CE 430 Transportation Systems

Tutorial \#3
(Ch. 2: Equations of motion and human factors)

2.3 Human Factors

Prepared by
Eng. Mohammed Alhozaimy

Determine if the following intersection has a dilemma zone:
Comfortable deceleration $\mathrm{a}_{2}=8 \mathrm{ft} / \mathrm{s}^{2}$, intersection width $\mathrm{w}=65 \mathrm{ft}$, vehicle length $\mathrm{L}=15 \mathrm{ft}$, amber duration $\tau=4.5 \mathrm{sec}$, PRT $\delta_{2}=1 \mathrm{sec}$ and an approach speed of $\mathbf{6 0} \mathbf{~ m p h}$. Note, if there exists a dilemma zone, determine it's length.

$$
\begin{aligned}
& v_{0}=60 \mathrm{mph}=60 \times \frac{5280}{3600}=88 \mathrm{ft} / \mathrm{s} \\
& x_{c}=v_{0} * \delta_{2}+\frac{v^{2}}{2 * a_{2}} \\
& x_{c}=88 \times 1+\frac{88^{2}}{2 * 8}=572 \mathrm{ft} \\
& x_{0}=v_{0} \tau-(w+L) \\
& x_{0}=88 \times 4.5-(65+15)=316 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{\text {min }}=\delta_{2}+\frac{v 0}{2 * a_{2}}+\frac{w+l}{v 0} \\
& \tau_{\text {min }}=1+\frac{88}{2 * 8}+\frac{65+15}{88} \\
& \tau_{\text {min }}=7.41 \mathrm{sec}>\tau=4.5
\end{aligned}
$$

There is a dilemma zone
$X_{c}>X_{0} \rightarrow$ There is dilemma zone

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{c}}-\mathrm{X}_{0}=\left(v_{0} * \delta_{2}+\frac{v^{2}}{2 a_{2}}\right)-\left(v_{0} \tau-w-L\right) \\
& \mathrm{X}_{\mathrm{c}}-\mathrm{X}_{0}=\left(88 \times 1+\frac{88^{2}}{2 * 8}\right)-(88 \times 4.5-65-15) \\
& \mathrm{X}_{\mathrm{c}}-\mathrm{X}_{0}=256 \mathrm{ft} \\
& \rightarrow \text { The length of the dilemma zone is } 256 \mathrm{ft}
\end{aligned}
$$

Calculate the length of the dilemma zone in the following intersection. Moreover, select an appropriate yellow interval for the intersection
Driver and intersection properties:

- Comfortable deceleration rate $\mathrm{a}_{2}=2.5 \mathrm{~m} / \mathrm{s}^{2}$
- Intersection width $\mathbf{w}=\mathbf{3 5} \mathrm{m}$
- Design vehicle length $\mathrm{L}=3 \mathrm{~m}$
- Yellow duration $\mathrm{t}=4.5 \mathrm{sec}$
- PRT $\delta_{2}=1 \mathrm{sec}$
- Speed limit: 60 km/h

$$
\begin{aligned}
& v=60 \mathrm{~km} / \mathrm{hr}=60 \times \frac{1000}{3600}=16.67 \mathrm{~m} / \mathrm{s} \\
& \mathrm{X}_{\mathrm{c}}-\mathrm{X}_{0}=\left(v_{0} * \delta_{2}+\frac{v^{2}}{2 a_{2}}\right)-\left(v_{0} \tau-w-L\right) \\
& \mathrm{X}_{\mathrm{c}}-\mathrm{X}_{0}=\left(16.67 * 1+\frac{16.67^{2}}{2 * 2.5}\right)-(16.67 * 4.5-35-3) \\
& \mathrm{X}_{\mathrm{c}}-\mathrm{X}_{0}=35.23 \mathrm{~m} . \quad \rightarrow \text { The length of the dilemma zone is } 35.23 \mathrm{~m} \\
& \tau_{\text {min }}=\delta_{2}+\frac{v_{0}}{2 a_{2}}+\frac{w+l}{v_{0}} \\
& \tau_{\text {min }}=1+\frac{16.67}{2 * 2.5}+\frac{35+3}{16.67} \\
& \tau_{\text {min }}=6.61 \mathrm{sec}
\end{aligned}
$$

Vehicles must reduce speed from $100 \mathrm{~km} / \mathrm{h}$ to $60 \mathrm{~km} / \mathrm{h}$ to negotiate a tight curve on a rural highway. A warning sign is clearly visible for a person with $6 / 6$ from a distance of 50 m . Calculate the distance at which the sign should be place before the curve for the design driver. Given the design driver has 3/6 vision, PRT $\delta=\mathbf{2 ~ s e c}$ and decelerates comfortably at the rate of $a=3 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
& \frac{6}{6}: 50 \mathrm{~m} \\
& \frac{3}{6}: x
\end{aligned} \rightarrow x=25 \mathrm{~m} \quad . \quad 100 \mathrm{~km} / \mathrm{hr}=27.78 \mathrm{~m} / \mathrm{s}
$$

Ex.10/P. 96

A driver with 20/40 vision and a sixth-grade education needs $\mathbf{2} \mathbf{~ s e c}$ to read a directional sign. The letter size in such that the sign can read by a person with 20/20 vision from a distance of 200 ft . Does the subject driver have enough time to read the sign at the speed of $30 \mathrm{mi} / \mathrm{h}$?

```
\(\frac{20}{20}: 200 \mathrm{ft}\)
    \(\rightarrow x=100 \mathrm{ft}\)
\(\frac{20}{40}: x\)
    \(D_{P R}=v * \mathrm{t}\)
    \(t=\frac{d}{v}=\frac{100}{44}=2.27 \sec >2 \sec (\) time required to read the sign \()\)
    \(\rightarrow\) So the driver have enogh time to read the sign.
```

