

1

King Saud University

Department of Computer Science

CSC227: Operating Systems

Tutorial No. 3

Q 1) Discuss the different states that a process can exist in at any given time.

Answer
The possible states of a process are: new, running, waiting, ready, and terminated. The process
is created while it is in the new state. In the running or waiting state, the process is executing

or waiting for an event to occur, respectively. The ready state occurs when the process is ready

and waiting to be assigned to a processor and should not be confused with the waiting state
mentioned earlier. After the process is finished executing its code, it enters the termination

state.

Q 2) Describe the actions taken by a kernel to context-switch between processes.

Answer
In general, the operating system must save the state of the currently running process and restore

the state of the process scheduled to be run next. Saving the state of a process typically includes
the values of all the CPU registers in addition to memory allocation. Context switches must

also perform many architecture-specific operations, including flushing data and instruction

caches.

Q 3) What are the differences between a short-term and long-term scheduler?

Answer
The primary distinction between the two schedulers lies in the frequency of execution. The
short-term scheduler is designed to frequently select a new process for the CPU, at least once

every 100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. The long-term scheduler executes much less frequently; minutes may

separate the creation of one new process and the next. The long-term scheduler controls the
degree of multiprogramming. Because of the longer interval between executions, the long-

term scheduler can afford to take more time to decide which process should be selected for

execution.

Q 4) Discuss in details the producer/consumer problem.

Answer
In the producer/consumer problem, a producer creates items and a consumer uses them. The

items are stored in a shared buffer, which can be infinite or of a limited size. The producer and
consumer must synchronize on the buffer contents so that items are not lost or consumed more

than once. If the buffer is empty, the consumer must wait for the producer to create a new item.
If a finite buffer is full, the producer must wait for the consumer to use an item.

Q 5) List three different situations lead to the following direct transitions between states: Running

state to ready state; waiting state to ready state; running state to waiting state

Answer

 Running state to ready state

Answer: Interrupt, time-out (end of time slice), arrival of a higher priority process, sleep

system call.

 Waiting state to ready state

2

Answer: End of I/O, parent becomes ready after child complete execution

 Running state to waiting state

Answer: Request for I/O, process forks a child, wait for an event, wait system call.

Q 6) Describe the actions taken when a user process starts to execute a write() system call.

Answer
1) The write() call is a privileged instruction that traps to the kernel.
2) The kernel saves the user process context.

3) The kernel sets up registers in the I/O controller and transfers the data to be written to the

controller.
4) The kernel selects a (different) ready process and switches context to that process.

5) When output is complete, the I/O device generates an interrupt.
6) The interrupt service routine saves the current CPU context, does some accounting, and moves

the writing user process into the ready queue.
7) The kernel either 1) switches context to the original process executing the system call, or 2)

returns control to the second process, or 3) selects and switches context to an entirely different
process.

Q 7) How many times the message will be printed?
main()

{

fork();

printf("Hello world");

}

Answer: Two times. Child is created at fork() and every line after fork will be executed twice once

by parent (i.e. printf("Hello world");) and once by child (again printf("Hello world");)

Q 8) Consider the following C language program, what are the possible outputs?
int num;

main() {

num = 1;

fork();

num = num + 1;

printf(num);

}

Answer: It will print value of num two times one from parent and one from child.

3

Q 9) How many times does the program below print Hello?
main() {

fork();

fork();

fork();

printf("Hello\n");

}

Answer: 8 times.

Q 10) How many processes are created when the following piece of code is executed?

Draw the process tree for the processes thus created.
main() {

int i;

for (i=0; i<4; i++)

fork();

return 1;

}

Answer:15 + main

Q 11) Using the program shown, explain what the output will be at Line A.
int value = 5;

main(){

pid_t pid;

pid = fork();

if (pid == 0) { /* child process */

value += 15;

return 0;

}

else if (pid > 0) { /* parent process */

wait(NULL);

printf("PARENT: value = %d",value); /* LINE A */

return 0;

}

}

Answer: The result is still 5 as the child updates its copy of value. When control returns to the

parent, its value remains at 5.

P1
P2

P3

main

P11 P12
P21

P11

1

4

Q 12) Which message will show up on the screen?
main(){

int pid;

printf("Before fork()\n");

pid = fork();

if(pid == 0)

 printf("I am in child\n");

else

 printf("I am in parent\n");

}

Answer: Both messages will be printed because pid is 0 for child and non zero for parent.

Q 13) Which message will show up on the screen?
main(){

int pid;

printf("Before fork()\n");

pid = fork();

if(pid == 0)

 exec(name of program to execute);

else

 printf("Only parent will get here");

}

Answer: Child will start executing program pointed by exec and will never reach printf("Only

parent will get here"); however parent will continue executing printf("Only

parent will get here"); means there will be only one copy of the message.

Q 14) Explain following program.
main(){

int pid;

pid = fork();

if(pid == 0){

 printf("Child is sleeping\n");

 sleep(5) //do nothing for 5 sec

}

else{

 printf("Parent is waiting\n");

 waitpid(pid, NULL, 0)

 printf("Back to the parent");

}

}

Answer: Parent stops at waitpid(pid, NULL, 0) for child to finish after which parent prints

the message “Back to the parent”.

