CE 430
 Transportation Systems

Tutorial \#4

(Ch. 3: Traffic stream flow models)

Prepared by
Eng. Mohammed Alhozaimy

Figure 3.2.1 Vehicle following concept

- $\mathrm{S}_{\mathrm{min}}=\mathrm{V} \delta+\frac{V^{2}}{2 d_{f}}-\frac{V^{2}}{2 d_{l}}+N L+X_{0}$

TABLE 3.2.1 Safety Regime Definitions

Regime	Deceleration of leading vehicle	Deceleration of following vehicle
a	∞	d_{n}
b	d_{e}	d_{n}
c	∞	$d_{1}=d_{f}$ d_{e} (no braking)
d		
e		

Note: For $d_{e}<2 d_{n}$, regime c is safer than regime b . Source: Vuchic [3.1].

Two vehicles are traveling at speed limit of 60 mph . The safety margin after stop is 3 ft and the length of the vehicles are 18 ft . Assume the perception reaction time of the following vehicle 1.5 second, normal deceleration $8 \mathrm{ft} / \mathrm{s}^{2}$ emergency deceleration $24 \mathrm{ft} / \mathrm{s}^{2}$. Determine the minimum spacing between the vehicles to develop a safety regime (a) , (b) \& (C).
$\mathrm{V}=60 \mathrm{mph}=88 \mathrm{ft} / \mathrm{s}$
$\mathrm{X}_{0}=3 \mathrm{ft}$
$\mathrm{L}=18 \mathrm{ft}$
$\mathrm{N}=1$

Safety regime A :

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{L}}=\infty, \quad \mathrm{d}_{\mathrm{f}}=\mathrm{d}_{\mathrm{n}}=8 \mathrm{ft} / \mathrm{s}^{2} \\
& \mathrm{~S}_{\min }=\mathrm{V} \delta+\frac{V^{2}}{2 d_{f}}-\frac{V^{2}}{2 d_{l}}+N L+X_{0} \\
& \mathrm{~S}_{\text {min }}=88^{*} 1.5+\frac{88^{2}}{2 * 8}-\frac{88^{2}}{2 * \infty}+1^{*} 18+3 \\
& \mathrm{~S}_{\min }=673 \mathrm{ft}
\end{aligned}
$$

Safety regime B :

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{L}}=24 \mathrm{ft} / \mathrm{s}^{2}, \quad \mathrm{~d}_{\mathrm{f}}=\mathrm{d}_{\mathrm{n}}=8 \mathrm{ft} / \mathrm{s}^{2} \\
& \mathrm{~S}_{\text {min }}=\mathrm{V} \delta+\frac{V^{2}}{2 d_{f}}-\frac{V^{2}}{2 d_{l}}+N L+X_{0} \\
& \mathrm{~S}_{\text {min }}=88^{*} 1.5+\frac{88^{2}}{2 * 8}-\frac{88^{2}}{2 * 24}+1 * 18+3 \\
& \mathrm{~S}_{\text {min }}=475.67 \mathrm{ft}
\end{aligned}
$$

Safety regime C:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{L}}=\infty, \quad \mathrm{d}_{\mathrm{f}}=\mathrm{d}_{\mathrm{e}}=24 \mathrm{ft} / \mathrm{s}^{2} \\
& \mathrm{~S}_{\text {min }}=\mathrm{V} \delta+\frac{V^{2}}{2 d_{f}}-\frac{V^{2}}{2 d_{l}}+N L+X_{0} \\
& \mathrm{~S}_{\text {min }}=88^{*} 1.5+\frac{88^{2}}{2 * 24}-\frac{88^{2}}{2 * \infty}+1 * 18+3 \\
& \mathrm{~S}_{\min }=314.33 \mathrm{ft}
\end{aligned}
$$

The post speed of 8 vehicles were observed to be $25,30,40,45,35,33,28,50 \mathrm{mph}$, respectively. Compute the time mean speed $U_{t} \&$ space mean speed U_{s}.

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{t}}=\frac{\sum v}{N}=\frac{25+30+40+45+35+33+28+50}{8}=35.75 \mathrm{mph} \\
& \mathrm{U}_{\mathrm{s}}=\frac{1}{\frac{1}{N} \sum_{\bar{v}}}=\frac{1}{\frac{1}{8}\left(\frac{1}{25}+\frac{1}{30}+\frac{1}{40}+\frac{1}{35}+\frac{1}{33}+\frac{1}{28}+\frac{1}{50}\right)}=37.57 \mathrm{mph}
\end{aligned}
$$

From the following time - distance graph, find the the time mean speed U_{t} $\&$ space mean speed U_{s}

Slop $=$ Speed $=\frac{d_{2}-d_{1}}{t_{2}-t_{1}}$
Speeds: 30, 20, 24, 15, $30 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{t}}=\frac{\sum v}{N}=\frac{30+20+24+15+30}{5}=23.8 \mathrm{~m} / \mathrm{s} \\
& \mathrm{Us}=\frac{1}{\frac{1}{N} \sum_{v}^{\frac{1}{v}}}=\frac{1}{\frac{1}{5}\left(\frac{1}{30}+\frac{1}{20}+\frac{1}{24}+\frac{1}{15}+\frac{1}{30}\right)}=22.22 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Given $s=\frac{1}{0.30(60-u)}$, where the spacing in miles and u is the speed in mph. Derive the relationships: $u-k, q-u$ and $q-k$. and find saturation flow rate $q_{\text {max }}$, speed at saturation U_{m} and maximum density k_{j}

$\mathrm{K}=\frac{1}{\mathrm{~s}}=\frac{1}{\frac{1}{0.30(60-u)}}$	K_{j} happen when $\mathrm{u}=0$ $k_{j}=18-0.3 u$
$K=0.3(60-u)=18-0.3 u$	$\rightarrow \mathrm{K}_{\mathrm{j}}=18 \mathrm{Vpm}$
	$\mathrm{K}_{\mathrm{m}}=\frac{K_{j}}{2}=\frac{18}{2}=9 \mathrm{Vpm}$
$\mathrm{q}=\mathrm{uk}$	U_{f} happen when $\mathrm{k}=0$
$\mathrm{q}=\mathrm{u}(18-0.3 \mathrm{u})$	$\mathrm{U}_{\mathrm{f}}=60-3.333 \mathrm{k}$
$\rightarrow \mathrm{q}=18 \mathrm{u}-0.3 \mathrm{u}^{2} \quad(\mathrm{q}-\mathrm{u})$	$\mathbf{U}_{\mathrm{f}}=60 \mathrm{mph}$
$\begin{aligned} & q=u k \\ & q=(60-3.333 k) K \\ & \rightarrow q=60 \mathrm{k}-3.333 \mathrm{k}^{2} \end{aligned}$	$\rightarrow \mathrm{U}_{\mathrm{m}}=\frac{\mathrm{U}_{\mathrm{f}}}{2}=\frac{60}{2}=30 \mathrm{mph}$

$$
\begin{aligned}
& \mathrm{q}_{\max } \text { happens at } \mathrm{K}_{\mathrm{m}} \& \mathrm{U}_{\mathrm{m}} \\
& \mathrm{q}_{\max }=60 \mathrm{k}_{\mathrm{m}}-3.333 \mathrm{k}_{\mathrm{m}}^{2} \\
& \mathrm{q}_{\max }=60^{*} 9-3.333^{*} \mathrm{~g}^{2} \\
& \rightarrow \mathrm{q}_{\max }=270 \mathrm{Vph} \\
& \\
& \mathrm{q}_{\max }=18 \mathrm{u}_{\mathrm{m}}-0.3 \mathrm{u}_{\mathrm{m}}^{2} \\
& \mathrm{q}_{\max }=18^{*} 30-0.3 * 30^{2} \\
& \rightarrow \mathrm{q}_{\max }=270 \mathrm{Vph}
\end{aligned}
$$

