
CSC 215
Types, Operators, and

Expressions

Dr. Achraf El Allali

Contant
● Constants do not change during program execution
● Must be declared before use:

#define VTAB ‘\013’ /* ASCII vertical tab*/
#define RIS 0xD4
#define BO 37
#define PI 3.1415
#define NL “\n‟ /*new line*/

● #define is a preprocessor directive

Constants
#include<stdio.h>
#define PI 3.14 /* PI is a constant */
main ()
{
 int r;
 float area;
 scanf (“%d”, &r);
 area = PI * r * r;
 printf (“Area = %d”, area);
}

Arithmetic operators

● Binary operators: addition (+), subtraction (-),
multiplication (*), division (/), remainder (%)

● Unary operators: unary plus (+), unary minus (-)

Swapping two numbers

● How do we swap two numbers x and y?

Swapping two numbers

int temp;
temp = x;
x = y;
y = temp;

Puzzle

● How do you swap two numbers without
using

a temp variable?
● Hint: Use arithmetic operators + and -

Relational Operators

● > , >=, <, <=, ==, !=
● Example

if (a < b)
 printf (“a is less than b\n”)
else
 printf (“b is less than or equal to a\n”);

Relational Operators

The result of comparison of two expressions is
true if the condition is satisfied and false
otherwise
• There is no special logical data type in C. The
value of a relational expression is of type int:
– 15 > 10 has the value 1 (true)
– 15 < 10 has the value 0 (false)

Logical Operators

● &&, ||
● Example

if (a == 5 || b == 5)
 printf (“There is at least one 5\n”)
else
 printf (“There isn't any 5\n”)

Logical Operators

● The operands may be of any arithmetic type
while the result is always int

● The value of a logical expression is either 1
(true) or 0 (false)

Increment and Decrement Operators

● ++ , --

● Prefix increment
c = 5;
x = ++c; /* value of c is 6 and x is 6 */

Increment and Decrement Operators

● Postfix increment
c = 5;
x = c++; /* value of c is 6 but x is 5 */

● Equivalent to:
 x = c;
 c = c + 1;

Bitwise Operators

● Bitwise AND &
● Bitwise OR |
● Bitwise exclusive OR ^
● Left shift <<
● Right shift >>
● One's complement ~

Bitwise Operators

● Examples:
0110 & 0011 -> 0010
0110 | 0011 -> 0111
0110 ^ 0011 -> 0101
01101110 << 2 -> 10111000
01101110 >> 3 -> 00001101
~0011 -> 1100
Notice: << and >> multiply/divide by 2n

Puzzle

● How do you find if a number is a power of 2?
if (…)
 printf (“Power of 2\n”);
else
 printf (“Not a power of 2\n”);
Hint: Use bitwise operator &

Assignment Operator

● An assignment expression is of the form:
variable= expression;
● The precedence of the assignment operator

(=) is lower than that of the arithmetic
operators:
sum = sum + item;
sum = (sum + item);

Assignment Operator

i = i + 2;
 is equivalent to

i += 2;

i = i * 2;
 is equivalent to

i *= 2;

Conditional Operator

● expression_1 ? expression_2 : expression_3

● Example, the maximum of two values:
max = x > y ? x : y;

Conditional Expressions

if (a > b)
 z = a;
else
 z = b;

 is equivalent to
 z = (a > b) ? a : b;

Arrays

● Declaration:
○ int score[10];

● Reference:
○ score[3] = 10;

● Index starts from 0 (goes till 9)
● Can use variables for indexing

○ i = 5;
○ score[i] = 2;

Multi-dimensional Arrays
● Array of arrays

○ int a[3][3];
○ a[0][0] = 3;
○ a[1][2]=0

3 10 2

9 5 0

5 6 1

10

5

2

0

1

2

0

1

2

0 1 2

Array Initialization
● int score[5] = { 41, 97, 10, 55, 100 };

● int a [5] = { 3, 2, 5 }; ≡ int a[5] = { 3, 2, 5, 0, 0 };

● int b[] = { 7, 11, 100, 4 }; ≡ int b[4] = { 7, 11, 100, 4 };

● int a[3][4] = { { 11, 32, 21, 250 },{ 211, 7, 162, 2 },{ 15,
180, 48, 190 }};

String

● Array of characters
○ char str [20];
○ char os[] = “UNIX”;
○ char os[5] = { ‘U’, ‘N’, ‘I’, ‘X’, ‘\0’};

● Built in string functions
○ #include <string.h>
○ strcpy(str, “csc215”);
○ i = strlen(str); /* i is 6 */

Enumeration
#include<stdio.h>
enum days {SUN, MON, TUE, WED, FRI,SAT};
main(){
 enum days day;
 day = MON;
 if (day == FRI || day == SAT)
 printf ("It’s the weekend!");
 else
 printf ("Lets try to work");
}

Enumeration
#include<stdio.h>
enum days {SUN, MON, TUE, WED, FRI,SAT};
 /* SUN = 0, M0N = 1 and so on*/
main(){
 enum days day;
 day = 1; /* Same as day = MON */
 if (day == FRI || day == SAT)
 printf ("It’s the weekend!");
 else
 printf ("Lets try to work");
}

Enumeration
#include<stdio.h>
enum days {SUN = 1, MON = 3, TUE, … SAT};
main(){
 enum days day;
 day = 4;
 if (day == FRI || day == SAT)
 printf ("It’s the weekend!");
 else
 printf ("Lets try to work!");
}

