
NOTES ON ULTRAFILTERS

NEIL STRICKLAND

Let X be a space.

Definition 0.0.1. A set F of subsets of X has the finite intersection property iff for each finite
list S1, . . . Sn with each Sk ∈ X we have S1 ∩ . . . Sn 6= ∅. Such a set F will be called a family with
the finite intersection property or an FFIP or a filter subbase.

Annoying Remark 0.0.2. There are no FFIP’s on the empty set. This is because S1 ∩ . . . Sn

has to be interpreted as X when n = 0. You can take it to be a separate convention if you prefer.

Examples:
(0) {(a,∞) | a ∈ R} is an FFIP on R.
(1) {S ⊆ N | N \ S is finite} is an FFIP on N.
(2) {S ⊆ C | C \ S is compact} is an FFIP on C.
(3) For any space X and x ∈ X, the set

Nx = { neighbourhoods of x in X}

has FIP.
(4) If (xn)n∈N is a sequence in X then the set

F = {S ⊆ X | ∃N n ≥ N ⇒ xn ∈ S} = {S | ∃N {xN , xN+1, . . .} ⊆ S}

has FIP.

Definition 0.0.3. An ultrafilter (or UF) on X is a set W of subsets of X which is a maximal
FFIP. In other words:

U0 W has the FIP.
U1 If W ⊆W ′ and W ′ has FIP then W ′ = W.

For example:
Wx = {S ⊆ X | x ∈ S}

is an ultrafilter. Indeed, suppose W ′ ⊇ Wx has FIP. Suppose S1 ∈ W ′. Considering S2 = {x} ∈
Wx ⊆ W ′ we see that S1 ∩ S2 6= ∅ and so x ∈ S1. However, this means that S1 ∈ Wx by the
definition of Wx. As this holds for all S1 ∈ W ′, we see that W ′ = Wx as required.

Definition 0.0.4. An ultrafilter of the form Wx is called a fixed ultrafilter. Ultrafilters which are
not fixed are called free.

It is essentially impossible to give an explicit example of a free ultrafilter, although in a moment
we will have a theorem guaranteeing that very many of them exist.

We shall use the following properties repeatedly, so you should make yourself familiar with
them. Note that they are all immediate in the case W = Wx.

Proposition 0.0.5. Let W be an ultrafilter.
UP0 If S ∈ W and T ⊇ S then T ∈ W.
UP1 If Sk ∈ W for each k then S1 ∩ . . . Sn ∈ W.
UP2 If S ⊆ X then either S ∈ W or Sc ∈ W (but not both).
UP3 If T ⊆ X and T ∩ S 6= ∅ for every S ∈ W then T ∈ W.
UP4 If S1 ∪ . . . Sn ∈ W then Sk ∈ W for some k.
UP5 X ∈ W
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Proof. (0) Write
W ′ = {T ⊆ X | ∃S ∈ W S ⊆ T}

Clearly W ⊆ W ′. Moreover, W ′ has FIP. Indeed, if T1, . . . Tn ∈ W ′ then there are sets
S1, . . . Sn ∈ W with Tk ⊇ Sk and so

T1 ∩ . . . Tn ⊇ S1 ∩ . . . Sn 6= ∅

It follows by maximality of W that W ′ = W, hence the claim.
(1) Similarly, write

W ′ = {S1 ∩ . . . Sn | n ∈ N, Sk ∈ W}
This contains W and has FIP so equals W as required.

(2) Suppose S 6∈ W, so W ′ = W ∪ {S} 6= W. Thus, as W is maximal among families with
FIP, we see that W ′ cannot have FIP. This means that there are sets T1, . . . Tn in W such
that

T1 ∩ . . . Tn ∩ S = ∅
It follows from UP1 that T = T1 ∩ . . . Tn ∈ W. As T ∩ S = ∅, we have T ⊆ Sc. Using
UP0, we find that Sc ∈ W, as required. We cannot have both S ∈ W and Sc ∈ W as
S ∩ Sc = ∅ and W is supposed to have FIP.

(3) Using UP1 we see that W ∪ {T} has FIP and so equals W by maximality; thus T ∈ W.
(4) Suppose S =

⋃n
k=1 Sk ∈ W, so Sc =

⋂
k Sc

k 6∈ W. By UP1, Sc
k 6∈ W for some k. By UP2,

we have Sk ∈ W as required.
(5) By the annoying remark, X 6= ∅. Now use UP3, for example.

�

Proposition 0.0.6. Suppose W has FIP. Then W is an ultrafilter iff for each S ⊆ X we have
S ∈ W or Sc ∈ W.

Proof. One half of this is UP2. Conversely, suppose W has FIP and contains S or Sc for each
S ⊆ X. Suppose W ′ ⊇ W has FIP. Consider S ∈ W ′. By assumption S ∈ W or Sc ∈ W ⊆ W ′.
The latter would contradict the FIP for W ′, so S ∈ W. This holds for all S ∈ W ′, so W ′ = W.
Thus W is an ultrafilter. �

We next turn to the problem of proving that ultrafilters exist.

Definition 0.0.7. A chain of FFIP’s is a set L of FFIP’s on X such that whenever F ,G ∈ L we
have either F ⊆ G or G ⊆ F . In other words, L is linearly ordered by inclusion.

Proposition 0.0.8. If L is a chain of FFIP’s on X then the set

F =
⋃
G∈L

G = {S ⊆ X | ∃G ∈ L S ∈ G}

has FIP.

Proof. Suppose S1, . . . Sn ∈ F . Then there are sets G1, . . .Gn in L with Sk ∈ Gk for each k. As L
is a chain, for each k and l we have Gk ⊆ Gl or Gl ⊆ Gk. By changing the indexing if neccessary,
we may assume that

G1 ⊆ G2 ⊆ . . .Gn

Thus Sk ∈ Gn for each k. Moreover, L is supposed to be a set of FFIP’s so Gn ∈ L has FIP. Thus
S1 ∩ . . . Sn 6= ∅, as required. �

Theorem 0.0.9. If F is an FFIP on X then there exists an ultrafilter W on X with F ⊆ W.

Outline. For each non-maximal FFIP G choose a strictly larger FFIP G′ = l(G). If G is a maximal
FFIP (= ultrafilter) write l(G) = G.

Define F0 = F . For integers n > 0 define Fn = l(Fn−1). It may well be that none of the FFIP’s
Fn is maximal. Never mind. For n ≤ m we have Fn ⊆ Fm by construction, so

Lω = {Fn | n ∈ N}
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is a chain. Thus
Fω =

⋃
n∈N

Fn

has FIP. We then define Fω+1 = l(Fω) and so on, and then

F2ω =
⋃
n∈N

Fω+n =
⋃

α<2ω

Fα

continuing in this way, we eventually get 3ω, ω2, ωω, . . . and so on. In general, for every ordinal
α (whatever that means) we have an FFIP Fα. If α = β + 1 for some other ordinal β, then
Fα = l(Fβ). If α is a limit ordinal like ω which has no immediate predecessor, then we have

Fα =
⋃

β<α

Fβ

This still has FIP by the proposition above. There is only a fixed collection of FFIP’s which Fα

could possibly be, and there are too many ordinals for all the Fα’s to be different. Thus, we
are eventually forced (for extremely large α) to have Fα = Fα+1 = l(Fα), which means (see the
definition of l) that Fα is an ultrafilter. �

Remark 0.0.10. This can be reorganised to use Zorn’s lemma instead of transfinite recursion.
The above proof essentially contains the proof of Zorn’s lemma. Of course, one has to develop the
theory of ordinals to make it rigorous.

Recall that
Nx = { neighbourhoods of x} = { open sets U | x ∈ U}

Suppose that σ is a subbasis for the topology on X. Write

N ′
x = { subbasic neighbourhoods of x} = {U ∈ σ | x ∈ U}

Definition 0.0.11. An ultrafilter W converges to x ∈ X if any of the following equivalent condi-
tions hold:

UC0 x ∈
⋂

S∈W S
UC1 Nx ⊆ W
UC2 N ′

x ⊆ W
UC3 For all S ∈ W and U ∈ N ′

x we have S ∩ U 6= ∅.
If so, we write W −→ x and say that x is a limit of W.

of equivalence. Clearly UC1 implies UC2. By the definition of a subbasis, every neighbourhood
contains a finite intersection of subbasic neighbourhoods. Using UP1 and UP0, this shows that
UC2 implies UC1. Similarly, UP3 shows that UC2 is equivalent to UC3.

Finally,

x ∈
⋂

S∈W
S ⇔ ∀S ∈ W ∀U ∈ Nx S ∩ U 6= ∅

⇔ W ∪Nx has FIP
⇔ Nx ⊆ W

This shows that UC0 is equivalent to UC1. The last step uses the maximality of W. The one
before that is valid because finite intersections of neighbourhoods are neighbourhoods, and finite
intersections of sets in W lie in W. �

Examples:
(0) The fixed ultrafilter Wx converges to x.
(1) If X is discrete and W −→ x then W = Wx. Indeed, {x} is a neighbourhood of x so

{x} ∈ W so x ∈ S ⇒ {x} ⊆ S ⇒ S ∈ W. This shows that Wx ⊆ W and thus they are
equal by maximality of Wx.
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(2) If
F = {S ⊆ C | C \ S is compact}

and W is an ultrafilter on C containing F then W does not converge.
(3) If (xn)n∈N is a sequence in X then the set

F = {S ⊆ X | ∃N ∈ N n ≥ N ⇒ xn ∈ S}
has FIP. The sequence converges to y ∈ X iff every ultrafilter W ⊇ F converges to y.

Theorem 0.0.12. The space X is Hausdorff iff every ultrafilter converges to at most one point.

Proof. Suppose that X is Hausdorff, that W −→ x, and that y 6= x. Then there are disjoint open
sets U, V with x ∈ U and y ∈ V . As W −→ x, condition UC1 tells us that U ∈ W. As U ∩ V = ∅
and W has FIP, this means that V 6∈ W. Thus (UC1 again) W 6−→ y, as required.

Conversely, suppose that ultrafilter limits are unique. Suppose that x and y do not have disjoint
neighbourhoods. Then Nx ∪Ny has FIP, so there is an ultrafilter W ⊇ Nx ∪Ny. This means that
W −→ x and W −→ y, so by hypothesis x = y. This shows that X is Hausdorff. �

Theorem 0.0.13. The following are equivalent:
(0) X is compact.
(1) Every covering of X by subbasic open sets has a finite subcover.
(2) Every ultrafilter on X has a limit.

Proof. It is immediate that (0) implies (1). Suppose that (1) holds, and that W is an ultrafilter
on X. Recall (condition UC2) that N ′

x ⊆ W ⇒ W −→ x. Suppose that W has no limit, so each
point x has a subbasic neighbourhood x ∈ Ux ∈ N ′

x with Ux 6∈ W. Choose a finite subcover
Ux1 ∪ . . . Uxn = X. As Uxk

6∈ W, properties UP4 and UP5 give a contradiction. This shows that
W must have a limit after all. Thus (1) implies (2).

Finally, suppose (2) holds. Let F be a family of closed sets with FIP, so we need to show that⋂
F S 6= ∅ (this is the closed-set characterisation of compactness).
Choose an ultrafilter W ⊇ F . By hypothesis, this converges, so (condition UC0):⋂

S∈W
S 6= ∅

However, ⋂
S∈F

S =
⋂

S∈F
S ⊇

⋂
S∈W

S 6= ∅

as required. The first equality holds simply because the sets S ∈ F are assumed to be closed, and
the inequality (⊇) is obvious if you think about it. �

The equivalence of (0) and (1) is called Alexander’s subbasis theorem.

Theorem 0.0.14 (Tychonov). Suppose (Xi)i∈I is a family of compact spaces. Then X =
∏

I Xi

is compact.

Proof. Suppose W is an ultrafilter on X. Then

Fi = {πi(S) | S ∈ W}
is a family of closed sets with FIP (because f(A) ∩ f(B) ⊇ f(A ∩B)). As Xi is compact, we can
choose a point

xi ∈
⋂

S∈Fi

S =
⋂

S∈W
πi(S) 6= ∅

Putting these together, we get a point x = (xi)i∈I in X. The claim is of course that W −→ x.
It is enough (condition UC3) to show that every subbasic neighbourhood V of x meets every set
S ∈ W. The subbasic neighbourhoods have the form

V = π−1
i (U) U open in Xi x ∈ V

The condition x ∈ V = π−1
i (U) is equivalent to xi = πi(x) ∈ U . The point xi was chosen so

that xi ∈ πi(S), so U ∩ πi(S) 6= ∅. Thus there is a point y ∈ S with πi(y) ∈ U . In other words,
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y ∈ π−1
i (U)∩S so V ∩S = π−1

i (U)∩S 6= ∅. This holds for every subbasic neighbourhood V of X
and every S ∈ W. As previously mentioned, this implies that W −→ x. We have shown that every
ultrafilter W on X has a limit, so X is compact. �


