Chapter 2

6.3 The daily amount of coffee, in liters, dispensed by a machine located in an airport lobby is a random variable X having a continuous uniform distribution with $\mathrm{A}=7$ and $\mathrm{B}=10$. Find the probability that on a given day the amount of coffee dispensed by this machine will be:
(a) at most 8.8 liters;
(b) more than 7.4 liters but less than 9.5 liters;
(c) at least 8.5 liters.

$$
f(x)=\frac{1}{b-a}, a \leq x \leq b ; E(X)=\frac{a+b}{2} \text { and } \sigma^{2}=\frac{(b-a)^{2}}{12}
$$

$\mathrm{X} \sim \operatorname{Uniform}(7,10), f(x)=\frac{1}{3}, 7 \leq x \leq 10$
a) $p(x \leq 8.8)=\int_{7}^{8.8} \frac{1}{3} d x=\frac{1}{3}[x]_{7}^{8.8}=\frac{8.8-7}{3}=0.6$
b) $p(7.4 \leq x \leq 9.5)=\int_{7.4}^{9.5} \frac{1}{3} d x=\frac{1}{3}[x]_{7.4}^{9.5}=\frac{9.5-7.4}{3}=0.7$
c) $p(x \geq 8.5)=\int_{8.5}^{10} \frac{1}{3} d x=\frac{1}{3}[x]_{8.5}^{10}=\frac{10-8.5}{3}=0.5$
6.4 A bus arrives every 10 minutes at a bus stop. It is assumed that the waiting time for a particular individual is a random variable with a continuous uniform distribution.
(a) What is the probability that the individual waits more than 7 minutes?
(b) What is the probability that the individual waits between 2 and 7 minutes?
$\mathrm{X} \sim \operatorname{Uniform}(0,10), f(x)=\frac{1}{10} \quad, 0 \leq x \leq 10$
a) $p(x>7)=\int_{7}^{10} \frac{1}{10} d x=\frac{1}{10}[x]_{7}^{10}=\frac{10-7}{10}=0.3$
b) $p(2<x<7)=\int_{2}^{7} \frac{1}{10} d x=\frac{1}{10}[x]_{2}^{7}=\frac{7-2}{10}=0.5$
6.45 The length of time for one individual to be served at a cafeteria is a random variable having an exponential distribution with a mean of 4 minutes. What is the probability that a person is served in less than 3 minutes?

$$
\begin{gathered}
f(x)=\lambda e^{-\lambda x}, x>0 \quad ; E(X)=\frac{1}{\lambda} \text { and } \sigma^{2}=\frac{1}{\lambda^{2}} \\
X \sim E X P\left(\frac{1}{\lambda}=\frac{1}{4}\right) ; f(x)=\frac{1}{4} e^{-\frac{x}{4}}, X>0 \\
p(x<3)=\int_{0}^{3} \frac{1}{4} e^{-\frac{x}{4}} d x=\left[-e^{-\frac{x}{4}}\right]_{0}^{3}=-e^{-\frac{3}{4}}+e^{-\frac{0}{4}}=1-e^{-\frac{3}{4}}=0.5276
\end{gathered}
$$

What is the probability that a person is served in less than 3 minutes on at least 4 of the next 6 days?

First, calculate the probability of served less than 3 min .
Consider "served less then 3 " is success thus, $\mathrm{p}=0.5276$.
Now, let Y be the number of success in 6 days.
$\mathrm{Y} \sim \operatorname{Bin}(\mathrm{n}=6, \mathrm{p}=0.5276)$
$f(x)=\binom{6}{x}(0.5276)^{x}(0.4724)^{6-x} ; x=0,1,2, \ldots, 6$
$p(Y \geq 4)=f(4)+f(5)+f(6)=\sum_{Y=4}^{6}\binom{6}{x}(0.5276)^{x}(0.4724)^{6-x}=0.3986$
H.W

Q 2 . Suppose that the random variable X has the following uniform
distribution: $f(x)= \begin{cases}3 & , \frac{2}{3}<x<1 \\ 0 & \text {, other wise }\end{cases}$

1) $p(0.33<x<0.5)=$
2) $p(x>1.25)=$
(3) The variance of X is

Q2. Suppose that the failure time (in hours) of a certain electrical device is distributed with a probability density function given by:
$f(x)=(1 / 70) e^{-x / 70} \quad, x>0$

1) the probability that a randomly selected device will fail within the first 50 hours is:
2) the probability that a randomly selected device will last more than 150 hours is:
3) the average failure time of the electrical device is:
4) the variance of the failure time of the electrical device is:

Chapter 3

If we have $X \sim N\left(\mu, \sigma^{2}\right)$ then $\bar{X}_{1} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
8.17 If all possible samples of size 16 are drawn from a normal population with mean equal to 50 and standard deviation equal to 5 , what is the probability that a sample mean \bar{x} will fall in the interval from $\mu_{\bar{X}}-1.9 \sigma_{\bar{X}}$ To $\mu_{\bar{X}}-0.4 \sigma_{\bar{X}}$?
Assume that the sample means can be measured to any degree of accuracy.

$$
\begin{gathered}
\mu=50, \quad \sigma=5, n=16 \\
P\left(\mu_{\bar{X}}-1.9 \sigma_{\bar{X}}<\overline{\mathrm{X}}<\mu_{\bar{X}}-0.4 \sigma_{\bar{X}}\right) \\
=P\left(\frac{\mu_{\bar{X}}-1.9 \sigma_{\bar{X}}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}<\mathrm{Z}<\frac{\mu_{\bar{X}}-0.4 \sigma_{\bar{X}}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}\right) \\
=P(-1.9<Z<-0.4)=P(Z<-0.4)-P(Z<-1.9)=0.3446-0.0287=0.3159
\end{gathered}
$$

8.20 Given the discrete uniform population

$$
f(x)= \begin{cases}\frac{1}{3}, & x=2,4,6 \\ 0, & \text { elswhere }\end{cases}
$$

Find the probability that a random sample of size 54, selected with replacement, will yield a sample mean greater than 4.1 but less than 4.4. Assume the means are measured to the nearest tenth.

Because $n \geq 30$, then $X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{gathered}
n=54, \quad \mu=E(X)=\frac{2+4+6}{3}=4, \quad E\left(X^{2}\right)=\frac{4+16+36}{3}=\frac{56}{3} \\
\sigma^{2}=\frac{56}{3}-4^{2}=2.667, \quad \sigma=\sqrt{2.667}=1.63 \\
\mu_{\bar{X}}=\mu=4, \quad \sigma_{\bar{X}}=\frac{1.63}{\sqrt{54}}=0.22 \\
p(4.1<\overline{\mathrm{X}}<4.4)=p\left(\frac{4.1-4}{0.22}<\mathrm{z}<\frac{4.4-4}{0.22}\right)=p(0.45<z<1.82) \\
=0.9656-0.6736=0.292
\end{gathered}
$$

8.23 The random variable X, representing the number of cherries in a cherry puff, has the following probability distribution:

x	4	5	6	7
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0.2	0.4	0.3	0.1

(a) Find the mean μ and the variance σ^{2} of X.
(b) Find the mean $\mu_{\bar{x}}$ and the variance $\sigma_{\bar{X}}^{2}$ of the mean \bar{X} for random samples of $\mathbf{3 6}$ cherry puffs.
(c) Find the probability that the average number of cherries in $\mathbf{3 6}$ cherry puffs will be less than $\mathbf{5 . 5}$.
a) $\mu=E(X)=4(0.2)+5(0.4)+6(0.3)+7(0.1)=5.3$

$$
\begin{gathered}
E\left(X^{2}\right)=16(0.2)+25(0.4)+36(0.3)+49(0.1)=28.9 \\
\sigma^{2}=28.9-(5.3)^{2}=0.81, \sigma=\sqrt{0.81}=0.9
\end{gathered}
$$

b) $\mu_{\bar{X}}=\mu=5.3$

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{0.9}{\sqrt{36}}=0.15
$$

c) $p(\overline{\mathrm{X}}<5.5)=p\left(\mathrm{Z}<\frac{5.5-5.3}{0.15}\right)=p(z<1.33)=0.9082$
8.26 The amount of time that a drive-through bank teller spends on a customer is a random variable with a mean $\boldsymbol{\mu}=\mathbf{3 . 2}$ minutes and a standard deviation $\boldsymbol{\sigma}=\mathbf{1 . 6}$ minutes. If a random sample of $\mathbf{6 4}$ customers is observed, find the probability that their mean time at the teller's window is
(a) at most 2.7 minutes;
(b) more than 3.5 minutes;
(c) at least 3.2 minutes but less than 3.4 minutes.

$$
\boldsymbol{\mu}=\mathbf{3 . 2}, \sigma=\mathbf{1 . 6}, \mathbf{n}=\mathbf{6 4}, \mu_{\bar{X}}=\mu=3.2, \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{1.6}{\sqrt{64}}=0.2
$$

a) $p(\overline{\mathrm{X}} \leq 2.7)=p\left(z \leq \frac{2.7-3.2}{0.2}\right)=p(Z \leq-2.5)=0.0062$
b) $p(\overline{\mathrm{X}}>3.5)=p\left(z>\frac{3.5-3.2}{0.2}\right)=p(Z>1.5)=1-0.9332=0.0668$

$$
\begin{aligned}
& \text { c) } p(3.2 \leq \overline{\mathrm{X}} \leq 3.4)=p\left(\frac{3.2-3.2}{0.2} \leq z \leq \frac{3.4-3.2}{0.2}\right)=p(0 \leq Z \leq 1)= \\
& p(z<1)-p(z<0)=0.8413-0.5=0.3413
\end{aligned}
$$

8.28 A random sample of size 25 is taken from a normal population having a mean of $\mathbf{8 0}$ and a standard deviation of $\mathbf{5}$. A second random sample of size 36 is taken from a different normal population having a mean of $\mathbf{7 5}$ and a standard deviation of $\mathbf{3}$. Find the probability that the sample mean computed from the $\mathbf{2 5}$ measurements will exceed the sample mean computed from the 36 measurements by at least $\mathbf{3 . 4}$ but less than 5.9. Assume the difference of the means to be measured to the nearest tenth.
$n_{1}=25, \mu_{1}=80, \boldsymbol{\sigma}_{1}=5$
$n_{2}=36, \mu_{2}=75, \sigma_{2}=3$
$p\left(3.4 \leq \overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2} \leq 5.9\right)=$?
if we have $X_{1} \sim N\left(\mu_{1}, \sigma^{2}{ }_{1}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma^{2}{ }_{2}\right)$ which are independent then

$$
\begin{gathered}
\bar{X}_{1} \sim N\left(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}}\right), \quad \bar{X}_{2} \sim N\left(\mu_{1}, \frac{\sigma_{2}^{2}}{n_{2}}\right), \text { and } \quad \bar{X}_{1}-\bar{X}_{2} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) \\
\mu_{\bar{x}_{1}-\overline{\mathrm{X}}_{2}}=\mu_{1}-\mu_{2}=80-75=5 \\
\boldsymbol{\sigma}^{2} \overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}=\frac{5^{2}}{25}+\frac{3^{2}}{36}=1.25, \sigma_{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}=1.118 \\
\bar{X}_{1}-\bar{X}_{2} \sim N(5,1.25) \\
p\left(3.4 \leq \overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2} \leq 5.9\right)=p\left(\frac{3.4-5}{1.118} \leq \frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}-\mu_{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}}{\boldsymbol{\sigma}_{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}} \leq \frac{5.9-5}{1.118}\right) \\
=p(-1.43<Z<0.81)=p(Z<0.81)-p(Z<-1.43) \\
=0.791-0.0764=0.8946
\end{gathered}
$$

8.29 The distribution of heights of a certain breed of terrier has a mean of $\mathbf{7 2}$ centimeters and a standard deviation of $\mathbf{1 0}$ centimeters, whereas the distribution of heights of a certain breed of poodle has a mean of $\mathbf{2 8}$ centimeters with a standard deviation of 5 centimeters. Assuming that the sample means can be measured to any degree of accuracy, find the probability that the sample mean for a random sample of heights of $\mathbf{6 4}$ terriers exceeds the sample mean for a random sample of heights of $\mathbf{1 0 0}$ poodles by at most 44.2 centimeters.

$$
\begin{aligned}
& n_{1}=64, \mu_{1}=72, \sigma_{1}=10 \\
& n_{2}=100, \mu_{2}=28, \sigma_{2}=5 \\
& \quad \mu_{\bar{x}_{1}-\overline{\mathrm{X}}_{2}}=\mu_{1}-\mu_{2}=72-28=44 \\
& \boldsymbol{\sigma}^{2} \overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma^{2}{ }_{2}}{n_{2}}=\frac{10^{2}}{64}+\frac{5^{2}}{100}=\frac{29}{16}, \quad \boldsymbol{\sigma}_{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}=1.3463 \\
& \quad \bar{X}_{1}-\bar{X}_{2} \sim N\left(44, \frac{29}{16}\right) \\
& p\left(\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2} \leq 44.2\right)=p\left(Z \leq \frac{44.2-44}{1.3463}\right)=p(Z \leq 0.15)=0.5596
\end{aligned}
$$

8.41 Assume the sample variances to be continuous measurements. Find the probability that a random sample of $\mathbf{2 5}$ observations, from a normal population with variance $\boldsymbol{\sigma}^{2}=\mathbf{6}$, will have a sample variance S^{2}
(a) greater than 9.1 ;
(b) between 3.462 and 10.745 .
$\mathrm{n}=25, \sigma^{2}=6$
we know that $x^{2}=\frac{(n-1) s^{2}}{\sigma^{2}} \sim x_{n-1}^{2}$, thus, $x^{2}=\frac{(24) s^{2}}{6}=4 s^{2}$ has x_{24}^{2}
a) $p\left(s^{2}>9.1\right)=p\left(x^{2}>4(9.1)\right)=p\left(x^{2}>36.4\right)=0.05$
b) $p\left(3.462<s^{2}<10.745\right)=p\left(4(3.462)<x^{2}<4(10.745)\right)$

$$
\begin{gathered}
=p\left(13.86<x^{2}<42.98\right)=p\left(x^{2}<42.98\right)-p\left(x^{2}<13.86\right) \\
=1-p\left(x^{2}>42.98\right)-\left[1-p\left(x^{2}>13.86\right)\right] \\
\\
p\left(x^{2}>13.86\right)-p\left(x^{2}>42.98\right) \\
=0.95-0.01=0.94
\end{gathered}
$$

8.45 Using t-distrbution
(a) Find $P(T<2.365)$ when $v=7$.
(b) Find $P(T>1.318)$ when $v=24$.
(c) Find $P(-1.356<T<2.179)$ when $v=12$.
(d) Find $P(T>-2.567)$ when $v=17$.
a) $p\left(T_{7}<2.365\right)=1-0.025=0.975$
b) $p\left(T_{24}>1.318\right)=0.1$
c) $p\left(-1.356<T_{12}<2.179\right)=p\left(T_{12}<2.179\right)-p\left(T_{12}<-1.356\right)=$ $=1-p\left(T_{12}>2.179\right)-p\left(T_{12}>1.356\right)=0.975-0.1=0.875$
d) $p\left(T_{17}>-2.567\right)=1-0.01=0.99$
8.51 For an F-distribution, find
(a) $f_{0.05}$ with $v_{1}=7$ and $v_{2}=15$;
(b) $f_{0.05}$ with $v_{1}=15$ and $v_{2}=7$:
(c) $f_{0.01}$ with $v_{1}=24$ and $v_{2}=19$;
(d) $f_{0.95}$ with $v_{1}=19$ and $v_{2}=24$;
(e) $f_{0.99}$ with $v_{1}=28$ and $v_{2}=12$.
a) $f_{0.05,7,15}=2.71$
b) $f_{0.05,15,7}=3.51$
c) $f_{0.01,24,19}=2.92$
d) $f_{0.95,19,24}=\frac{1}{f_{0.05,24,19}}=\frac{1}{2.11}=0.47$
e) $f_{0.99,28,12}=\frac{1}{f_{0.01,12,28}}=\frac{1}{2.90}=0.34$

H.W

Q13. The average rainfall in a certain city for the month of March is 9.22 centimeters. Assuming a normal distribution with a standard deviation of 2.83 centimeters, then the probability that next March, this city will receive:
(1) less than 11.84 centimeters of rain is: Answer: 0.8238
(2) more than 5 centimeters but less than 7 centimeters of rain is: Answer: 0.1496
(3) more than 13.8 centimeters of rain is: Answer: 0.0526

Q2. The average life of a certain battery is 5 years, with a standard deviation of 1 year. Assume that the live of the battery approximately follows a normal distribution.

1) The sample mean X of a random sample of 5 batteries selected from this product has a mean $E(\bar{X})=\mu_{\bar{x}}$ equal to: Answer: 5
2) The variance $\operatorname{var}(\bar{X})=\sigma^{2} \bar{x}$ of the sample mean X of a random sample of 5 batteries selected from this product is equal to: Answer: 0.2
3) The probability that the average life of a random sample of size 16 of such batteries will be between 4.5 and 5.4 years is: Answer: 0.9224
4) The probability that the average life of a random sample of size 16 of such batteries will be less than 5.5 years is: Answer: 0.9772
5) The probability that the average life of a random sample of size 16 of such batteries will be more than 4.75 years is: Answer: 0.8413
6) If $p(\bar{X}>a)=0.1492$ where X represents the sample mean for a random sample of size 9 of such batteries, then the numerical value of a is: Answer: 5.347

Q1. A random sample of size $n_{1}=36$ is taken from a normal population with a mean μ_{1} $=70$ and a standard deviation $\sigma_{1}=4$. A second independent random sample of size $\mathrm{n}_{2}=$ 49 is taken from a normal population with a mean $\mu_{2}=85$ and a standard deviation $\sigma_{2}=$ 5. Let X_{1} and X_{2} be the averages of the first and second samples, respectively.
a) Find $\mathrm{E}\left(\bar{X}_{1}\right)$ and $\operatorname{Var}\left(\bar{X}_{1}\right)$. Answer: 70 and $\frac{16}{36}$
b) Find $\mathrm{E}\left(\bar{X}_{1}-\bar{X}_{2}\right)$ and $\operatorname{Var}\left(\bar{X}_{1}-\bar{X}_{2}\right)$.Answer: -15 and $\frac{421}{441}$
c) Find $\mathrm{P}\left(70<\bar{X}_{1}<71\right)$. Answer: 0.4332
d) Find $\mathrm{P}\left(\bar{X}_{1}-\bar{X}_{2}>-16\right)$. Answer: 0.8461

