Tutorial set #4

Question 1:

The following data represent the monthly sales (in thousand riyals) for a
particular electrical appliance (read the data across from left to right).

53 43 66 48 52 42 44 56
44 58 41 54 51 56 38 56
43 52 32 59 34 57 39 60
41 52 43

1- Plot the data, and comment on the stationarity of the data.

2- Based on the figure, can you say anything about the approximate value of the
autocorrelation coefficient p, ?

3- Plot y; against y,_4, try to guess the value of p; .

4- Find and plot the sample autocorrelation function ry for k = 0,1,2,3,4,5.
Comment on the shape of this function.

5- Find and plot the sample partial autocorrelation function ry for k = 0,1,2,3,4,5.
Comment on the shape of this function.

: a c2 a ca 5 c6
o y-y@1)| yeD | AVER1 | FITS1 | RESH
[Entry Direction|, . . . . .
2 43 -10 53
3 &6 23 43 54,0000
4 48 18 66 523333 540000 -6.0000
5 52 4 48 553333 523333 -0.3333
6 42 -10 52 473333 553333 -13.3333
7 a 2 42| 460000 47.3333 -3.3333
8 56 12 44| 473333 460000 10.0000
9 a 12 56 48.0000 | 473333 -3.3333
10 58 14 44| 526667 48.0000  10.0000
1 a1 a7 58| 476667 52.6667 -11.6667
12 54 13 41 510000 47.6667  6.3333
13 51 3 54| 486667 510000  0.0000
1 56 5 51 536667 486667 7.3333
15 38 -18 56 483333 53.6667 -15.6667
16 56 18 38| 500000 483333 7.6667
17 49 7 56 47.6667  50.0000  -1.0000
18 52 3 40| 523333 47.6667 43333
1 32 -20 52 443333 523333 -2033:
20 59 P 32| 476667 443333 14.6667
21 e -25 59 416667 A7.6667 -13.6667
22 57 23 34 500000 416667 153333
23 39 -18 57| 433333 50.0000 -11.0000
24 &0 21 39 520000 433333 16.6667
25 a1 -19 60 466667 52.0000 -11.0000
26 52 1 41 510000 466667  5.3333
27 43 -9 52| 453333 510000 -8.0000



R Code

#Tutorial4 Q1

rm(list = 1s()) #removes all objects from the current workspace (R memory)
datal <- read.delim("C:/STAT 336-Time Series Analysis/data_ tutorial4.txt",
header = TRUE)

#install.packages("astsa”)

library(astsa)

Y <- ts(datal$Y) #this makes sure R knows that x is a time series.

summary(Y)
Min. 1st Qu. Median Mean 3rd Qu. Max .
32.00 42.50 51.00 48.89 56.00 66.00

#iplotting time series of Y with points marked as "o" (part 1)
tsplot(Y, type="b",col=4,lwd=2)
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1- From the figure, it appears that the data are stationary in the mean, as there do not
seem to be a clear trend component in the data. Also, the variance seems to be constant
over the time, hence, the series seem to be stationary.

2- As we see from the plot of the series, most of the time there exist a value above the mean followed
by a value beneath the mean and so on. Thus, we expect that the value of p, to be negative, however
its exact value is difficult to guess from the figure, but we don’t expect that it will be a high value (i.e.
near to one) because the fluctuations are not the same across the series.

#PLot x versus lag 1 of x (part 2)
lagl.plot(Y,1,col=4,pch=20, cex=1)
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3- As we see from the plot, the behavior we anticipated for the relation between any two observations
that are one time apart is clear. As we notice the negative correlation between the observations, as the
regression line between y, and y,_, is decreasing. We can estimate visually the value of p, (which is
the slope of the line) maybe between -0.6 and -0.7.

# ACF & PACF (part 4 & 5)
acf(Y,lag.max = 10, plot = TRUE,ylim=c(-1,1),ci.type = "ma")

#The confidence interval plotted in plot.acf is based on an uncorrelated s
eries and should be treated with appropriate caution. Using ci.type ="ma".
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4- Where we got the SACF for the data for any time lags, we notice here that p;, = r, = —0.68117 ,
we also notice that the autocorrelation decrease as time lag increase (this is a characteristic of the
stationary processes). Notice also that all values of ry after the first time lag lie within the 95% C.I ,
we thus can test the hypothesis that all autocorrelation coefficient after time lag 1 are not different
from zero.



pacf(Y,lag.max = 10,plot = TRUE,ylim=c(-1,1))
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5- We notice from the figure that only one value of ry is outside the 95% C.l.(cutoff after lag one ),
whereas all the rest of the values are within the 95% C.I. which means that they are not significantly
different from zero. Notice also that r; = r;; = —0.68117 which is always true.

acf2(Y,max.lag =

[1,]
[2,]
[3,]
[4,]
[5,]
[6, ]
[7,]
[8,]
[9,]
[1e, ]

ACF
-0.6811684
0.5617521
-0.5468817
0.4815203
-0.3726019
0.2628556
-0.2164267
0.2001462
-0.1784259
0.2122418

10, plot=FALSE) # Value of ACF & PACF

PACF
-0.68116842
0.18238796
-0.21187138
©0.03553379
0.08128773
-0.12723856
0.01697477
0.05640012
-0.07046835
0.16324654



Question 2:

In the following cases, comment on the stationarity of the time series, and in case of non-
stationarity, briefly explain how you will deal with the problem:

1- The following series represent average monthly temperatures for a period of 10 years:

Time Series Plot of C1
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The mean of the series looks constant over time, the same could be said about the variance. Which
indicate that the series is stationary. Also, notice that the series exhibita seasonal pattern, where the
average temperatures decrease for months 6,7 and 8 every year. Whereas the temperatures increase
gradually for the rest of the year. So, the model we use for the data should incorporate a seasonal
component and must estimate its coefficients and test their significance.

2- The following series represent monthly numbers (in thousands) of international travelers for
a period of 10 years:

Time Series Plot of C1
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It is clear that the series exhibitan increasing trend component and thus the seriesis not stationary.
We can deal with the problem of non-stationarity in the mean by applying the difference operator V,
so we take the firstorder difference and inspect the resulting series to see if it succeeded in turning it
to a stationary series or not, otherwise we can take the second difference. We also notice that the
variance of the series increases with time, hence it is not stationary in variance as well. We can use
for example the logarithmic transformation or any other transformation in the Box-Cox family of
transformations. But be aware that if there is a need to apply both transformations for the data, then
logarithmic transformation must be applied before the differences.

3- Atime seriesrepresenting the monthly demand of a particular item:

Time Series Plot of C3
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The series seems to be stationary in the mean, as it does not change over time. There is a slight
indication of non-stationarity in the variance, we can confirm this by applying the logarithmic
transformation to the data and study the resulting series.

4- A time seriesrepresenting the weekly sales of a large company:

Time Series Plot of C10
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It is clear that the series exhibit an increasing trend component and thus the series is not stationary.
We can deal with the problem of non-stationarity in the mean by applying the difference operator V,
so we take the firstorder difference and inspect the resulting series to see if it succeeded in turning it
toa stationary series or not, otherwise we can take the second difference. We do not notice any problem
of the variance as it seems constant as time increase.

Question 3:

In the general linear process (GLP) , Y; = py + X2, Wjec; , we used the following ys; weights:

1- y; = ¢ for j=1,2,... , where |p| < 1. What is the form of the resulting process, and derive its

autocorrelation function?

Ye = by + X720 Wjee
= py + %%, P e
Ye—py =g+ ey + PP, + ez +
=g+ ¢ e 1+ e, + PPe s+ ]
=g+ ¢ [V — vl

Note: This process is called Autoregressive process of order one, since it is a regression of process at
timet onitsvalue attimet — 1.

The ACEF:

Taking the variance of both sides of the general linear process:

var(Y,) = Yo = var Z Yige—j | =02 Z s
=0 =0

Also, finding the autocovariance for the process:

cov(Yy, Ye-x) = Yi = cov Z\I’ €t—j 'Z Wi €tk

._.

And to let the summationin the term .2, W;e._; tostart from zero, we use the index transformation:

letj=i—k =2>i=j+k
Then,



k-1 0o oo

cov(Yy Yik) = cov Z Vigei + ) Wjik€—(+ 'Z U &r—k-j
0 i=0

i= j:

(0] [0/0)
cov Wik Et-k—j z Uy €k
=0 =0

)

[oe]

o Z W Wjk

=0

And hence the ACF for the G.L.P. has the form:

0 = Yo ZjzoWj Uy
k=, 7 Yo 2
Yo Zj:ol-pjz

Now, substituting for y; = ¢, we get:

IR itk gk xR 2

— 4k —
PR = T = geggn = k=012,

Thus, we deduce that the resulting process is an AR(1) process (a special case of the GLP), and it has
the ability to model data that has the property of autocorrelation that decline in an exponential fashion
(for 0 < ¢ < 1), or inadeclining sine wave fashion if —1 < ¢ < 0. Try using different values for ¢.

Yo =1,y; = =6, y; = 0,forj=23,.., where, [8] < 1. What is the form of the resulting process,
and derive its autocorrelation function?

Ye —py = z Wj €t
=0

= (Et_eet_l +0 X St_z +0 X Et_3+"')

o Yt — “‘Y = St — 9£t_1
Note: This process is called a moving average of order 1, and it relates the process at time t with the
errors (or shocks) at time t and time t-1.

The ACF:

Substituting for the value y, = 1, ¢; = —8 and the rest of the weights §;; = 0,j > 1 in the general
form of the autocorrelation function of the GLP, we get:

oy = 2o Wik Wo e + W Wi+ W Wai 0 Wi + =004y

R L+0°
For k=1:
_ -0
cPLE 1+62

Note that using k=2, then all the terms in the numerator equals zero, this also true for any value

k > 2. So, we note that the MA(1) process is a special case of the GLP, and it has the ability of
modeling data that are correlated at one time lag only, and are uncorrelated for data that are further
apart.



