) on software quality categories from ISO
9126 [18], descriptions, and reasons, received by the engineers (Eng.).

Measurements (interval scales) Interviews (ordinal/nominal scales)
Model Rev. Rloc Cloc Rbc Cbc Rdc Cdc Rsc Csc Eng. IF IR IE IU IM IP Desc. Reas.

1 r c r c r c r c E1 i i i i i i d r
E2 i i i i i i d r

M1 2 r c r c r c r c E1 i i i i i i d r
E2 i i i i i i d r

3 r c r c r c r c E1 i i i i i i d r
E2 i i i i i i d r

4 r c r c r c r c E3 i i i i i i d r
M2 5 r c r c r c r c E3 i i i i i i d r

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Two researchers were working on-site to avoid researcher bias
and to ensure validity by continuous discussions on intermedi-
ate results. Two researchers worked remotely and preserved
an outside view on the methodology and the conclusions
drawn from the results. By reporting results back to the
industrial partners in the workshops, bias was reduced and
findings could be verified.

4. RESULTS
Based on the four measurements, we found 221 outliers in

2,188 revisions from 25 simulation models. That means, on
average, we analyzed 88 revisions per simulation model, with
the minimum at 23 and the maximum at 338. Among them,
on average, we found 9 outliers per model; at least 2 and not
more than 30 altogether. For the 221 outlying revisions, the
engineers could substantially evaluate 139 thereof as early
revisions were excluded as pointed out in Section 3.2.2. On
these 139 data sets, correlation observations were performed.
Table 2 shows correlation results using Spearman’s correla-
tion coefficient. For visibility reasons, the p-values are not
displayed but significant values at 0.01 level are marked with
two asterisks and values at 0.05 level with one.

A factor analysis revealed that two principal components
extracted from the eight outlier calculations explain 73% of
the variance among them. The analysis in Table 3 shows
that the first component explains outliers from both size
and data complexity measurements. The second component
explains outliers received from the measurement of struc-
tural complexity. Finally, we evaluated the dependencies
between outliers and descriptions and reasons. Results are
summarized in Table 4. This evaluation provides insights
on what types of anomalies our approach is able to unveil.
The descriptions on outlying revisions collected from the
engineers were summarized to “changes in the model logic”,
“changes in the model architecture”, “changes in model in-
terfaces”, and combinations thereof. Architecture changes
refer to changing the model structure, for example splitting
up a block in two. Interface changes relate to input and
output signals, like adding signals to a bus. The majority of
changes were modifications to the model logic, with 50.8%
of the descriptions. Architecture and interface changes were
mentioned 15.3% and 11.9% of the time, respectively. No
description was given for 8.5% of the revisions. Combinations
of descriptions cover the remaining 13.5%.

Reasons for abnormal changes in the software as provided

by the engineers were “requirement”, “maintenance”, “bug
fixing”, as well as combinations thereof. With 83.1%, require-
ments were the most common reason for a change. Mainte-
nance was mentioned in 5.9% of the cases. Bug fixing was a
reason for change only in 1.7% of the cases. It occurred more
often in combination with requirements (3.4%). No reason
was given in 3.4% of the cases and the remaining 2.5% were
combinations thereof.

5. ANALYSIS OF RESULTS
In order to answer the research questions, we analyzed the

received results. Research questions 2 and 3, on which kind
of outliers are detected and how they correlate with domain
expert assessments can directly be answered by the results

First, to address research question 2, we analyzed the de-
pendencies between impact, reasons, and descriptions. The
results show that anomalies from size and complexity mea-
surements reveal mostly changes in the model logic based
on requirements. 50.8% of the anomalies could be related
to logic adjustments. 83.1% of the anomalies are due to re-
quirements. Hence, the presented approach is able to detect
abnormal events based on requirements, which mostly result
in functional changes in the simulation models. Activities like
architectural changes and interface adjustments cause only
few anomalies in our study. Respectively, maintenance and
bug-fixing activities are not related to the abnormal events
detected. Multinomial logistic regressions were performed,
to reveal dependencies between the different anomalies, their
reasons, and descriptions. No significant dependencies could
be determined. That means, that no single outlier value has
the ability to predict what kind of change has occurred or
the reason of it.

Second, addressing research question 3, the analysis of the
correlations in Table 2 showed:

• We did not encounter unexpected behavior among the
correlations, as there are no negative correlations be-
tween measured outliers and the engineers impact as-
sessment.

• The strongest correlation was observed between BC
SDR and functionality. Also Cook’s D for BC shows
weak correlations, supporting the finding that outliers
from the block count measurement overlap with the
engineers feedback on functional changes. Also LOC
SDR shows weak correlation. Both observations were
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Table 2: Spearman’s ρ correlations between calculated outliers and software quality characteristics. (SC –
structural complexity, DC – data complexity, LOC – lines of code, BC – block count, COOK – Cook’s D,
SDR – studentized deleted residuals)

Functionality Reliability Usability Efficiency Maintainability Portability

SC COOK Corr. Coef. 0.037 0.208* 0.063 0.112 0.124 0.087
N 118 118 118 118 118 118

DC COOK Corr. Coef. 0.105 0.058 0.172 0.158 0.176 0.199*
N 120 120 120 120 120 120

LOC COOK Corr. Coef. 0.180* 0.005 0.270** 0.230** 0.210* 0.147
N 138 137 138 138 138 138

BC COOK Corr. Coef. 0.341** 0.093 0.353** 0.203* 0.266** 0.104
N 138 137 138 138 138 138

SC SDR Corr. Coef. 0.092 0.182* 0.082 0.206* 0.158 0.135
N 118 118 118 118 118 118

DC SDR Corr. Coef. 0.215* 0.044 0.191* 0.315** 0.234* 0.220*
N 120 120 120 120 120 120

LOC SDR Corr. Coef. 0.310** 0.009 0.261** 0.392** 0.242** 0.140
N 138 137 138 138 138 138

BC SDR Corr. Coef. 0.454** 0.136 0.389** 0.392** 0.334** 0.152
N 138 137 138 138 138 138

Table 3: Component matrix showing PCA results.
The abbreviations are explained in Table 2.

Component
1 2

LOC COOK 0.872 -0.166
DC COOK 0.852 0.038
LOC SDR 0.845 -0.151
BC SDR 0.806 -0.286
DC SDR 0.781 0.164
BC COOK 0.728 -0.348
SC COOK 0.249 0.785
SC SDR 0.542 0.701

Table 4: Descriptions and Reasons for anomalies.
Description % Reason %

Logic/Functional 50.8% Requirement 83.1%
Architectural 15.3% Maintenance 5.9%
Interfaces 11.9% Bug Fixes 1.7%
Combinations 13.5% Combinations 5.9%
No Description 8.5% No Reason 3.4%

expected, as size measurements are often used to assess
software functionality.

• The engineers feedback on efficiency matches with three
outlier values, DC, LOC, and BC. This is the only
quality characteristic, showing correlations with data
complexity outliers.

• The only outlier values that correlate with maintain-
ability are the SDR values for the BC metric.

• For usability both BC outlier values correlate.

• SC outliers do not correlate and thus, it might not be
a good metric to measure software quality.

• None of the outliers showed the ability to detect relia-
bility or portability. SC has a weak tendency to explain
reliability, however.

• None of the correlations is strong.

All mentioned correlations are significant with a p-value be-
low 0.01. Based on the correlation results, we can relate
anomalies found with our approach to different quality at-
tributes of the simulation models. We can therefor detect
noticeable changes in functionality, usability, efficiency, and
maintainability as they occur. Furthermore, it is possible to
investigate past events with high impact on those attributes.

The principal component analysis results in Table 3 show
that two of eight components explain most of the variance.
This behavior was expected, as size and complexity measure-
ments have been found to correlate before (cf. [19]). The first
component comprises both size and the data complexity mea-
surements. It correlates with the same qualities as the single
measurements it is created from, which suggests combining
of those measurements into one component. The second
component comprises the SC outliers and correlates with
none of the qualities but there is an indication for correlation
with reliability, again. That means that outliers from the
structural complexity metric differ from the rest. Additional
analysis could reveal it as indicator for reliability.

To address research question 1 and 4, on the applicability
of the approach and meaningfulness of the results, we in-
vestigated the capabilities of the outlier detection approach.
In general, if the approach is once determined, most of the
steps can be automated. For example, the data extraction
from version control, the measurement, the outlier detection
and the correlation analysis were fully or partly automated.
Hence, the effort required to perform repeated assessments
of the models is moderate. By utilizing the interview data,
as described in Section 3.2.3, we could calculate precision
and recall to investigate the quality of the outlier detection.
Twelve of the 139 revisions were evaluated with no impact
and 18 more with only minor impact. That means, based
on the interviews, the precision of our outlier detection is
between 91.36%. and 78.42%. During the interviews, seven
revisions having a high impact were mentioned to be missed
by our approach. Considering 109 true positives from 139
revisions, we achieve a recall of 93.97 percent, based on
engineer opinions.
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Additionally, to show the applicability of the approach we
interpreted the results of the consecutive stakeholder work-
shops. The weak correlations and the anomaly detection
approach was discussed. We concluded together with the
stakeholders that in industry more supervised approaches
could lead to better results. The scientific thinking of collect-
ing all possible revisions on all possible models yields observa-
tions on general model behavior in the domain. According to
the engineers, the following two steps might improve results
for more specific contexts:

• Considering only models, which are constantly main-
tained and extended, as less frequently used models
skew the prediction capabilities of the results.

• Consulting only lead engineers with the evaluation
of detected outliers. Less experienced stakeholders
might misinterpret impact among the complex model
environment.

These insights indicate, that data received in this industry
domain would benefit from a supervised approach, but results
are then limited to certain domain contexts.

Summarized, the data analysis showed that our approach
can detect abnormal events in software measurement re-
sults. Applying it to software size and complexity metrics
in industry unveils abnormal strong increasing or decreasing
changes, mostly functional in nature and based on require-
ments. Those events were found to have a high impact on
different software quality attributes. This enables early de-
tection and past analysis of events with strong impact on
functionality, maintainability, efficiency, and usability.

6. THREATS TO VALIDITY
We split threats to validity according to categories from

Feldt & Magazinius [11]. Regarding external validity and
generalizability, the results and analysis are limited to
model-based software in the automotive domain. Results are
extracted from this domain and are therefore only transfer-
able to a similar one. Nevertheless, as the measurements
and statistical approaches are common and used in other
domains as well, we see no reason why similar results should
not be received from Simulink models in other domains. The
sample of eight engineers limits the generalizability as well.
A larger sample would have increased generalizability even
in the same domain. Still, the selected engineers are strongly
familiar with the models and experienced in the field. Their
assessments is expected to represent experienced software
developers in the domain.

Concerning construct and internal validity, there are
also threats to be considered. The interviews have a high
impact on the outcomes. At the same time, engineers’ recall
is not perfect and they might have biased opinions on revi-
sions, their impact, and reasons therefor. Additionally, not
all engineers were still available at the studied company. We
mitigate the threat of human bias with triangulation, by com-
plementing the interviews with consecutive workshops and
asking as many engineers as possible for the same analyzed
revision. Still, the bias cannot be eliminated completely, as
the same lead engineers were participating in the workshops.

There is also the threat that engineers evaluate differently
among each other or perceive quality differently. This threat
is mitigated by clear and consistent explanation of scales and
quality. Thanks to the discussions throughout the interviews,

additional misunderstandings could be resolved. Strictly
structured interviews would not have allowed for that; on
the other hand, discussions in the interviews might have
biased interviewees. While avoiding biasing comments in
the interviews, we accepted this to happen as discussions
ensure that the topic was understood and revealed insights
not covered by the questions otherwise.

As mentioned before, the complexity metrics resulted in
missing values for some revisions, as bugs prevented proper
parsing and measurement. If larger changes happened in
these missing revisions, we cannot be sure if outliers measured
afterwards happened during or after the missing values. This
reduces the reliability of the two complexity measurements.

Creating correlation coefficients bases on different engineers
feedback can lead to skewness in the results and affect the
study’s conclusion validity. The ratings on the Likert scale
and the meaning of the software quality categories have to be
clear to them. As mentioned before, to mitigate this threat a
detailed introduction about software quality and also about
the scale was provided in the beginning of the interview.
Misunderstandings throughout the interviews were clarified.
The limited amount of stakeholders interviewed could skew
the received findings and the conclusions drawn therefrom
and therefor affect the conclusions as well. More studies in
the similar domains are necessary to mitigate this threat.

7. CONCLUSIONS AND FUTURE WORK
The main goal of this study was to improve model valida-

tion and to investigate model quality by applying statistical
outlier detection methods to model revisions quantified by
software metrics and evaluate them using expert knowledge.

Our results show that unveiling outliers using quantita-
tive instruments is in general leading to reliable discoveries.
Considering stakeholder assessments, we found meaningful
outliers with a high precision and related them to the soft-
ware quality characteristics used in this study. Additionally,
we can differentiate well between important and unimpor-
tant revisions. That in turn supports model validation by
assessing and predicting current, past, and future model
quality. We further found which activities and reasons cause
respective outlying revisions. Together with the previous
findings and the fact that most parts of the approach can be
automated, we conclude that the general approach is very
well applicable in the studied domain.

The study provides further opportunities for future work:

• The possibility to adjusting outlier thresholds together
with already collected impact evaluations enables the
potential for optimizing thresholds to fit the data bet-
ter.

• Further metrics and adjusted models could reveal fur-
ther details on measurable qualities. For example, ef-
ficiency metrics could additionally be integrated with
the existing approach.

• Analyzing only specific time frames instead of the whole
data set might help reducing noise created by time
frames not interesting in specific contexts. For exam-
ple, disregarding the beginning of a project or specific
maintenance phases might result in different observa-
tions.
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