2.34

A surveyor measures the location of point A and determines $r_{\mathrm{OA}}=400 \mathbf{i}+800 \mathbf{j}(\mathrm{~m})$. He wants to determine the location of a point B so that $\left|\mathrm{r}_{\mathrm{AB}}\right|=400 \mathrm{~m}$ and $\left|\mathrm{r}_{\mathrm{OA}}+\mathrm{r}_{\mathrm{AB}}\right|=1200 \mathrm{~m}$. What are the Cartesian coordinates of point B.

2.46

Four groups engage in a tug-of-war. The magnitude of the forces exerted by groups B, C, and D are $\left|F_{B}\right|=800-1 b$, $\left|\mathbf{F}_{\mathrm{C}}\right|=1000-\mathrm{lb}$, and $\left|\mathbf{F}_{\mathrm{D}}\right|=900-\mathrm{lb}$. If the vector sum of the four forces equals zero, what is the magnitude of \mathbf{F}_{A} and the angle α.

2.54

The cables A, B, and C help support a pillar that forms part of the supports of a structure. The magnitudes of the forces exerted by the cable are equal: $\left|\mathbf{F}_{\mathrm{A}}\right|=\left|\mathbf{F}_{\mathrm{B}}\right|=\left|\mathbf{F}_{\mathrm{C}}\right|$. The magnitude of the vector sum of the three forces is $200-\mathrm{kN}$. What is $\left|\mathbf{F}_{\mathrm{A}}\right|$?

