STAT 436

Tutorial set \#5

Question 1:

Suppose that the process $\left\{y_{\mathrm{t}}\right\}$ follows an $\operatorname{AR}(1)$ model, with $\left|\phi_{1}\right|<1$, find the autocovariance function for the process $\mathrm{W}_{\mathrm{t}}=\nabla \mathrm{y}_{\mathrm{t}}=\left(\mathrm{y}_{\mathrm{t}}-\mathrm{y}_{\mathrm{t}-1}\right)$ in terms of ϕ_{1} and σ_{ε}^{2}, (where σ_{ε}^{2} is the white noise variance).
Since $\left\{y_{\mathrm{t}}\right\}$ follows an $\operatorname{AR}(1)$ model, then we know that:

$$
\gamma_{\mathrm{k}}=\operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}-\mathrm{k}}\right)=\phi^{\mathrm{k}} \frac{\sigma_{\varepsilon}^{2}}{1-\phi^{2}}, \mathrm{k} \geq 0
$$

and thus:

$$
\begin{aligned}
& \operatorname{Cov}\left(W_{\mathrm{t}}, W_{\mathrm{t}-\mathrm{k}}\right)=\operatorname{Cov}\left[\left(\mathrm{y}_{\mathrm{t}}-y_{\mathrm{t}-1}, y_{\mathrm{t}-\mathrm{k}}-\mathrm{y}_{\mathrm{t}-\mathrm{k}-1}\right)\right] \\
&=\operatorname{cov}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}-\mathrm{k}}\right)+\operatorname{cov}\left(\mathrm{y}_{\mathrm{t}},-\mathrm{y}_{\mathrm{t}-\mathrm{k}-1}\right)+\operatorname{cov}\left(-\mathrm{y}_{\mathrm{t}-1}, \mathrm{y}_{\mathrm{t}-\mathrm{k}}\right)+\operatorname{cov}\left(-\mathrm{y}_{\mathrm{t}-1},-\mathrm{y}_{\mathrm{t}-\mathrm{k}-1}\right) \\
&=\frac{\sigma_{\varepsilon}^{2}}{1-\phi^{2}} {\left[\phi^{\mathrm{k}}-\phi^{\mathrm{k}+1}-\phi^{\mathrm{k}-1}+\phi^{\mathrm{k}}\right] } \\
&=\frac{\sigma_{\varepsilon}^{2}}{1-\phi^{2}}\left[2 \phi^{\mathrm{k}}-\phi^{\mathrm{k}+1}-\phi^{\mathrm{k}-1}\right]
\end{aligned}
$$

Question 2:

Let the process $\left\{y_{\mathrm{t}}\right\}$ follows an $\operatorname{AR}(2)$ model, with the following special form: $y_{t}=\phi_{2} y_{t-2}+$ ε_{t}, use the general method to find the values of ϕ_{2} that make the process stationary.
The variance of the process $\left\{y_{\mathrm{t}}\right\}$ is:

$$
\operatorname{Var}\left(\mathrm{y}_{\mathrm{t}}\right)=\operatorname{Var}\left(\phi_{2} \mathrm{y}_{\mathrm{t}-2}+\varepsilon_{\mathrm{t}}\right)={\phi_{2}}^{2} \operatorname{Var}\left(\mathrm{y}_{\mathrm{t}-2}\right)+\sigma_{\varepsilon}^{2}
$$

and for the process $\left\{y_{\mathrm{t}}\right\}$ to be stationary, then the following must be satisfied:

$$
\operatorname{Var}\left(y_{\mathrm{t}}\right)=\operatorname{Var}\left(y_{\mathrm{t}-2}\right)
$$

thus,

$$
\operatorname{Var}\left(y_{\mathrm{t}}\right)=\phi_{2}{ }^{2} \operatorname{Var}\left(y_{\mathrm{t}}\right)+\sigma_{\varepsilon}^{2}
$$

or,

$$
\operatorname{Var}\left(y_{\mathrm{t}}\right)=\frac{\sigma_{\varepsilon}^{2}}{1-\phi_{2}{ }^{2}}
$$

for $\operatorname{Var}\left(y_{\mathrm{t}}\right)$ to be finite then we have to put some conditions on the parameter ϕ_{2}, which is $\left|\phi_{2}\right|<1$, and hence this is the stationarity condition for this process.

STAT 436

Question 3:

Let the process $\left\{y_{\mathrm{t}}\right\}$ follows an $\operatorname{AR}(2)$ model, with the following parameter values: $\phi_{1}=$ $0.5, \phi_{2}=-0.5$:
1 - is the process $\left\{y_{\mathrm{t}}\right\}$ stationary?
The stationarity conditions for the $\operatorname{AR}(2)$ process are:

$$
\begin{gathered}
\left|\phi_{2}\right|<1 \Rightarrow|-0.5|(<1) \\
\phi_{1}+\phi_{2}<1 \Rightarrow 0.5-0.5=0(<1) \\
\phi_{2}-\phi_{1}<1 \Rightarrow-0.5-0.5=-1 \quad(<1)
\end{gathered}
$$

and since all stationarity conditions are satisfied then the process $\left\{y_{\mathrm{t}}\right\}$ is stationary.
2- find the ψ_{j} weights in the general linear process.
To find the ψ_{j} weights in the general linear process, we rewrite the model in the following form:

$$
y_{t}=\left(1-0.5 \mathrm{~B}+0.5 B^{2}\right)^{-1} \varepsilon_{\mathrm{t}}
$$

and from the form of general linear process:

$$
y_{t}=\left(1-0.5 \mathrm{~B}+0.5 B^{2}\right)^{-1} \varepsilon_{\mathrm{t}}
$$

we thus can find the ψ_{j} weights by equating the coefficients of the terms B in the following equation:

$$
\left(1-0.5 B+0.5 B^{2}\right)\left(\psi_{0}+\psi_{1} B+\psi_{2} B^{2}+\psi_{3} B^{3}+\cdots\right)=1
$$

so, the coefficient of:
$\mathrm{B}^{0}: 1 \times \psi_{0}=1 \Rightarrow \psi_{0}=1$
$\mathrm{B}^{1}:-0.5+\psi_{1}=0 \Rightarrow \psi_{1}=0.5$
$\mathrm{B}^{2}: \psi_{2}-0.5 \psi_{1}+0.5=0 \Rightarrow \psi_{2}=0.5 \psi_{1}-0.5$
$\mathrm{B}^{3}: \psi_{3}-0.5 \psi_{2}+0.5 \psi_{1}=0 \Rightarrow \psi_{3}=0.5 \psi_{2}-0.5 \psi_{1}$
and continuing in the same manner, we can see that the general form of these weights takes the form:

$$
\psi_{j}=0.5 \psi_{j-1}-0.5 \psi_{j-2}, j \geq 2
$$

STAT 436

Question 4:

Let the process $\left\{y_{\mathrm{t}}\right\}$ follows an $\operatorname{AR}(2)$ model, for the following cases find the roots of the characteristic equation, and check if the process is stationary:

1- with parameters: $\phi_{1}=0.6, \phi_{2}=-0.8$
the process $\left\{y_{\mathrm{t}}\right\}$ takes the form:

$$
\begin{aligned}
& y_{t}=0.6 y_{t-1}-0.8 y_{t-2}+\varepsilon_{t} \\
& \Rightarrow\left(1-0.6 B+0.8 B^{2}\right) y_{t}=\varepsilon_{\mathrm{t}}
\end{aligned}
$$

thus, the characteristic equation has the form:

$$
\left(1-0.6 B+0.8 B^{2}\right)=0
$$

and to find its roots we equate it to zero:

$$
\begin{aligned}
& \Rightarrow(1-0.2 B)(1-0.4 B)=0 \\
& (1-0.2 B)=0 \Rightarrow G_{1}^{-1}=\frac{1}{0.2}=5>1 \\
& (1-0.4 B)=0 \Rightarrow G_{2}^{-1}=\frac{1}{0.4}=2.5>1
\end{aligned}
$$

thus the process satisfies the stationarity conditions.
2- with parameters: $\phi_{1}=2.4, \phi_{2}=-0.8$
the process $\left\{y_{\mathrm{t}}\right\}$ takes the form:

$$
\begin{aligned}
& y_{t}=2.4 y_{t-1}-0.8 y_{t-2}+\varepsilon_{\mathrm{t}} \\
& \Rightarrow\left(1-2.4 B+0.8 B^{2}\right) y_{t}=\varepsilon_{t}
\end{aligned}
$$

thus, the characteristic equation has the form:

$$
\phi(B)=\left(1-2.4 B+0.8 B^{2}\right)
$$

and to find its roots we equate it to zero:

$$
\begin{gathered}
\left(1-2.4 B+0.8 B^{2}\right)=0 \\
\Rightarrow(1-2 B)(1-0.4 B)=0 \\
(1-2 B)=0 \Rightarrow G_{1}^{-1}=\frac{1}{2}<1 \\
(1-0.4 B)=0 \Rightarrow G_{2}^{-1}=\frac{1}{0.4}=2.5>1
\end{gathered}
$$

and since one of the roots is not greater than 1 , the process is not stationary.

Question 5:

STAT 436

Find the Yule-Walker equations for the following models and solve these equations to get values for ρ_{1} and ρ_{2}.

1- $\mathrm{y}_{\mathrm{t}}-0.8 \mathrm{y}_{\mathrm{t}-1}=\varepsilon_{t}$
Multiplying both sides by $\mathrm{y}_{\mathrm{t}-\mathrm{k}}$, and taking the mathematical expectation:

$$
\begin{gathered}
E\left(\mathrm{y}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}-\mathrm{k}}\right)=0.8 E\left(\mathrm{y}_{\mathrm{t}-1} \mathrm{y}_{\mathrm{t}-\mathrm{k}}\right)+E\left(\varepsilon_{t} \mathrm{y}_{\mathrm{t}-\mathrm{k}}\right) \\
\Rightarrow \gamma_{k}=0.8 \gamma_{\mathrm{k}-1}+E\left(\varepsilon_{t} \mathrm{y}_{\mathrm{t}-\mathrm{k}}\right)
\end{gathered}
$$

Now notice that Y_{t-k} depends only on $\varepsilon_{t-k}, \varepsilon_{t-k-1}, \ldots$, then:

$$
E\left[\varepsilon_{t} y_{t-k}\right]=\left\{\begin{array}{l}
\sigma_{\varepsilon}^{2} \quad, \mathrm{k}=0 \\
0 \quad, \mathrm{k}=1,2,3
\end{array}\right.
$$

so,

$$
\begin{gathered}
\gamma_{0}=0.8 \gamma_{-1}+\sigma_{\varepsilon}^{2} \\
=0.8 \gamma_{1}+\sigma_{\varepsilon}^{2}, \\
\gamma_{k}=0.8 \gamma_{k-1}, \quad k>0
\end{gathered}
$$

from which we can calculate the ACF ρ_{k} :

$$
\rho_{k}=0.8 \rho_{k-1}, k=1,2, \ldots
$$

these are the Yule-Walker equations for this model.
For example, for $k=1$:

$$
\rho_{1}=0.8 \rho_{0}=0.8
$$

and for $k=2$:

$$
\rho_{2}=0.8 \rho_{1} \Rightarrow \rho_{2}=0.8^{2}=0.64
$$

$2-\mathrm{y}_{\mathrm{t}}-0.9 \mathrm{y}_{\mathrm{t}-1}+0.4 \mathrm{y}_{\mathrm{t}-2}=\varepsilon_{t}$
Multiplying both sides by $\mathrm{y}_{\mathrm{t}-\mathrm{k}}$, and taking the mathematical expectation:

$$
\gamma_{k}=E\left[y_{t} y_{t-k}\right]=0.9 E\left[y_{t-1} y_{t-k}\right]-0.4 E\left[y_{t-2} y_{t-k}\right]+E\left[\varepsilon_{t} y_{t-k}\right]
$$ and since Y_{t-k} depends only on $\varepsilon_{t-k}, \varepsilon_{t-k-1}, \ldots$, then:

$$
E\left[\varepsilon_{t} y_{t-k}\right]=\left\{\begin{array}{l}
\sigma_{\varepsilon}^{2} \quad, \mathrm{k}=0 \\
0 \quad, \mathrm{k}=1,2,3
\end{array}\right.
$$

so,

$$
\begin{gathered}
\gamma_{0}=0.9 \gamma_{-1}-0.4 \gamma_{-2}+\sigma_{\varepsilon}^{2} \\
=0.9 \gamma_{1}-0.4 \gamma_{2}+\sigma_{\varepsilon}^{2}, \quad \\
\gamma_{k}=0.9 \gamma_{k-1}-0.4 \gamma_{k-2}, \quad k>0
\end{gathered}
$$

from which we can calculate the ACF ρ_{k} :

$$
\rho_{k}=0.9 \rho_{k-1}-0.4 \rho_{k-2} \quad, k=1,2, \ldots
$$

these are the Yule-Walker equations for this model.
For example, for $k=1$:

$$
\begin{gathered}
\rho_{1}=0.9 \rho_{0}-0.4 \rho_{1} \\
\rho_{1}(1+0.4)=0.9 \Rightarrow \rho_{1}=\frac{0.9}{(1+0.4)}=0.643
\end{gathered}
$$

STAT 436

and for $k=2$:

$$
\rho_{2}=0.9 \rho_{1}-0.4 \rho_{0} \Rightarrow \rho_{2}=0.9(0.643)-0.4=0.1787
$$

