Ex 1:

Let X_{1} and X_{2} have the covariance matrix

$$
A=\Sigma=\operatorname{Cov}(X)=\left[\begin{array}{cc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
1 & 4 \\
4 & 100
\end{array}\right]
$$

where $X=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$.

1) Find the eigen values and the eigen vectors.

Solution 1:

```
> model0 <- read.csv(file="A.csv",header=F, sep=";")
> model0
    V1 V2
1 1 4
2 4100
> attributes(model0)
$names
[1] "V1" "V2"
Sclass
[1] "data.frame"
$row.names
[1] 1 2
> e <- eigen(model0)
> e
eigen() decomposition
$values
[1] 100.1613532 0.8386468
$vectors
[1,] 0,04030552 [,2]
[2,] 0.99918740 0.04030552
> values <- e$values
> values
[1] 100.1613532 0.8386468
> values[1]
[1] 100.1614
> vectors <- esvectors
> vectors
    [,1] [,2]
[1,] 0.04030552 -0.99918740
[2,] 0.99918740 0.04030552
> vectors[ , 1]
[1] 0.04030552 0.99918740
```

So,

Tutorial 2 - part 1

Note that always $\lambda_{1} \geq \lambda_{2} \geq 0$.
2) Find the Principles Components $Y=\left[\begin{array}{l}Y_{1} \\ Y_{2}\end{array}\right]$.

Solution 2:

$$
Y=\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=e^{\prime} X=e^{\prime}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \text { where } e=\left[\begin{array}{cc}
e_{1} & e_{2} \\
0.04030552 & -0.99918740 \\
0.99918740 & 0.04030552
\end{array}\right]_{2 \times 2}
$$

So,

$$
\begin{aligned}
Y_{1}=e_{1}^{\prime} X=e_{1}^{\prime}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] & =\left[\begin{array}{ll}
0.04030552 & 0.99918740
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \\
& =0.04030552 X_{1}+0.99918740 X_{2} \\
Y_{2}=e_{2}^{\prime} X=e_{2}^{\prime}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] & =\left[\begin{array}{ll}
-0.99918740 & 0.04030552
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \\
& =-0.99918740 X_{1}+0.04030552 X_{2}
\end{aligned}
$$

3) Show that Trace $(A)=\sum_{i=1}^{2} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{2} \lambda_{i}$.
```
> A <- data.matrix(model0)
> A
    V1 V2
[1,] 1 4
[2,] 4 100
> attributes(A)
$dim
[1] 2 2
$dimnames
$dimnames[[1]]
NULL
$dimnames[[2]]
[1] "V1" "V2"
> class(A)
[1] "matrix"
> install.packages("matlib")
> library(matlib)
> tr(A)
[1] 101
> sum(values)
[1] }10
```

4) Show that $\operatorname{Var}\left(Y_{i}\right)=\lambda_{i}$ for $i=1,2$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0, \forall i \neq j$ for $i, j=1,2$.

Solution 4:

$$
\begin{aligned}
* \operatorname{Var}\left(Y_{1}\right) & =\operatorname{Var}\left(0.04030552 X_{1}+0.99918740 X_{2}\right) \\
& =\operatorname{Cov}\left(0.04030552 X_{1}+0.99918740 X_{2}, 0.04030552 X_{1}+0.99918740 X_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \operatorname{Var}\left(0.04030552 X_{1}\right) \\
& +\operatorname{Cov}\left(0.04030552 X_{1}, 0.99918740 X_{2}\right)+\operatorname{Cov}\left(0.99918740 X_{2}, 0.04030552 X_{1}\right) \\
& +\operatorname{Var}\left(0.99918740 X_{2}\right) \\
= & (0.04030552)^{2} \operatorname{Var}\left(X_{1}\right) \\
& +2(0.04030552)(0.99918740) \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
& +(0.99918740)^{2} \operatorname{Var}\left(X_{2}\right) \\
= & 100.1613532 \\
= & \lambda_{1} .
\end{aligned}
$$

And the same way for showing that $\operatorname{Var}\left(Y_{2}\right)=\lambda_{2}$.

$$
\begin{aligned}
* \operatorname{Cov}\left(Y_{1}, Y_{2}\right)= & \operatorname{Cov}\left(0.04030552 X_{1}+0.99918740 X_{2},-0.99918740 X_{1}+0.04030552 X_{2}\right) \\
= & \operatorname{Cov}\left(0.04030552 X_{1},-0.99918740 X_{1}\right) \\
& +\operatorname{Cov}\left(0.04030552 X_{1}, 0.04030552 X_{2}\right) \\
& +\operatorname{Cov}\left(0.99918740 X_{2},-0.99918740 X_{1}\right) \\
& +\operatorname{Cov}\left(0.99918740 X_{2}, 0.04030552 X_{2}\right) \\
= & (0.04030552)(-0.99918740) \operatorname{Var}\left(X_{1}\right) \\
& +(0.04030552)^{2} \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
& -(0.99918740)^{2} \operatorname{Cov}\left(X_{2}, X_{1}\right) \\
& +(0.99918740)(0.04030552) \operatorname{Var}\left(X_{2}\right) \\
= & -0.040272767734448+0.0064981397698816 \\
& -3.99350184127504+4.0272767734448 \\
\approx & 0 .
\end{aligned}
$$

By using R where $\operatorname{Cov}(Y)=\operatorname{Cov}\left(e^{\prime} X\right)=e^{\prime} \operatorname{Cov}(X) e$, we get the same results as the following:

```
> covY <- t(vectors)%*% A %*% vectors
> covY
    [,1] [,2]
[1,] 1.001614e+02 8.881784e-16
[2,] 9.714451e-17 8.386468e-01
```


5) Find the ratio of the total variance produced by Y_{1}, Y_{2} and for both Y_{1} and Y_{2}.

Solution 5:

```
> ratio <- vector (mode="numeric")
> for (i in 1:nrow(A) ) {
+ ratio[i] <- values[i]/sum(values)
+ }
> ratio
[1] 0.991696566 0.008303434
> cumsum(ratio)
[1] 0.9916966 1.0000000
```

Note that if we have $Y_{1}, Y_{2}, Y_{3}, \ldots \ldots, Y_{n}$ then:
*The ratio of the total variance produced by Y_{j} is $=\frac{\lambda_{j}}{\sum_{i=1}^{n} \lambda_{i}}$.
*The ratio of the total variance produced by $Y_{1}, Y_{2}, Y_{3}, \ldots \ldots, Y_{j}$ is $=\frac{\sum_{i \leq j} \lambda_{i}}{\sum_{i=1}^{n} \lambda_{i}}$.

6) Find the correlation between X and Y.

Solution 6:

By using R where $\rho_{Y_{i}, X_{k}}=\frac{e_{k i} \sqrt{\lambda_{i}}}{\sqrt{\operatorname{Var}\left(X_{i}\right)}}$ for $i, k=1,2$, we get the following:

```
    > corr.y.x <- matrix ( , nrow=nrow(A) , ncol= nrow(A))
    > for (i in 1:nrow(A) ) {
    + for (j in 1:nrow(A) ){
    + corr.y.x[i,j] <- vectors[j,i]*sqrt(values[i])/sqrt(A[j,j])
    + }
    + }
> corr.y.x
|}\begin{array}{l}{|}\\{\mp@subsup{\rho}{\mp@subsup{Y}{1}{\prime},\mp@subsup{X}{1}{}}{}}\end{array}\begin{array}{rrr:}{[1,]}&{0.4033802}&{0.999993188}\\{[2,]}&{-0.9150325}&{0.003691085}
```


7) If the units of X_{1} and X_{2} are different or the variation between X_{1} and X_{2} are too high, then
i) find the correlation of $X\left(\rho_{2 \times 2}\right)$, which is better than Σ as

$$
\rho=V^{-1} \Sigma V^{-1} \text { where } V=\left[\begin{array}{cc}
\sqrt{\operatorname{Var}\left(X_{1}\right)} & 0 \\
0 & \sqrt{\operatorname{Var}\left(X_{2}\right)}
\end{array}\right] \text { is the matrix standard deviation. }
$$

ii) use ρ to:
a) Find the eigen values and the eigen vectors.
b) Find the Principles Components $\boldsymbol{Y}=\left[\begin{array}{l}\boldsymbol{Y}_{\mathbf{1}} \\ \boldsymbol{Y}_{2}\end{array}\right]$.
c) Show that Trace $(\boldsymbol{\rho})=\sum_{i=1}^{2} 1=\sum_{i=1}^{2} \lambda_{i}$. (up to the student)
d) Show that $\operatorname{Var}\left(Y_{i}\right)=\lambda_{i}$ for $i=1,2$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0, \forall i \neq j$ for $i, j=$ 1, 2.
e) Find the ratio of the total variance produced by Y_{1}, Y_{2} and for both Y_{1} and Y_{2}. (up to the student)

Solution7:

i)

```
> sqrt.diag.A <- vector (mode="numeric")
> for (i in 1:nrow(A) ) {
+ sqrt.diag.A[i] <- sqrt(A[i,i])
+ }
> sqrt.diag.A
[1] 1 10
> sd.matrix <- diag(sqrt.diag.A, nrow=nrow(A), ncol=nrow(A))
> p <- solve(sd.matrix)%*% A %*% solve(sd.matrix)
>p
    [,1] [,2]
[1,] 1.0 0.4
[2,] 0.4 1.0
```

ii)
a)

```
> e <- eigen(p)
>e
eigen() decomposition
$values
[1] 1.4 0.6
```

\$vectors

	$[, 1]$	$[, 2]$
$[1]$,	0.7071068	-0.7071068
$[2]$,	0.7071068	0.7071068

b) We know that $Z=V_{2 \times 2}^{-1}\left(X_{2 \times 1}-\mu_{2 \times 1}\right)=\left[\begin{array}{cc}\frac{1}{\sqrt{\operatorname{Var}\left(X_{1}\right)}} & 0 \\ 0 & \frac{1}{\sqrt{\operatorname{Var}\left(X_{2}\right)}}\end{array}\right]\left(\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]-\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\right)$, then

$$
Y=\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=e^{\prime} Z=e^{\prime}\left[\begin{array}{l}
Z_{1}=\frac{X_{1}-\mu_{1}}{\sqrt{\operatorname{Var}\left(X_{1}\right)}} \\
Z_{2}=\frac{X_{2}-2_{2}}{\sqrt{\operatorname{Var}\left(X_{2}\right)}}
\end{array}\right] \text { where } e=\left[\begin{array}{cc}
e_{1} & e_{2} \\
0.7071068 & -0.7071068 \\
0.7071068 & 0.7071068
\end{array}\right]_{2 \times 2}
$$

So,

$$
\begin{aligned}
& Y_{1}=e_{1}^{\prime} Z=e_{1}^{\prime}\left[\begin{array}{c}
\frac{X_{1}-\mu_{1}}{\sqrt{\operatorname{Var}\left(X_{1}\right)}} \\
\frac{X_{2}-\mu_{2}}{\sqrt{\operatorname{Var}\left(X_{2}\right)}}
\end{array}\right]=\left[\begin{array}{ll}
0.7071068 & 0.7071068
\end{array}\right]\left[\begin{array}{c}
\frac{X_{1}-\mu_{1}}{\sqrt{1}} \\
\frac{X_{2}-\mu_{2}}{\sqrt{100}}
\end{array}\right] \\
& =0.7071068\left(X_{1}-\mu_{1}\right)+\frac{0.7071068}{10}\left(X_{2}-\mu_{2}\right) \\
& Y_{2}=e_{2}^{\prime} Z=e_{2}^{\prime}\left[\begin{array}{l}
\frac{X_{1}-\mu_{1}}{\sqrt{\operatorname{Var}\left(X_{1}\right)}} \\
\frac{X_{2}-\mu_{2}}{\sqrt{\operatorname{Var}\left(X_{2}\right)}}
\end{array}\right]=\left[\begin{array}{ll}
-0.7071068 & 0.7071068
\end{array}\right]\left[\begin{array}{l}
\frac{X_{1}-\mu_{1}}{\sqrt{1}} \\
\frac{X_{2}-\mu_{2}}{\sqrt{100}}
\end{array}\right] \\
& =-0.7071068\left(X_{1}-\mu_{1}\right)+\frac{0.7071068}{10}\left(X_{2}-\mu_{2}\right)
\end{aligned}
$$

d) By using R where $\operatorname{Cov}(Y)=\operatorname{Cov}\left(e^{\prime} Z\right)=e^{\prime} \operatorname{Cov}(Z) e=e^{\prime} \boldsymbol{\rho} e$, we get the results as the following:

```
> values <- e$values
> vectors <- e$vectors
> covY <- t(vectors) %*% p %%%% vectors
> covY
    [,1] [,2]
[1,] 1.4 0.0
[2,] 0.0}00.
```


Ex2:

Let X_{1}, X_{2} and X_{3} have the covariance matrix

$$
B=\Sigma=\operatorname{Cov}(X)=\left[\begin{array}{ccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{3}, X_{1}\right) & \operatorname{Cov}\left(X_{3}, X_{2}\right) & \operatorname{Var}\left(X_{3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

where $X=\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right]$.

1) Find the eigen values and the eigen vectors.

Solution 1:

```
> B <- matrix( c(1, -2,0,-2,5,0,0,0,2) , nr=3 )
> B
[,1] [,2] [,3]
[1,] 1 -2 0
[2,] -2 5 0
[3,] 0
> e <- eigen(B)
>e
eigen() decomposition
$values
[1] 5.8284271 2.0000000 0.1715729
$vectors
\begin{tabular}{rrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & -0.3826834 & 0 & 0.9238795 \\
{\([2]\),} & 0.9238795 & 0 & 0.3826834 \\
{\([3]\),} & 0.0000000 & 1 & 0.0000000
\end{tabular}
> values <- e$values
> vectors <- e$vectors
```

2) Find the Principles Components $\boldsymbol{Y}=\left[\begin{array}{l}\boldsymbol{Y}_{1} \\ \boldsymbol{Y}_{2} \\ \boldsymbol{Y}_{3}\end{array}\right]$. (up to the student)
3) Show that $\operatorname{Trace}(B)=\sum_{i=1}^{3} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{3} \lambda_{i}$.

Solution 3:

```
> values <- e$values
> vectors <- e$vectors
> library(matlib)
>tr(B)
[1] 8
> sum(values)
[1] 8
```

4) Show that $\operatorname{Var}\left(Y_{i}\right)=\lambda_{i}$ for $i=1,2,3$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0, \forall i \neq j$ for $\boldsymbol{i}, \boldsymbol{j}=1,2,3$.

Solution 4:

By using R where $\operatorname{Cov}(Y)=\operatorname{Cov}\left(e^{\prime} X\right)=e^{\prime} \operatorname{Cov}(X) e$, we get the same results as the following:

```
> covY <- t(vectors)%*% B %*% vectors
> covY
    [,1] [,2]
[,3]
\([1] \quad 5.828427 e+,00 \quad 0-8.881784 e-16\)
\([2] \quad 0.000000 \mathrm{e}+,0020.000000 \mathrm{e}+00\)
[3,] -7.979728e-16 \(0 \quad 1.715729 e-01\)
```

5) Find the ratio of the total variance produced by Y_{1}, Y_{2}, Y_{3}, both Y_{1} and Y_{2} and Y_{1}, Y_{2} and Y_{3} together.

Solution 5:

```
> ratio <- vector (mode="numeric")
> for (i in 1:nrow(B) ){
+ ratio[i] <- values[i]/sum(values)
+ }
> ratio
[1] 0.72855339 0.25000000 0.02144661
> cumsum(ratio)
[1] 0.72855340 .97855341 .0000000
```


6) Find the correlation between X and Y.

Solution 6:

By using R where $\rho_{Y_{i}, X_{k}}=\frac{e_{k i} \sqrt{\lambda_{i}}}{\sqrt{\operatorname{Var}\left(X_{i}\right)}}$ for $i, k=1,2,3$, we get the following:

```
> corr.y.x <- matrix ( , nrow=nrow(B) , ncol= nrow(B))
> for (i in 1:nrow(B) ){
+ for (j in 1:nrow(B) ){
+ corr.y.x[i,j] <- vectors[j,i]*sqrt(values[i])/sqrt(B[j,j])
+ }
+ }
> corr.y.x
\begin{tabular}{rrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & -0.9238795 & 0.99748421 & 0 \\
{\([2]\),} & 0.0000000 & 0.00000000 & 1 \\
{\([3]\),} & 0.3826834 & 0.07088902 & 0
\end{tabular}
```

7) If the units of X_{1}, X_{2} and X_{3} are different or the variation between X_{1}, X_{2} and X_{3} are too high, then
i) find the correlation of $X\left(\rho_{3 \times 3}\right)$.
ii) use ρ to:
a) Find the eigen values and the eigen vectors.
b) Find the Principles Components $Y=\left[\begin{array}{l}Y_{1} \\ Y_{2} \\ Y_{3}\end{array}\right]$.
c) Show that Trace $(\boldsymbol{\rho})=\sum_{i=1}^{3} \mathbb{1}=\sum_{i=1}^{3} \lambda_{i}$.
d) Show that $\operatorname{Var}\left(Y_{i}\right)=\lambda_{i}$ for $i=1,2,3$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0, \forall i \neq j$ for $i, j=$ 1,2,3.
e) Find the ratio of the total variance produced by all different ways in Principles Components.

Solution7:

(up to the student)

