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a b s t r a c t 

Consider a series system consisting of sockets into each of which a component is inserted: if a component 

fails, it is replaced with a new identical one immediately and system operation resumes. An interesting 

question is: how to model the failure process of the system as a whole when the lifetime distribution 

of each component is unknown? This paper attempts to answer this question by developing two new 

models, for the cases of a specified and an unspecified number of sockets, respectively. It introduces 

the concept of a virtual component, which corresponds to the part of the system that is replaced upon 

system failure. It then discusses the probabilistic properties of the models and methods for parameter 

estimation. Based on six datasets of artificially generated system failures and a real-world dataset, the 

paper compares the performance of the proposed models with four other commonly used models: the 

renewal process, the geometric process, Kijima’s generalised renewal process, and the power law process. 

The results show that the proposed models outperform these comparators on the datasets, based on the 

Akaike information criterion. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Background 

Modelling the failure processes of technical systems has at-

racted much attention from reliability researchers. There exist

any papers that attempt to develop statistical models for char-

cterising the failure process of a system (see, Baxter, Kijima,

nd Tortorella (1996) ; Cox and Lewis (1966) ; Dorado, Hollander,

nd Sethuraman (1997) ; Doyen and Gaudoin (2004, 2011) ; Duane

1964) ; Kijima and Sumita (1986) ; Lam (1988) ; Wu and Zuo (2010) ,

or example). However, much of this existing research assumes that

he systems are equivalent to one-component systems. Such an as-

umption is restrictive and unrealistic as real-world systems nor-

ally consist of very many components. In addition, in the real

orld, the lifetime distribution of each component may not be

stimable for various reasons; for example, data on real systems

ften contain little or no information about the failure processes

f individual components. Hence, there is a need to develop new,

imple (few parameters) and elegant (richly applicable) failure pro-

ess models for multi-component systems. This is the purpose of

his paper. 
∗ Corresponding author. 

E-mail addresses: s.m.wu@kent.ac.uk (S. Wu), p.a.scarf@salford.ac.uk (P. Scarf). 
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Before we introduce our models, we define repair concepts, and

wo important models of imperfect repair. 

.2. Definitions 

In reliability mathematics, the effect of maintenance upon fail-

re of an item is typically categorised into: 

• Perfect repair , in which maintenance restores the condition of a

failed item to an “as good as new” status; for example, a failed

item is replaced with a new identical one. The renewal process

is a widely used model for the failure process of items under

perfect repair ( Ross, 1996 ). 
• Minimal repair (see, Cox and Lewis (1966) ; Duane (1964) , for

example), in which maintenance restores a failed item to its

state immediately prior to failure. The operating state of an

item after minimal repair is often called “as bad as old” in the

literature. The only model of minimal repair available in the lit-

erature is the non-homogeneous Poisson process (NHPP). 
• Imperfect repair , in which maintenance restores a failed item

to a status somewhere between “as good as new” and “as

bad as old”. Many models, including the geometric process

(GP) and its variants ( Lam, 1988; Wang & Pham, 1996; Wu &

Clements-Croome, 2006 ), the generalised renewal process mod-

els (GRP) ( Doyen & Gaudoin, 2004; Kijima, 1989; Kijima &

Sumita, 1986 ), and the reduction of failure hazard models

http://dx.doi.org/10.1016/j.ejor.2016.07.052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.07.052&domain=pdf
mailto:s.m.wu@kent.ac.uk
mailto:p.a.scarf@salford.ac.uk
http://dx.doi.org/10.1016/j.ejor.2016.07.052
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( Doyen & Gaudoin, 2004 ), have been developed for modelling

imperfect repair. 

The particular models themselves are defined as follows. 

• The geometric process : Following Lam (1988) , given a sequence

of non-negative random variables { X k , k = 1 , 2 , . . . } , if they are

independent and the cumulative distribution function of X k is

given by F (a k −1 x ) for k = 1 , 2 , . . . , where a is a positive con-

stant, then { X k , k = 1 , 2 , · · · } is called a geometric process (GP).

The GP has attracted a lot of attention in the literature (see, Wu

and Scarf (2015) ; Zhang, Gaudoin, and Xie (2015) , for example).
• The generalised renewal process : Kijima and Sumita (1986) and

Kijima (1989) introduce two types of repair models, type I and

type II, using the concept of virtual age. These models distin-

guish between the age of the system, which is the time elapsed

since the system was new (usually at time t = 0 ), and the vir-

tual age of the system, which accounts for the current health of

the system when compared to a new system. The two models

assume V k = V k −1 + q k X k , and V k = q k (V k −1 + X k ) , respectively,

where V k is the virtual age of the system immediately after the

k th repair, X k is the operating time of the system since the k th

repair, and 0 ≤ q k ≤ 1. The models are often referred to col-

lectively as the generalised renewal process (GRP). In the type

I model, if q k = 0 , then the k th repair is a perfect repair; if

q k = 1 , then the k th repair is a minimal repair. 
• The renewal process, the superimposed renewal process, and the

homogeneous Poisson process (HPP) : Consider a series system

consisting of m sockets into each of which there are inserted

non-repairable independent components, and whenever a com-

ponent fails, the system fails, and the failed component is re-

placed with a new identical one and system operation resumes.

Then the number of failures occurring at each socket is a re-

newal process and the number of failures of the series system

as a whole forms a superimposed renewal process ( Høyland

& Rausand, 2009 ). In general, the superimposed renewal pro-

cess is not a renewal process, unless the individual renewal

processes are homogeneous Poisson processes ( Drenick, 1960 ).

When both the number of components in the system is large

and the operation time of the system is large then the super-

imposed renewal process behaves approximately as a homoge-

neous Poisson process (HPP) ( Høyland & Rausand, 2009 ). The

HPP is a counting process with constant intensity function (or

rate of occurrence of failures). 
• The non-homogeneous Poisson process (NHPP) : This process gen-

eralises the HPP and has a time-varying intensity function. 

1.3. Motivation for our models 

The failure process models such as the GRP ( Gilardoni, Toledo,

Freitas, & Colosimo, 2015 ), GP ( Wu & Clements-Croome, 2006 )

and NHPP ( Asfaw & Lindqvist, 2015 ) do not distinguish the effect

of maintenance upon failure of different com ponents in the sys-

tem. Thus, such models effectively consider the system as a one-

component system. The use of these models is typically justified

by the fact that in practice failure data are scarce, and so, even

if one could model each component in the system individually

and plan maintenance accordingly, such an approach would not be

applicable. 

Furthermore, appealing to the asymptotic behaviour of the su-

perimposed renewal process as justification for the use of an HPP

in an application is questionable because in practice typical sys-

tems are relatively young and failures are rare. Using an NHPP

with an increasing intensity function such as the power-law pro-

cess ( Høyland & Rausand, 2009 ) overcomes this system age issue.

However, the NHPP (and HPP for that matter) supposes repair is

minimal. At the other end of the spectrum, the renewal process
upposes the entire system is replaced on failure so that repair is

erfect. 

Capturing imperfect repair with the GP or the GRP presents

urther difficulties. The GP implicitly assumes that the times be-

ween failures are either stochastically increasing or stochastically

ecreasing, which is not always true for the failure process of a se-

ies system. For example, if all the components in the series system

ave increasing hazard functions, then a replacement of a failed

omponent improves the reliability of the system; on the other

and, operating times between adjacent replacements of the sys-

em are stochastically decreasing. Hence the times between failures

f the system may be neither stochastically increasing nor stochas-

ically decreasing. Furthermore, in the limit (large number compo-

ents at large t ) the superimposed renewal process behaves as a

omogeneous Poisson process, which cannot be captured by the

P. 

The GRP overcomes the issue of stochastically increasing or de-

reasing times between failures by allowing the repair effect pa-

ameter to vary. However, if indeed q k vary with k , then typically

hey must be estimated using a very limited number of failure ob-

ervations. As a result, the models will be poorly estimated. If the

 k are assumed equal for all k , then the GRP will not capture the

act that the effects of replacement of failed components of differ-

nt types are different. 

.4. Our proposed solution 

In summary then, the existing models of the failure process of a

ulti-component system are restrictive. Furthermore, limited fail-

re data make it impossible to estimate either the lifetime distri-

ution of each component in a system or a model for a system

s a whole with many parameters. We must therefore seek sim-

le and elegant models for a system as a whole that can be fitted

sing a limited number of failure observations. Our contribution

evelops two new classes of such models for a series system with

on-identical components. 

In these models, the failure process of the system is regarded as

quivalent to the failure process of a system consisting of a compo-

ent, called the virtual component, in its socket and the remainder

f the system, called the virtual sub-system (VSS). Upon a failure

f the system, we suppose that the virtual component is replaced

nd the remainder of the system is either not maintained (equiva-

ently minimally repaired) or subject to imperfect repair. In reality,

ne can contend that at a repair, the change in system reliabil-

ty is at least as big as if the most reliable component had been

eplaced. Broadly speaking, replacement of the virtual component

pon system failure captures this notion. 

It should be noted then that in this paper, we distinguish three

ystems: i) the real system , that is, the reality, e.g. a manufacturing

ell, a traction motor, a wind turbine, a compressor; ii) the system ,

hat is, the mathematical model of the system, e.g. a series system

ith a number of non-repairable, non-identical components; and

ii) the virtual system (VS), consisting of a virtual component (VC)

nd a virtual sub-system (VSS). 

In our first model (Model I) the number of sockets in the se-

ies system is not specified. In our second (Model II) the number

f sockets in the series system is m . The distinguishing features

f the two models are discussed in detail later in the paper. The

ey concept, and a contribution of this paper, is the notion of the

irtual component. Through this notion, our models capture not

nly that a repair effect is neither as good as new nor as bad as

ld but also that systems comprise distinct, typically non-identical

omponents. 

The paper considers the scenarios where the lifetime distribu-

ion of each component is neither known nor knowable for various

easons. For example, if the number of system failures is large but
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ne does not know the causes of system failure (so that the dif-

erent components cannot be distinguished), the lifetime distribu-

ion for each component cannot be estimated. On the other hand,

f the number of failures is small, knowing the causes of system

ailures does not provide sufficient information to estimate the life-

ime distribution for each component. 

Thus, we claim that this paper is the first paper to model the

epair effect in multi-component systems with a stochastic process,

n the basis that the virtual age reduction models, such as the

RP, do not model a multi-component system, and the superim-

osed renewal process, HPP and NHPP do not model repair. It pro-

oses elegant models for the failure process of a series system that

vercome the limitations of existing models that are either restric-

ive (renewal process and its generalisations) or require knowledge

f the failure process for individual components (superimposed re-

ewal process). 

The structure of the paper is as follows. Section 2 lists assump-

ions and notation required. Section 3 develops the two models of

nterest. Section 4 gives the likelihood functions of the two models

iven data on failures. Section 5 assesses the validity of the pro-

osed models based on artificially generated datasets and a real-

orld dataset. We make some concluding remarks, including the

mplications of our work for applications, in the final section. 

. Assumptions and notation 

Consider a series system with a number of statistically indepen-

ent components. If a component fails, the system fails. On failure,

he failed component is replaced instantaneously by an identical

omponent, and the system is restored to operation. Time for re-

lacement is negligible. Associate a socket with each component

ocation in the system, in the sense of Ascher and Feingold (1984) ,

o that the components in their sockets collectively perform the

perational function of the system. 

The system is new and functioning at time t = 0 . 

Denote system failures occurring at successive time points by

 k , for k = 1 , 2 , . . . , with T 1 < T 2 < . . . . Let X 1 = T 1 and X k = T k −
 k −1 for k ≥ 2. Then, X 1 is the time to the first failure and X k is

he time between the (k − 1) th and the k th failures (for all k ≥ 2).

et t denote an arbitrary time since new, so that if T k < t < T k + 1

hen by time t the system has experienced exactly k failures. Fur-

her, we denote t k as the observation of T k . 

The hazard function of a component with lifetime X is 

 (t) = lim 

�t→ 0 

P { t ≤ X < t + �t| t ≤ X } 
�t 

. (1) 

Let N ( t ) denote the number of failures of the system up to

ime t . The failure process of the system can be defined equiva-

ently by the random processes { X k } k ≥ 1 or { N ( t )} t ≥ 0 and is char-

cterised by the intensity function, 

(t) = lim 

�t→ 0 

P { N(t + �t) − N(t) ≥ 1 | H (t) } 
�t 

, (2) 

here P { N(t + �t) − N(t) ≥ 1 | H (t) } is the probability that the

ystem fails within the interval (t , t + �t ) , given the history of fail-

res up to time t , H (t) ( Cox & Lewis, 1966 ). 

Note: when a counting process counts failures of a (non-

epairable) component with a lifetime X , since this component

an fail at most once, the intensity function of this counting

rocess is the same as the hazard function (of the component).

herefore, for a (non-repairable) component the terms hazard and

ntensity are synonymous. However, for clarity, throughout this

aper, where we are concerned with a component, we will use

he term hazard function , and where we are concerned with the

ystem, we will (necessarily) use the term intensity function . Their

ntegrals 
∫ t λ(u ) du and 

∫ t 
h (u ) du are referred to as the cumulative
0 0 
ntensity function (CIF) and the cumulative hazard function (CHF),

espectively. Throughout the paper, h ( x ) is a hazard function and

( x ) is an intensity function. 

. Model development 

In this section we will develop the two new models. First, we

ecall two concepts, and then we derive a result about the cumu-

ative intensity function of the system when the components in a

eries system are identical ( Proposition 1 ). 

Given a component with hazard function h ( t ) and lifetime X ,

hen 

r { X ≤ y + x | X ≥ y }= 

F (x + y ) −F (y ) 

1 − F (y ) 
= 1 −exp 

(
−

∫ x + y 

y 

h (u ) du 

)
. 

(3) 

Pr { X ≤ y + x | X ≥ y } in Eq. (3) is the cumulative distribution

unction of the remaining lifetime distribution of a component that

as survived for y time units. It implies that the residual CHF

f a component that has survived for y time units is 
∫ x + y 

y h (u ) .

imilarly, for a repairable system with intensity function λs ( u ),
 t 
x λs (u ) du is the cumulative intensity over the interval [ x , t ). For

he sake of distinction, 
∫ t 

x λs (u ) du is referred to as the cumu-

ative residual intensity function (CRIF) when x � = 0. Here, with

he assumption that an item is subject to minimal repair, the CIF
 t 
0 λs (u ) du is the expected number of failures of this item in [0, t ),

hereas the CRIF 
∫ t 

x λs (u ) du is the expected number of failures in

he time interval ( x , t ). 

Note, for a series system consisting of m components, each of

hich has hazard function h i ( t ) (for i = 1 , 2 , ..., m ), then the inten-

ity function of the system prior to first failure is 
∑ m 

i =1 h i (t) . 

roposition 1. Consider a series system with m identical and sta-

istically independent components. If a component fails, it is replaced

ith a new identical one immediately and system operation resumes.

et h 0 ( t ) denote the hazard function of a component and H 0 (t) =
 t 
0 h 0 (x ) dx be the corresponding CHF. Then, for t < t 1 , the CIF of

he system before the first failure is mH 0 ( t ) . Between the kth and

(k + 1) th failures of the system ( k = 1 , 2 , . . . ), that is, after t k time

nits, the CRIF is given by 

 0 (t − t k ) + �k (t) + �k (t) , (4)

here 

k (t) = 

{
0 if k ≥ m , 

(m − k ) 
∫ t 

t k 
h 0 (x ) dx if 1 ≤ k ≤ m − 1 , 

1 (t) = 0 

nd �k ( t ) is a function of t, t 1 , t 2 , . . . , and t k for k ≥ 2 

roof. 

(a) Since a failed component is replaced with a new identical

component, at time t between the k th and (k + 1) th failure

of the system ( t k < t < t k + 1 ), the CHF of the most recently

installed component of the system is 
∫ t−t k 

0 
h 0 (x ) dx . 

(b) When 1 ≤ k ≤ m − 1 , at time t k < t < t k + 1 , in addition to

the component discussed in (a), k − 1 components have

been replaced. Therefore, at least m − k components have

never been replaced and have been operating since t = 0 .

The CRIF of the subsystem of these m − k components is

(m − k ) 
∫ t 

t k 
h 0 (x ) dx . �k ( t ) is the CRIF of the subsystem of the

other k − 1 components. 

(c) When k ≥ m , following the k th repair the most recently re-

placed component has CHF 
∫ t−t k 

0 
h 0 (x ) dx . Further, the exis-

tence of a set of components that have never failed cannot

be established, therefore the CRIF of the system can only be

partitioned into the two terms 
∫ t−t k 

0 
h 0 (x ) dx and �k ( t ). 
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(d) The CRIF of the series system is then the sum of the three

terms H 0 (t − t k ) + �k (t) + �k (t) . Additivity holds because

components are independent so that the counting process of

system failure is the sum of the counting processes of com-

ponent failures. 

Alternatively, one can understand the summation in

Eq. (4) as: the CRIF of the most recently replaced compo-

nent is H 0 (t − t k ) and that of a subset of the never replaced

components is �k (t) + �k (t) . �

Note, the cumulative intensity function (CIF) of the system

(from time 0) can be obtained by summing the CRIF over each of

intervals between failure/repair. 

The idea of Proposition 1 is that the CRIF of a series system

can be partitioned into a known term mH 0 ( t ) for the time before

the first system failure, or a known term H 0 (t − t k ) + �k (t) for the

time after the first system failure, and an unknown term �k ( t ),

where �k ( t ) might be modelled with the CRIF of a convenient

counting process, such as a homogeneous Poisson process (HPP)

or non-homogeneous Poisson process (NHPP). 

Proposition 1 inspires us to develop two models (in the follow-

ing subsections) for series systems with non-identical components

that are useful when data about system failures (in data collected

for the system) is insufficient to estimate the lifetime distribution

for each component of a system. The main idea of the two models,

which we call Model I and Model II, is to represent a series system

with a virtual series system. The virtual series system in Model I is

composed of two virtual components (VCs): VC1 and VC2, and the

virtual series system in Model II is composed of a VC and a virtual

sub-system (VSS). 

Remark 1. The VC1 in Model I and the VC in Model II is replaced

with an identical virtual component (VC) upon failure of the sys-

tem. The justification for this idea is as follows. For a series sys-

tem with components with hazard functions h i ( t ) ( i = 1 , 2 , ...m ) ,

if a component fails at t k and is replaced with a new identical

one, then the contribution this new component makes at time t k <

 < t k + 1 to the CRIF of the system is 
∫ t−t k 

0 
h i (x ) dx . Furthermore,

although the components that fail at time points t k ( k = 1 , 2 , ... )

may be different and are unknown, the component that failed at

t k has a hazard function at least as big as h c (t) = inf 1 ≤i ≤m 

h i (t) ,

and we associate this infimum hazard function h c ( t ) with the vir-

tual component. For example, consider a series system with three

components with hazard functions 0.4 t , 0.45 t , and 0.5 t , respec-

tively. At τ time units following the most recent replacement,

the CRIF of the system will have a contribution that is either∫ τ
0 0 . 4 udu or 

∫ τ
0 0 . 45 udu = 

∫ τ
0 0 . 4 udu + 

∫ τ
0 0 . 05 udu or 

∫ τ
0 0 . 5 udu =∫ τ

0 0 . 4 udu + 

∫ τ
0 0 . 1 udu, and the common contribution 

∫ τ
0 0 . 4 udu is

the cumulative hazard function of the virtual component. That is,

the change in system reliability at each replacement is at least as

big as if the most reliable component had been replaced. 

In Model I, virtual component 2 (VC2) represents the remain-

der of the system, and in Model II the virtual sub-system (VSS)

represents the remainder of the system, and at the k th system
Fig. 1. The system and its correspond
epair VC2 and VSS are respectively not maintained and imper-

ectly repaired. 

.1. Model I: When the number of components is unspecified 

Model I is a counting process with CIF and CRIF defined as fol-

ows. For t < t 1 (prior to the first failure) the CIF of the system is
 t 
0 (h c (x ) + λs (x )) dx, and between the k th and (k + 1) th failure of

he system ( k = 1 , 2 , . . . ) the CRIF is given by 

1 ,k (t) + �2 ,k (t) , (5)

here 

1 ,k (t) = 

∫ t−t k 

0 

h c (x ) dx 

2 ,k (t) = 

∫ t 

t k 

λs (x ) dx, 

nd h c ( x ) is the hazard function of VC1. The first term in (5) cor-

esponds to VC1, which is (virtually) replaced on failure and the

econd term corresponds to VC2 (the remainder of the system), on

hich no maintenance is carried out, so that λs ( x ) might for exam-

le be modelled with an HPP or alternatively a NHPP with power-

aw intensity. This model assumes that whenever the system fails,

C1 is replaced a new identical VC. We use Fig. 1 to illustrate our

dea. Thus: 

• if VC1 fails, a new identical VC will replace it and no mainte-

nance is performed on VC2; 
• if VC2 fails, it is minimally repaired and simultaneously VC1 is

replaced with a new identical VC. This means that the VC1 is

replaced with a new identical VC whenever it fails or VC2 fails,

so that VC1 is renewed upon system failure, regardless of which

virtual component failed. 

.2. Model II: When the number of components is specified 

Model II is a counting process with CIF and CRIF defined as fol-

ows. For t < t 1 (prior to the first failure) the CIF of the system is
 t 
0 (h c (x ) + λs (x )) dx, and between the k th and (k + 1) th failure of

he system ( k = 1 , 2 , . . . ) the CRIF is given by 

1 ,k (t) + �2 ,k (t) , (6)

here 

1 ,k (t) = 

∫ t−t k 

0 

h c (x ) dx, 

nd for m > 2, 

2 ,k (t) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∫ t 
t 1 

λs (x ) dx if k = 1 , 

1 
m −1 

(
(m − k ) 

∫ t 
t k 
λs (x ) dx if 2 ≤ k ≤ m − 1 , 

+ 

∑ k −1 
i =1 

∫ t−t k −i 

t k −t k −i 
λs (x ) dx 

)
1 

m −1 

∑ m −1 
i =1 

∫ t−t k −i 

t k −t k −i 
λs (x ) dx if k ≥ m . 
ing virtual system in Model I. 



S. Wu, P. Scarf / European Journal of Operational Research 257 (2017) 763–772 767 

Fig. 2. The system and its corresponding virtual system in Model II. 

Fig. 3. Failures of the virtual system corresponding a 3-component series system in Model II, showing the ages of the VCs immediately after successive system repairs. 
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gain, h c ( x ) is the hazard function of VC1. The first term in the

RIF of the system corresponds to VC1, which is (virtually) re-

laced on failure and the second term corresponds to the virtual

ub-system (VSS) (the remainder of the system). 

The interpretation of Eq. (6) is that the VC in socket 1 is re-

laced with a new identical VC whenever it fails or the VSS fails,

hichever occurs first. 

On the VSS, we make the following remarks. 

• For t < t 1 , the intensity function of the VSS is denoted by λs ( t ),

and the m − 1 VCs in the VSS are assumed to be identical and

the intensity function of each VC is 1 
m −1 

∫ t 
t 1 

λs (x ) dx . 

• After the first failure of the system, the VC in socket 1

is renewed and its CHF becomes �1 , 1 (t) = 

∫ t−t 1 
0 

h c (x ) dx ; the

VSS has operated t 1 time units and hence its CRIF becomes∫ t 
t 1 

λs (x ) dx . 

• After k failures ( 2 ≤ k ≤ m − 1 ) have occurred, in addition to

the component that has been renewed, at most k − 1 VCs have

been replaced since time zero. This implies that at least m − k

VCs have not been replaced and the CRIF of the virtual sub-

system consisting of the m − k VCs at time t is m −k 
m −1 

∫ t 
t k 

λs (x ) dx .

The exact replacement history of the other k − 1 VCs, how-

ever, is unknown, hence one may assume that VC i was in-

stalled at time t k −i ( i = 1 , 2 , ..., k − 1 ). The CRIF at time t

of the virtual sub-system consisting of those k − 1 VCs is
1 

m −1 

∑ k −1 
i =1 

∫ t−t k −i 
t k −t k −i 

λs (x ) dx . 

• For k ≥ m , after k failures, the CRIF at time t of the m − 1 virtual

components is 
∫ t−t k −i 

t k −t k −i 
λs (x ) dx, i = 1 , . . . , m − 1 . 

It can be seen from the above discussion that 

• On failure of the system, VC1 is replaced (renewed) and the

oldest VC in the VSS is assumed to be the one replaced at the

previous failure. In this way, each VC in the VSS is replaced ev-

ery m − 1 failures for k ≥ m . 

The system and virtual system are schematically illustrated in

ig. 2 . 

The replacement of VCs in the VS is best illustrated by an ex-

mple. In Fig. 3 , we show four failure times t 1 , t 2 , t 3 , t 4 in a 3

omponent system. Then the virtual system is composed of a VC

nd a VSS with two VCs. The three elements in the vector are the

ges of the VCs immediately after replacement on failure. The first

lement in the vector corresponds to VC1 in the virtual system;

he second and the third elements in the vector correspond to the

wo VCs in the VSS. 
• At time t 1 , VC1 is replaced, VC2 and VC3 remain unchanged 

• At time t 2 , VC1 is replaced. VC2 is assumed to be replaced at

time t 1 , VC3 remains unchanged; 
• At time t 3 , VC1 is replaced. VC2 remains unchanged, VC3 is as-

sumed to be replaced at time t 2 ; and 

• At time t 4 , VC1 is replaced. VC2 is assumed to be replaced at

time t 3 , VC3 remains unchanged. 

.3. Some properties 

Let { X k : k ≥ 1} be a sequence of non-negative real-valued ran-

om variables with cdf F k ( t ) that have finite mean E [ X k ] . To avoid

rivialities, we assume that P ( X k > 0) > 0. Let 

 n ≡
n ∑ 

k =1 

X k , n ≥ 1 , (7)

ith S 0 ≡ 0 and 

(t) ≡ max { n ≥ 0 : S n ≤ t} , t ≥ 0 . (8)

Let F k (t) = 1 − e −�1 ,k (t) −�2 ,k (t) and X k follow cdf F k ( t ). 

Denote E [ N c (t)] as the renewal function corresponding to the

enewal process with the lifetime distribution 1 − e −
∫ t 

0 h c (x ) dx . 

emma 1. The expected cumulative number of failures in time in-

erval (0, t ] of the stochastic process defined in Model I, denoted by

 [ N I (t)] , satisfies 

ax { E [ N c (t)] , 

∫ t 

0 

λs (x ) dx } ≤ E [ N I (t)] ≤ E [ N c (t)] + 

∫ t 

0 

λs (x ) dx 

(9) 

roof. The system fails if either VC1 or VC2 fails. This implies the

ollowing two points. 

• It is known that the reliability of a series system is smaller than

the reliability of the weakest component in the system. Hence,

the expected number of failures of the system up to time t

is greater than the expected number of failures of the weak-

est component up to time t . This proves the first inequality in

Lemma (1) . 
• The expected number of failures of the system up to time t is

smaller than the sum of the expected number of failures of VC1

and that of VC2 up to time t . This proves the second inequality

in Lemma (1) . 

This proves Lemma 1 �
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Lemma 1 holds as the VC in socket 1 in Model I is replaced with

a new identical VC whenever it fails or the virtual system fails. 

Lemma 2. If λs ( x ) is increasing in x , and h c ( x ) and λs ( x ) in Model I

are the same as those in Model II, respectively, then the expected cu-

mulative number of failures by time t of the stochastic process defined

in Model II, denoted by E [ N II (t)] , satisfies 

E [ N II (t)] ≤ E [ N I (t)] . (10)

Proof. Note that the system in Model I is composed of VC1 and

VC2, and the system in Model II is composed of VC1 and the VSS.

The two VC1s in the two systems have the same hazard function,

which implies that the expected numbers of failures of these two

VCs in (0, t ] are equal. 

On the other hand, since λs ( x ) is increasing in x , i.e.,∫ t−t k −i 
t k −t k −i 

λs (x ) dx < 

∫ t 
t k 

λs (x ) dx, it implies that 1 
m −1 ((m −k ) 

∫ t 
t k 

λs (x ) dx

+ 

∑ k −1 
i =1 

∫ t−t k −i 
t k −t k −i 

λs (x ) dx ) < 

∫ t 
t k 

λs (x ) dx. That is, �2, k ( t ) in Model II is

smaller than �2, k ( t ) in Model I. Hence, the expected number of

failures up to time t of the VSS in the system associated with

Model II is smaller than the expected number of failures up to time

t of VC2 in the system associated with Model I. 

Considering both systems are series systems, we have

E [ N II (t)] ≤ E [ N I (t)] . 

This proves Lemma 2 �

Lemmas 1 and 2 provide bounds on the expected number of

replacements under Model I and Model II. This has practical impli-

cations for life cycle costing, for example. 

Remark 2. 

• Replacement occurs in socket 1 of the virtual system in both

Model I and Model II whenever the system fails, even if the

VC in the socket does not fail. Hence, the sequence of failures

occurring at socket 1 cannot be considered a renewal process. 
• Model II has three cases with different forms of CRIF:

in the third case when k ≥ m , the term �2 ,k (t) =
1 

m −1 

∑ m −1 
i =1 

∫ t−t k −i 
t k −t k −i 

λs (x ) dx can model a state closer to equilib-

rium than the state in the second and first case with CRIF =∫ t 
t 1 

λs (x ) dx and the state with CRIF = 

1 
m −1 ((m − k ) 

∫ t 
t k 

λs (x ) dx

+ 

∑ k −1 
i =1 

∫ t−t k −i 
t k −t k −i 

λs (x ) dx ) . This is a useful property of Model II,

since Drenick (1960) states that the failure process of a large

series system “always tends toward (statistical) equilibrium as

the time of operation becomes very large”, which implies that

such a failure process has two states: a transient state and an

equilibrium state, as interpreted by Meeker and Escobar (1998) .

Model I cannot model a failure process with two such states. 
• It should be noted that the second term �2, k ( t ) in Model II

(see the quantity (6) ) differs from the arithmetic reduction of

intensity models proposed by Doyen and Gaudoin (2004) . The

three ARI models, which are ARI ∞ 

, ARI 1 and ARI m 

, can be re-

written as λ(t) − g(t N(t) , t N(t) −1 , ..., t 1 ) , where g (.) is a function

of (t N(t) , t N(t) −1 , ..., t 1 ) . Their corresponding CRIFs are 
∫ t 

t k 
(λ(x ) −

g(t N(t) , t N(t) −1 , ..., t 1 )) dx, in which the upper limit of the inte-

gral is t , which is different from �2, k ( t ). In essence, the ARI

models are developed for a one-component system that is as-

sumed to start operation at t = 0 . However, �2, k ( t ) in Model

II is for a multi-component system, in which the components

start operating at different time points. 

Remark 3. When the number of components in Model II is not

specified, one can fit Model II when assuming m = 2 , 3 , . . . and

then choose m so that some model selection criterion (e.g. AIC)
is optimised. e  
. Parameter estimation 

Consider M independent systems of the same kind (replicates),

ach of which consists of m non-repairable components with haz-

rd functions h i ( t ) for i = 1 , . . . , m . Suppose that M j failures of sys-

em j are observed at times t j, 1 , t j, 2 , . . . , t j,M j 
(where j = 1 , 2 , ..., M),

espectively. Denote x j, 1 = t j, 1 and x j,k = t j,k − t j,k −1 for k ≥ 2 and

ll j . 

As discussed above, for both Model I and Model II, we suppose

a) upon system failure, VC1 in both Model I or Model II is always

enewed, and (b) upon system failure, VC2 in Model I follows

n NHPP. For a given system j , immediately after the k th failure,

he time-to-failure distribution is F k j (t) = 1 − R 1 , jk (t) R 2 , jk (t) with

 1 , jk (t) = exp ( − ∫ t−t j,k 
0 

h c (x ) dx ) and R 2 , jk (t) = exp ( − ∫ t 
t j,k 

λs (x ) dx ) .

hen the likelihood function is f j0 (t) 
∏ M j −1 

k =1 
f jk (t) , where f j0 (t) =

(h c (x j, 1 ) + λs (x j, 1 )) exp (− ∫ x j, 1 
0 

h c (x ) dx − ∫ x j, 1 
0 

λs (x ) dx ) . Similarly,

he likelihood function for Model II can be developed. The reader

s referred to Andersen, Borgan, Gill, and Keiding (1993) for meth-

ds of statistical inference for counting processes. We then obtain

he following. 

Model I. The likelihood for Model I is 

 I = 

M ∏ 

j=1 

{
(h c (x j, 1 ) + λs (x j, 1 )) exp 

(
−

∫ x j, 1 

0 

h c (x ) dx −
∫ x j, 1 

0 

λs (x ) dx 

)

×
M j −1 ∏ 

k =1 

(h c (x j,k +1 ) + λs (t j,k +1 )) 

exp 

(
−

∫ x j,k +1 

0 

h c (x ) dx −
∫ t j,k +1 

t j,k 

λs (x ) dx 

)}
. (11)

Model-II. The likelihood for Model II is 

L II = 

M ∏ 

j=1 

{ [ 
(h c (x j, 1 ) + λs (x j, 1 )) 

exp 

(
−

∫ x j, 1 

0 

h c (x ) dx −
∫ t j, 1 

0 

λs (x ) dx 

)] 

×
[ 
(h c (x j, 2 ) + λs (t j, 2 )) exp 

(
−

∫ x j, 2 

0 

h c (x ) dx −
∫ t j, 2 

t j, 1 

λs (x ) dx 

)] 

×
m −1 ∏ 

k =2 

[ (
h c (x j,k +1 ) + 

1 

m − 1 

((m − k ) λs (t j,k +1 ) 

+ 

k −1 ∑ 

i =1 

λs (t j,k +1 − t j,k −i )) 
)

× exp 

(
−

∫ x j,k +1 

0 

h c (x ) dx − 1 

m − 1 

×
(
(m − k ) 

∫ t j,k +1 

t j,k 

λs (x ) dx + 

k −1 ∑ 

i =1 

∫ t j,k +1 −t j,k −i 

t j,k −t j,k −i 

λs (x ) dx 

))] 

×
M j −1 ∏ 

k = m 

[ 
(h c (x j,k +1 ) + 

1 

m − 1 

m −1 ∑ 

i =1 

λs (t j,k +1 − t j,k −i )) 

× exp 

(
−

∫ x j,k +1 

0 

h c (x ) dx −
m −1 ∑ 

i =1 

∫ t j,k +1 −t j,k −i 

t j,k −t j,k −i 

λs (x ) dx 

)] } 

. (12)

One can then obtain the parameters in Model I and Model

I via maximising the logarithm of L I and the logarithm of L II ,

espectively. 

. Numerical examples 

.1. Simulation study 

In this subsection, we fit Models I and II, and four other mod-

ls (RP, NHPP, GP, and GRP) to artificially generated datasets, and
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Table 1 

The number of parameters p for each model. 

RP GP NHPP-PL GRP Model I Model II 

p 2 3 2 3 4 4 
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hen compare the AIC values of these models. It is known that

he renewal process (RP) is usually used for perfect repair scenar-

os, the non-homogeneous Poisson process with power law inten-

ity function (NHPP-PL) is often used for minimal repair, and two

odels for imperfect repair: the geometric process (GP) and the

eneralised renewal process with V k = V k −1 + qX k being the virtual

ge after the k th failure (GRP) are used for imperfect repair. When

odel I is used, the number m of components in the system is not

pecified. 

The following steps are followed to compare the performance

f the models. 

(1) We consider three cases m = 5 , 10 , 15 for the number of

sockets in the system. 

(2) The time to failure of each component follows a Weibull

distribution 1 − e −( t α ) β , where the shape parameter β and

the scale parameter α are randomly selected from the uni-

form distribution on the intervals (0.5, 4) and (12, 60),

respectively. 

(3) If a component fails, a new identical component with

the same α and β as the failed one replaces the failed

component. 

(4) In each case we use 10 replicates of each system so that

M = 10 . 

(5) We use the values 15, 20 for M j , the number of failures ob-

served for each replicate. 

(6) Using the randomly generated data implied by the above,

we fit each of the 6 models: the RP, the GP, the GRP, the

NHPP-PL, Model I, and Model II, by maximising their respec-

tive log-likelihoods. For Model I and Model II the likelihoods
Table 2 

The mean values of AIC from 30 repetitions, for various 

failures M j of each replicate, and number of components

AIC values 

M M j m RP GP NH

5 855 .73 856 .42 8

(77 .25) (74 .92) (

15 10 670 .60 672 .39 6

(50 .69) (50 .68) (

15 562 .87 564 .77 5

(36 .72) (36 .79) (

10 5 1126 .03 1125 .65 11

(107 .52) (103 .85) (1

20 10 877 .23 877 .36 8

(68 .15) (65 .43) (

15 711 .76 711 .08 6

(57 .32) (58 .90) (

Table 3 

Comparison of the AIC values of the six models based on the paire

Is Model I’s AIC value smaller than 

M M j m RP? GP? NHPP-PL? 

5 � � � 

15 10 � � ×
15 � � ×

10 5 � � � 

20 10 � � ×
15 � � ×
are given by Eqs. (11) and (12) . The reader is referred to Lam

(2007) for the likelihoods of the RP, the GP and the NHPP-PL, 

respectively, and to Yanez, Joglar, and Modarres (2002) for

the likelihood of the GRP. In the RP, the GP, and the GRP, it

is assumed that time to first failure is a Weibull distribution

1 − e 
−( t 

α1 
) β1 

. In the NHPP-PL model, ( t 
α1 

) β1 −1 is the CRIF of

the series system. In both Model I and Model II, we assume

that h c (t) = 

β1 
α1 

( t 
α1 

) β1 −1 and λs (t) = 

β2 
α2 

( t 
α2 

) β2 −1 . 

(7) Then we calculate the AIC (Akaike information criterion)

value for each model: 

AIC = 2 p − 2 ln (L ) , (13)

where L is the maximised value of the log-likelihood for the

model, p is the number of parameters in the model. The

term 2 p in the AIC penalises a model with a large number

of parameters. The values of p of the six models are shown

in Table 1 . Note, Model I and Model II with p = 4 incur the

highest penalty on their AIC values. 

With M j = 15 and M j = 20 and m = 5 , 10 , 15 there are 6 com-

inations. We repeat the above steps (1) to (7) for each of 30

epetitions, in each of which the values of α and β are different.

alculations are done with a statistical package R (which can be

ownloaded from www.r-project.org/ ). Table 2 shows the mean

alues and the variances (that are shown in the brackets under

eans) of the AIC values of the models over the 30 repetition for

ach combination. 

On the 30 repetitions of each of the 6 combinations, we then

se a paired t-test at the 5 percent level to compare the AIC val-

es of Model I and Model II with each of the other four models,

espectively. The results are shown in Table 3 , which includes 48

omparisons in total. In the table, symbol ‘ � ’ represents the result

hat the hypothesis test fails to reject the null hypothesis that the

IC value of Model I (or Model II) is smaller than that of its com-

arison model, and symbol ‘ × ’ represents the result that the hy-

othesis test rejects the null hypothesis. From the table, we make

he following observations. 
values of the number of replicates, M , number of 

 m in each replicate of the system. 

PP-PL GRP Model I Model II 

56 .48 853 .53 851 .81 840.95 

73 .45) (75 .20) (75 .33) (74.83) 

63 .45 663 .22 662 .98 659.31 

48 .25) (48 .13) (47 .91) (47.88) 

53 .70 554 .04 553 .75 551.34 

34 .74) (35 .33) (35 .18) (34.96) 

25 .50 1121 .52 1119 .72 1109.49 

02 .58) (105 .03) (104 .70) (105.42) 

68 .31 867 .82 867 .69 862.78 

64 .89) (64 .72) (64 .32) (65.03) 

99 .44 700 .16 700 .09 695.76 

57 .95) (57 .82) (58 .04) (57.09) 

d t-tests (at 5 percent level). 

that of Is Model II’s AIC value smaller than that of 

GRP? RP? GP? NHPP-PL? GRP? 

� � � � � 

× � � � � 

× � � � � 

� � � � � 

× � � � � 

× � � � � 

http://www.r-project.org/
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Table 4 

Estimated AIC values of the six models for each individual repetition for the case when M = 10 , M j = 15 and m = 5 , corresponding to the first row (with the m value 

underlined) in Table 2 . 

repetition RP GP NHPP-PL GRP Model I Model II repetition RP GP NHPP-PL GRP Model I Model II 

1 779 .35 779 .77 779 .30 775 .36 771 .82 765 .41 16 979 .41 981 .35 974 .07 972 .86 978 .07 961 .13 

2 760 .67 762 .01 762 .60 760 .15 757 .16 743 .85 17 865 .21 866 .93 866 .02 863 .35 864 .37 849 .03 

3 927 .23 928 .67 925 .81 924 .50 923 .12 917 .20 18 947 .38 949 .31 946 .13 946 .58 948 .49 934 .47 

4 818 .35 820 .30 820 .40 819 .94 816 .98 800 .98 19 750 .29 752 .26 750 .74 748 .28 748 .41 732 .82 

5 888 .91 890 .05 891 .50 885 .54 887 .90 880 .61 20 845 .51 847 .50 854 .76 844 .79 838 .28 833 .61 

6 781 .63 783 .36 800 .80 783 .49 783 .01 773 .31 21 911 .38 912 .37 915 .41 910 .11 909 .89 893 .32 

7 921 .32 922 .94 914 .74 916 .74 914 .38 906 .13 22 845 .37 846 .10 842 .61 841 .98 835 .94 829 .25 

8 829 .80 830 .55 834 .07 826 .89 820 .26 808 .77 23 697 .75 698 .90 695 .11 694 .05 693 .98 684 .63 

9 1004 .75 982 .86 965 .87 976 .12 960 .30 944 .94 24 808 .40 810 .02 813 .92 809 .28 803 .59 801 .11 

10 866 .31 866 .35 873 .63 866 .88 862 .58 858 .14 25 867 .02 868 .87 870 .00 866 .54 862 .72 847 .86 

11 788 .51 789 .78 790 .82 788 .76 790 .61 772 .71 26 923 .48 925 .06 922 .86 924 .50 926 .69 922 .81 

12 767 .24 768 .95 776 .46 769 .24 770 .09 766 .81 27 729 .82 730 .96 729 .32 727 .85 725 .40 716 .88 

13 902 .65 904 .55 911 .43 903 .90 903 .53 902 .94 28 954 .91 956 .90 954 .95 956 .78 958 .16 943 .80 

14 936 .27 938 .12 929 .67 930 .86 929 .84 917 .80 29 881 .00 883 .00 881 .11 878 .75 876 .43 861 .49 

15 839 .34 841 .20 840 .10 841 .34 841 .82 832 .72 30 852 .60 853 .68 860 .35 850 .59 850 .53 823 .91 

Fig. 4. The difference in the AIC values between Model I and GRP, and the dif- 

ference in the AIC values between Model II and GRP, based on the data shown in 

Table 4 . 

 

 

 

 

Fig. 5. The cumulative number of failures (empirical) and the CIFs for the models 

fitted to the simulated times between failures given in Table 6 . 

 

 

 

• On all the comparisons, both Model I and Model II have smaller

AIC values than those of the RP and the GP. 
• On the performance of Model I. In only 8 out of 24 comparisons

does the hypothesis test reject the null hypothesis that the AIC

value of Model I is smaller than that of the NHPP-PL or that of
Table 5 

The parameters of the Weibull distributions of the 5 compo

and m = 5 . 

α β α β α

26.725 2.276 53.900 2.893 48.890 

Table 6 

15 observations generated using the parameters in Table 5 . 

8.173 3.707 2.107 14.989 2.279 4.354 5.612 8.165 

Table 7 

Results for the models fitted to the simulated times between failures given in Tabl

Estimated Parameters 

RP GP NHPP-PL GRP 

ˆ α = 26 . 286 ˆ a = 1 . 0 0 0 ˆ α = 8 . 374 ˆ q = 1 . 0 0 01
ˆ β = 0 . 829 ˆ α = 26 . 286 , ˆ β = 0 . 829 ˆ β = 1 . 0889 ˆ α = 8 . 374 , 

AIC = 108.941 AIC = 110.941 AIC = 91.018 AIC = 93.017
the GRP. Thus, in the remaining 16 of the 24 comparisons the

test fails to reject the null hypothesis. 
• On the performance of Model II. In all the comparisons the test

fails to reject the null hypothesis. That is, in all the compar-

isons, Model II outperforms the other models. 
nents used to generate failures in e the case M j = 15 

β α β α β

3.571 33.008 2.981 35.435 0.846 

7.718 0.736 7.822 11.078 9.389 3.640 10.929 

e 6 . 

Model I Model II 

 ˆ α1 = 10 . 105 , ˆ β1 = 2 . 764 ˆ α1 = 11 . 072 , ˆ β1 = 3 . 144 
ˆ β = 1 . 0889 ˆ α2 = 15 . 213 , ˆ β2 = 0 . 961 ˆ α2 = 20 . 429 , ˆ β2 = 1 . 905 

 AIC = 89.093 AIC = 88.161 
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Table 8 

Results for the models fitted to the air conditioner data TBF-7913. 

Estimated Parameters 

RP GP NHPP-PL GRP Model I Model II 

ˆ α = 79 . 924 ˆ a = 0 . 971 ˆ α = 73 . 739 ˆ q = 0 . 0 0 0 0 0 01 ˆ α1 = 219 . 978 , ˆ β1 = 2 . 988 ˆ α1 = 176 . 503 , ˆ β1 = 1 . 897 
ˆ β = 1 . 123 ˆ α = 54 . 917 , ˆ β = 1 . 148 ˆ β = 0 . 988 ˆ α = 49 . 438 , ˆ β = 1 . 123 ˆ α2 = 93 . 558 , ˆ β2 = 1 . 00855 ˆ α2 = 77 . 406 , ˆ β2 = 0 . 875 

AIC = 293.913 AIC = 292.202 AIC = 292.431 AIC = 293.913 AIC = 294.578 AIC = 290.842 
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• Comparing the AIC values of Model I and Model II, it can be

seen that Model II outperforms Model I. 

To consider further the performance of Model I and Model II,

e investigate the case M = 10 , M j = 15 , and m = 5 in more detail.

he results are shown in Table 4 . As can be seen from this table,

he AIC values of the GRP are smaller than those of the NHPP-PL on

ost repetitions (precisely, on 23 repetitions). We therefore com-

are the AIC values of Model I and Model II with the AIC of the

RP. Based on Table 4 , we plot Fig. 4 that shows the differences

etween the AIC values of the GRP and those of Model I (i.e., the

olid line), and the differences between the AIC values of the GRP

nd Model II (i.e., the dashed line) on the 30 repetitions. From the

gure, we make the following observations 

• All the AIC differences between the GRP and Model II are posi-

tive. Thus Model II performs better than the GRP on all 30 repe-

titions. The largest two AIC differences are greater than 24 (i.e.,

the values corresponding 9 and 30 on the X-axis). 
• When the AIC differences between the GRP and Model I are

compared, on 10 of 30 repetitions the AIC values of the GRP

are greater than that of Model I. The largest AIC difference is

greater than 15 (i.e., the value corresponding 9 on the X-axis). 

Furthermore, to allow the reader who may be interested to val-

date the results by repeating the experiment, we record model

arameters generated in one of the 30 repetitions from the case

n which M j = 15 and m = 5 . Table 5 shows the Weibull distri-

ution parameters used to generate the time between failures in

his repetition. With these parameters, the random lifetimes of

he components in a system (here M = 1 ) are generated ( Table 6 ).

able 7 shows the estimated parameters and AIC for the six mod-

ls. It can be seen that (1) in Model I, β2 is smaller than 1, which

mplies that the hazard function λs ( t ) of VC2 in Model I decreases

ver time, (2) the AIC values of Model I and Model II are the small-

st among the six models, and (3) the values of α1 and β1 in the

P and the GP are the same and the values of α1 and β1 in the

HPP-PL and the GRP are the same. Hence, the GP and the GRP

ill not be further analysed. Fig. 5 shows the CIFs of the other four

odels and the empirical CIF (i.e., the cumulative number of fail-

res) generated from the data shown in Table 6 . From the figure,

e can see that Model I and Model II fit the empirical CIF well and

he RP has the worst fit, which confirms its large AIC value shown

n Table 7 . 

.2. A real dataset 

In this subsection we compare the models when fitted to a

ataset (TBF-7913) published in Proschan (1963) . The data are the

7 observations of times-between-failure of an air conditioning

nit in an aircraft. 

Since the number of components in the system is not specified,

ollowing Remark 3 , we simply compare the AIC values of Model

I when the number of components is assumed to be 2, 3, ..., and

0. The minimum AIC value is achieved when the number of com-

onents is 3. The parameters and the AIC values of the models are

isted in Table 8 , from which we can see that Model II outperforms

ther models. 
. Conclusions 

This paper develops two stochastic models of the failure pro-

ess of a multi-component series system. Model I regards the fail-

re process of the system equivalent to that of a virtual system

onsisting of two sockets into each of which there is inserted a

irtual component. Whenever the system fails, replacement occurs

t socket 1 and minimal repair or no maintenance is conducted on

he virtual component in socket 2. Model II regards the failure pro-

ess of the system equivalent to that of a virtual system consist-

ng of a socket and a subsystem. The socket contains one virtual

omponent and the subsystem contains m − 1 sockets into each

f which there is inserted virtual components. Broadly speaking,

henever the virtual system fails, replacement occurs at socket 1

nd the virtual subsystem is imperfectly repaired. 

The performance of the two models is compared with four

ell-known models on the basis of six artificially generated

atasets. The results show that (1) overall Model I outperforms the

enewal process and the geometric process on the simulated data

nd (2) Model II outperforms the four models on the simulated

ata and on the real data. Model II performs better than Model I.

urthermore, when fitted to a real-world dataset, Model II is again

he best performing model of the six. 

The models quantify the notion that the repair effect must be at

east as big as if the most reliable component were replaced, and

herefore the models consider a repair effect through component

eplacement rather than through the parameterisation of mainte-

ance effectiveness. 

In a further applied study, we intend to fit the models to a large

umber of real datasets, and handle the case of right censoring in

he likelihood estimation of the models. Finally, we make the point

hat methods that do not make parametric assumptions about the

azard function h c ( x ) and the intensity function λs ( x ) are appealing

n many settings, and our future work may consider the develop-

ent of non-parametric versions of Models I and Model II. 
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