
1

CEN445

Network Protocols & Algorithms

Transport Layer

Prepared by

Dr. Mohammed Amer Arafah

Summer 2010

Dr. Mohammed Arafah 2

Services Provided to the Upper Layers
The ultimate goal of the transport layer is to provide efficient, reliable, and

cost effective service to its processes in the application layer.

The hardware/software within the transport layer that does the work is called

the transport entity.

The network, transport, and application layers.

Dr. Mohammed Arafah 3

Services Provided to the Upper Layers

Just as there are two types of network service, connection-oriented and

connectionless, there are also the same two types of transport service.

If the transport layer is so similar to the network layer service, why are there

two distinct layers?

The network layer is part of communication subnet. What happens if the

network layer offers connection-oriented service but is unreliable? Suppose

that it frequently loses packets, what happens if routers crash from time to

time?

The users have no control over the subnet, so they cannot solve the problem

of poor service by using better routers or putting more error handling in the

data link layer. The only possibility is to put another layer on the top of the

network layer that improves the quality of service.

Dr. Mohammed Arafah 4

Services Provided to the Upper Layers

If a transport layer is informed through a long transmission that its network

connection has been abruptly terminated, it can set up a new connection to

the remote transport entity. Then it can send a query to its peer asking which

data arrived and which did not, and then pick up from where it left off.

The existence of the transport layer makes it possible for the transport service

to be more reliable than the underlying network service.

The transport service primitives can be designed to be independent of the

network service primitives which may vary from network to network.

Because of the transport layer, it is possible for the application programs to

be written using a standard set of primitives, and to have these programs

work on a wide variety of networks.

Dr. Mohammed Arafah 5

Quality of Service (QoS)
QoS can be characterized by a number of specific parameters.

The transport service may allow the user to specify preferred, acceptable, and minimum

values for various service parameters at the time a connection is set up.

It is up the transport layer to examine these parameters, and depending on the kind of

network service(s), determine whether it can provide the required service.

Connection Establishment Delay

Connection Establishment Failure Probability

Throughput

Transit Delay

Residual Error Ratio

Protection

Priority

Resilience

Typical Transport Layer quality of Service Parameter

Dr. Mohammed Arafah 6

Services Provided to the Upper Layers
Connection Establishment Delay:

It is the amount of time elapsing between a transport connection being requested

and the confirmation being received by the user of the transport service.

Connection Establishment Failure probability:

It is the chance of the connection not being established within the maximum

establishment delay.

Throughput:

It measures the number of bytes of user data transferred per second.

Transit delay:

It measures the time between a message being sent by a transport user on the

source machine and its being received by the transport user on the destination

machine.

Dr. Mohammed Arafah 7

Services Provided to the Upper Layers
Residual Error Ratio:

It measures the number of lost or garbled messages as a fraction of the total sent.

Protection:

It provides a way for the transport user to specify the interest of having the

transport layer provide protection against unauthorized parties.

Priority:

It provides a way for a transport user to indicate that some of its connections are

more important than other ones, and in the event of congestion, to make sure

that the high-priority connections get serviced before the low-priority ones.

Resilience:

It gives the probability of the transport layer itself spontaneously terminating a

connection due to internal problems or congestion.

Dr. Mohammed Arafah 8

Transport Service Primitives

The transport service primitives allow transport users (e.g., application

programs) to access the transport service. Each transport service has its

own access primitives.

The purpose of the transport layer is to provide a reliable service on the

top of an unreliable network. Therefore, it hides the imperfections of the

network service so the user processes can just assume the existence of an

error-free bit stream.

The following transport service primitives allow application programs to

establish, use, and release connection.

Dr. Mohammed Arafah 9

Transport Service Primitives

The primitives for a simple transport service.

Dr. Mohammed Arafah 10

Transport Service Primitives

A message, sent from transport entity to transport entity, is called

Transport Protocol Data Unit (TPDU).

TPDUs (exchanged by the transport layer) are contained in packets

(exchanged by the neteork layer). In turns, packets are contained in

frames (exchanged by the data link layer).

When a frame arrives, the data link layer processes the frame header and

passes the contents of the frame payload field up to the network entity.

The network entity processes the packet header and passes the contents of

the packet payload up to the transport entity.

Dr. Mohammed Arafah 11

Transport Service Primitives

The nesting of TPDUs, packets, and frames

Dr. Mohammed Arafah 12

Transport Service Primitives

Consider an application with a server and a number of remote clients.

The server executes a LISTEN primitive to block the server (i.e., is interested in

handling requests) until a client turns up.

When a client wants to talk to a server, it executes a CONNECT primitive. This

causes to block the client and to send a CONNECTION REQUEST TPDU to

the server.

When it arrives, the transport entity checks to see that server is blocked on a

LISTEN. It then unblock the server and sends a CONNECTION ACCEPTED

TPDU back to the client. When this TPDU arrives, the client is unblocked and

the connection is established.

When connection is no longer needed, it must be released by issuing a

DISCONNECT primitive.

Dr. Mohammed Arafah 13

Transport Service Primitives

A state diagram for a simple connection management scheme. Transitions labeled in

italics are caused by packet arrivals. The solid lines show the client's state sequence.

The dashed lines show the server's state sequence.

Dr. Mohammed Arafah 14

Berkeley Sockets

The socket primitives for TCP.

Dr. Mohammed Arafah 15

Socket Programming

Example:

Internet File Server

Client code using sockets.

Dr. Mohammed Arafah 16

Socket

Programming

Example:

Internet File Server

Client code using sockets.

Dr. Mohammed Arafah 17

Elements of Transport Protocols

Addressing

Connection Establishment.

Connection Release

Flow Control and Buffering

Multiplexing

Crash Recovery

Dr. Mohammed Arafah 18

Elements of Transport Protocols

The transport service is implemented by a transport protocol used

between the two transport entities.

Both transport protocols and data link protocols have to deal with error

control, sequencing, and flow control.

However, significant differences between the two also exist. At data link

layer, two routers communicate directly, via a physical channel, whereas

at the transport layer, this physical channel is replaced by the entire

subnet.

Dr. Mohammed Arafah 19

Transport Protocol

(a) Environment of the data link layer.

(b) Environment of the transport layer.

Dr. Mohammed Arafah 20

Elements of Transport Protocols

Differences between the Data Link Layer and Transport Layer:

First: In data link layer, each outgoing line uniquely specifies a particular router.

However, in the transport layer, explicit addressing of destinations is required.

Second: The process of establishing a connection over a wire is simple. However,

in transport layer, initial connection establishment is more complicated.

Third: The existence of storage capacity in the subnet. In data link layer, the

frame may arrive or be lost, but it cannot bounce around for a while. However, in

transport layer, there is a nonnegligible probability that a packet may be stored for

a number of seconds and then delivered later.

Fourth: Buffering and flow control are needed in both layers, but in the transport

layer may require a different approach than we used in the data link layer.

Dr. Mohammed Arafah 21

Addressing

When an application process wishes to set up a connection to a remote

application process, it must specify which one to connect to.

The method is to define transport addresses to which processes can listen

for connection request. These are called Transport Service Access Point

(TSAP). In the Internet, these points are (IP address, local port) pairs.

Similarly, the end points in the network layer are called Network Service

Access Point (NSAP).

Dr. Mohammed Arafah 22

Addressing

TSAPs, NSAPs and transport connections

Dr. Mohammed Arafah 23

Addressing
Example:

A possible connection scenario for a transport connection over a connection oriented a

network layer is as follows.

1. A time-of-day server on host 2 attaches itself to TSAP 122 to wait for an incoming

call. A call such as LISTEN might me used.

2. An application process on host 1 wants to find out the time-of-day, so it issues a

CONNECT request specifying TSAP 6 as the source and TSAP 122 as the

destination.

3. The transport entity on host 1 selects a network address on its machine (if it has more

than one) and sets up a network connection to make host 1's transport entity to talk to

the transport entity on host 2.

4. The first thing the transport entity on 1 says to its peer on 2 is: "Good morning. I

would like to establish a transport connection between my TSAP 6 and your TSAP

122. What do you say?"

5. The transport entity on 2 then asks the time-of-day server at TSAP 122 if it is willing

to accept a new connection.

Dr. Mohammed Arafah 24

Addressing

How does the user process on host 1 know that the time-of-day server is

attached to TSAP 122?

One possibility is stable TSAP addresses, i.e., the time-of-day server has

been attaching itself to TSAP 122 for years, and gradually all the network

users have learned this.

Stable TSAP addresses might work for a small number of key services.

However, in general, user processes often talk to other user processes for a

short time and do not have a TSAP address that is known in advance.

Furthermore, if there are many server processes, most of which are rarely

used, it is wasteful to have each of them active and listening to a stable

TSAP address all day long. Therefore, a better scheme is needed.

Dr. Mohammed Arafah 25

Addressing

One scheme, used by UNIX on the Internet, is known as the initial

connection protocol, which is as follows.

Each machine that wishes to offer service to remote users has a special

process server, which listens to a set of ports at the same time, waiting for

a TCP connection request, specifying a TCP address (TCP port) of the

service they want. If no server is waiting for them, they get a connection

to the process server.

After it gets the incoming request, the process server produces the

requested server, which then does the requested work, while the process

server goes back to listening for new requests.

Dr. Mohammed Arafah 26

Addressing

How a user process in host 1 establishes a
connection with a time-of-day server in host 2.

Example for Initial Connection Protocol:

Dr. Mohammed Arafah 27

Addressing

For a file server, it needs to run a special hardware (a machine with a disk).

There exists a special process called a name server or sometimes a directory

server.

To find the TSAP address corresponding to a given service name, such as "time-

of-day", a user sets up a connection to the name server. The user then sends a

message specifying the service name. The name server sends back the TSAP

address. Then the user releases the connection with the name server and

establishes a new one with the desired service.

TSAP addresses can be either hierarchical addresses or flat addresses.

Hierarchical Address =

<galaxy><star><planet><country><network><host><port>.

Dr. Mohammed Arafah 28

Establishing a Connection

Establishing a connection sounds easy. It would seem sufficient for one entity to

just send a CONNECTION REQUEST TPDU to the destination and wait for a

CONNECTION ACCEPTED reply. The problem occurs when the network can

lose, store, and duplicate packets.

To solve this problem, one way is to use throw away transport addresses. Each

time a transport address is needed, a new one is generated. When a connection is

released, the address is discarded.

Another possibility is to give each connection identifier (i.e., a sequence number

incremented for each connection established), chosen by the initiating party, and

put in each TPDU, including the one requesting the connection. After each

connection is released, each transport entity could update a table listing obsolete

connections as (peer transport entity, connection identifier) pairs. Whenever a

connection request came in, it could be checked against the table to see if it

belong to previously released connection.

Dr. Mohammed Arafah 29

Establishing a Connection

The drawback of this scheme is that when a machine crashes and loses its

history, it will no longer know which connection identifiers have already been

used.

Therefore, we have to devise a mechanism to kill of the aged packets using one

of the following techniques:

1. Restricted subnet design: It prevents packet from looping.

2. Putting a hop limit in each packet.

3. Timestamping each packet: The router clocks need to be synchronized.

In practice, we will need to guarantee not only that packet is dead, but also that

all acknowledgements to it are also dead. If we wait a time T after a packet has

been sent, we can sure that all traces of it are now gone and that neither it nor its

acknowledgements will suddenly appear.

Dr. Mohammed Arafah 30

Establishing a Connection

To get around a machine losing all memory, Tomlinson proposed to equip each

host with a time-of-day clock. The clocks at different hosts need not to be

synchronized. Furthermore, the number of bits in the counter must equal or

exceed the number of bits in the sequence number. Also, the clock is assumed to

continue running even if the host goes down.

The basic idea is to ensure that two identically numbered TDPU are never

outstanding at the same time. When a connection is set up, the low-order k bits

of the clock are used as the initial sequence number. Therefore, each connection

starts numbering its TDPUs with a different sequence number.

The sequence space should be so large that by the time sequence number wrap

around, old TPDUs with the same sequence number are long gone.

Dr. Mohammed Arafah 31

Establishing a Connection

To establish a connection, there is a potential problem in getting both sides to

agree on the initial sequence number.

For example, host 1 establishes a connection by sending a CONNECT

REQUEST TPDU containing the proposed initial sequence number and

destination port number to a remote peer, host 2. The receiver, host 2, then

acknowledges this request by sending a CONNECTION ACCEPT TPDU

back.

If the CONNECTION REQUEST TPDU is lost but a delayed duplicate

CONNECTION REQUEST suddenly shows up at host 2, the connection will

be established incorrectly.

To solve this problem, Tomlison introduced the three-way handshake.

Dr. Mohammed Arafah 32

Establishing a Connection

The three-way handshake protocol does not require both sides to begin sending

with the same sequence number.

Host 1 chooses a sequence number, x, and sends a CONNECTION REQUEST

TPDU containing x to host 2. Host 2 replies with a CONNECTION

ACCEPTED TDPU acknowledging x and announcing its own initial sequence

number, y. Finally, host 1 acknowledges host 2 in the first data TPDU that it

sends.

The three-way handshake works in the presence of delayed duplicate control

TPDUs.

Dr. Mohammed Arafah 33

Connection Establishment

Three protocol scenarios for establishing a connection using a three-way handshake.

CR denotes CONNECTION REQUEST.

(a) Normal operation.

(b) Old CONNECTION REQUEST appearing out of nowhere.

(c) Duplicate CONNECTION REQUEST and duplicate ACK.

Dr. Mohammed Arafah 34

Releasing a Connection

There are two styles of terminating a connection: asymmetric release and

symmetric release.

Asymmetric release is the way the telephone works: when one party hangs up,

the connection is broken.

Asymmetric release may result in a data loss. If a connection is established, host

1 sends a TDPU to host 2. Then host 1 sends another TPDU. However, host 2

issues a DISCONNECT before the second TPDU arrives. The result is that the

connection is released and the data are lost.

Dr. Mohammed Arafah 35

Connection Release

Abrupt disconnection with loss of data.

Dr. Mohammed Arafah 36

Releasing a Connection

Symmetric release treats the connection as two separate unidirectional

connections and requires each one to be released separately.

Although symmetric release is more sophisticated protocol that avoids data loss,

it does not always work. There is a famous problem that deals with this issue. It

is called the two-army problem.

The two-army problem.

Dr. Mohammed Arafah 37

Releasing a Connection

Symmetric release treats the connection as two separate unidirectional

connections and requires each one to be released separately.

Although symmetric release is more sophisticated protocol that avoids data loss,

it does not always work. There is a famous problem that deals with this issue. It

is called the two-army problem.

The two-army problem.

Dr. Mohammed Arafah 38

Connection Release

Four protocol scenarios for releasing a connection.

(a) Normal case of a three-way handshake. (b) final ACK lost.

6-14, a, b

Dr. Mohammed Arafah 39

Connection Release

(c) Response lost. (d) Response lost and subsequent DRs lost.

6-14, c,d

Dr. Mohammed Arafah 40

Flow Control and Buffering

Flow Control scheme is needed on each connection to keep a fast transmitter

from overrunning a slow receiver.

If the subnet provides a datagram service, the sending transport entity must

buffer outgoing frames because they might be retransmitted.

If the receiver knows that the sender buffers all TPDUs until they are

acknowledged, the receiver may or may not dedicate specific buffers to specific

connections. The receiver may maintain a single buffer pool shared by all

connections.

When a TPDU comes in, an attempt is made to acquire a new buffer. If one is

available, the TPDU is accepted, otherwise, it is discarded. Since the sender is

prepared to retransmit TPDUs lost by the subnet, no harm is done by having the

receiver drop TPDUs. The sender just keeps trying until it gets an

acknowledgement.

Dr. Mohammed Arafah 41

Flow Control and Buffering

In summary, If the network service is unreliable, the sender must buffer

all TPDUs sent. However, with reliable network service, if the sender

knows that the receiver always has a buffer space, it need not retain

copies of the TPDUs it sends. However, if the receiver cannot guarantee

that every incoming TPDU will be accepted, the sender will have to

buffer anyway.

Dr. Mohammed Arafah 42

Flow Control and Buffering
Buffer Size

If most TPDUs are nearly the same size, we can organize the buffers as a pool of

identical size buffers, with one TPDU per buffer.

If there is a wide variation in TPDU size, from a few characters typed at a

terminal to thousands of characters from file transfers, a pool of fixed-sized

buffers presents problems.

If the buffer size is chosen equal to the largest possible TPDU, space will be

wasted whenever a short TPDU arrives. If the buffer size is chosen less than the

maximum TPDU size, multiple buffers will be needed for long TPDUs.

Another approach to the buffer size problem is to use variable-size buffers. The

advantage is better memory utilization, at the price of more complicated buffer

management.

A third possibility is to dedicate a single large circular buffer per connection.

This is good approach when all connections are heavily loaded, but is poor if

some connections are lightly loaded.

Dr. Mohammed Arafah 43

Flow Control and Buffering
Buffer Size

If most TPDUs are nearly the same size, we can organize the buffers as a pool of

identical size buffers, with one TPDU per buffer.

If there is a wide variation in TPDU size, from a few characters typed at a

terminal to thousands of characters from file transfers, a pool of fixed-sized

buffers presents problems.

If the buffer size is chosen equal to the largest possible TPDU, space will be

wasted whenever a short TPDU arrives. If the buffer size is chosen less than the

maximum TPDU size, multiple buffers will be needed for long TPDUs.

Another approach to the buffer size problem is to use variable-size buffers. The

advantage is better memory utilization, at the price of more complicated buffer

management.

A third possibility is to dedicate a single large circular buffer per connection.

This is good approach when all connections are heavily loaded, but is poor if

some connections are lightly loaded.

Dr. Mohammed Arafah 44

Flow Control and Buffering

(a) Chained fixed-size buffers. (b) Chained variable-sized buffers.

(c) One large circular buffer per connection.

Dr. Mohammed Arafah 45

Flow Control and Buffering

Dynamic Buffer Allocation:

The sender requests a certain number of buffers. The receiver then

grants as many of these as it can afford. Every time the sender transmits

a TPDU, it must decrements its allocation, and stops when the

allocation reaches zero. The receiver then separately piggybacks both

acknowledgements and buffer allocations onto the reverse traffic.

Dr. Mohammed Arafah 46

Flow Control and Buffering

Dynamic buffer allocation. The arrows show the direction of transmission.

An ellipsis (…) indicates a lost TPDU.

Dr. Mohammed Arafah 47

Multiplexing

In networks that use virtual circuits within the subnet, each open connection

consumes some table space in the routers for the entire duration of the

connection. If buffers are dedicated to the virtual circuit in each router, a user

who left a terminal logged into a remote machine for a period is consuming

expensive resources.

The consequence of billing a user based on the amount of data sent, not he

connection time, is to have many virtual circuits open for long periods of time.

This makes multiplexing of different transport connections onto the same

network connection attractive.

It is up to the transport layer to group transport connections according to their

destination and map each group onto the minimum number of network

connections.

Dr. Mohammed Arafah 48

Multiplexing

(a) Upward multiplexing. (b) Downward multiplexing.

Dr. Mohammed Arafah 49

The Internet Transport Protocols: TCP

• Introduction to TCP

• The TCP Service Model

• The TCP Protocol

• The TCP Segment Header

• TCP Connection Establishment

• TCP Connection Release

• TCP Connection Management Modeling

• TCP Transmission Policy

• TCP Congestion Control

• TCP Timer Management

• Wireless TCP and UDP

• Transactional TCP

Dr. Mohammed Arafah 50

The Internet Transport Protocols (TCP and UDP)

The Internet has two main protocols in the transport layer, a connection-

oriented protocol (TCP) and a connectionless protocol (UDP).

TCP (Transmission Control Protocol) was designed to provide a reliable end-

to end connection over an unreliable internetwork.

TCP was designed to dynamically adapt to the properties of the internetwork.

A TCP entity accepts user data streams from local processes, breaks them up

into pieces not exceeding 64K bytes (in practice, usually 1500 bytes), and

sends each piece as a separate IP datagram. When IP datagrams containing TCP

data arrive at a machine, they are given to the TCP entity, which reconstruct the

original byte streams.

The IP layer gives no guarantee that datagram will be delivered properly, so it

is up to TCP to time out and retransmit them. Also, it is up to TCP to

reassemble the datagrams into messages in the proper sequence. Therefore,

TCP provides the reliability the most users want and that IP does not provide.

Dr. Mohammed Arafah 51

The TCP Service Model
TCP service is obtained by having both the sender and receiver create end

points, called sockets. Each socket has a socket number (address) consisting of

the IP address of the host and a 16-bit port. A port is the TCP name for a TSAP.

To obtain TCP service, a connection must be explicitly established between a

socket on the sending machine and a socket on the receiving machine using

the socket calls.

Port numbers below 1024 are called well-known ports and are reserved for

standard services. For example, port 21 is for FTP, port 23 for TELNET, port

79 for finger, and port 119 for USENET news.

All TCP connections are full-duplex and point-to-point.

Dr. Mohammed Arafah 52

The TCP Service Model

Some assigned ports.

Port Protocol Use
21 FTP File transfer
23 Telnet Remote login

25 SMTP E-mail

69 TFTP Trivial File Transfer Protocol

79 Finger Lookup info about a user
80 HTTP World Wide Web

110 POP-3 Remote e-mail access

119 NNTP USENET news

Dr. Mohammed Arafah 53

The TCP Service Model
A TCP connection is a byte stream, not a message stream. Message boundaries

are not preserved end to end. For example if the sending process does four 512-

byte write to a TCP stream, these data may delivered to the receiving processes

as four 512-byte pieces, two 1024-byte pieces, one 2048-byte piece, or some

other way.

When an application passes data to TCP, TCP may send it immediately or

buffer it (in order to collect a larger amount to send at once). However,

sometimes, the application really wants the data to be sent immediately. For

example, suppose a user is logged into a remote machine. After a command line

has been finished and the carriage return typed, it is essential that the line be

shipped off to the remote machine immediately and not buffered until the next

line comes in.

Dr. Mohammed Arafah 54

The TCP Service Model

(a) Four 512-byte segments sent as separate IP datagrams.

(b) The 2048 bytes of data delivered to the application in a single READ CALL.

Dr. Mohammed Arafah 55

The TCP Protocol
A sending and receiving TCP entities exchange data in form of segments.

A segment consists of a 20-byte header (plus an optional part) followed by zero

or more data bytes.

Two limits restrict the segment size. First, each segment, including the TCP

header, must fit in the 65,535-byte IP payload. Second, each network has a

maximum transfer unit (MTU). If a segment passes through sequence of

networks without being fragmented and then hits one whose MTU is smaller

than the segment, the router at the boundary fragments the segment into two or

more smaller segments. Each new segment gets its own TCP and IP headers, so

fragmentation by routers increases the total overhead.

Dr. Mohammed Arafah 56

The TCP Protocol
The basic protocol used by TCP entities is the sliding window protocol. When a sender

transmits a segment, it also starts a timer. When a segment arrives at the destination, the

receiving TCP entity sends back a segment (with data if any exists, otherwise without

data) bearing an acknowledgement number equal to the next sequence number it

expects to receive. If a sender's timer goes off before the acknowledgement is received,

the sender transmits the segment again.

Challenges:

Segments can be fragmented, it is possible that part of the transmitted segment arrives

and acknowledged by the receiving TSP entity, but the rest is lost.

Segments can arrive out of order.

Segments can also be delayed and the sender times out and retransmits them.

If a retransmitted segment takes a different route than the original, and is fragmented

differently.

It is possible that a segment may occasionally hit a congested (or broken) network along

its path.

Dr. Mohammed Arafah 57

The TCP Segment Header

TCP Header.

DataTCP Header TCP Segment

(Source Port)بوابة المرسل (Destination Port)بوابة المستقبل

(Checksum)اختبار الصحة (Urgent Pointer)مؤشر الأهمية

(Window Size)حجم النافذة

(Sequence Number)الرقم التسلسلي

 (Acknowledgement Number)رقم الإقرار

(Options)خيارات

1 8 16 24 32

طول الرأس URG ACKPSHRST SYN FIN

Dr. Mohammed Arafah 58

The TCP Segment Header

TCP Header.

Dr. Mohammed Arafah 59

The TCP Segment Header

The pseudoheader included in the TCP checksum.

Dr. Mohammed Arafah 60

The TCP Segment Header
Source Port and Destination Port Fields (16 bits each):

The source port and destination port identify the local end points of the

connection. A port plus its host's IP address forms a 48-bit unique TSAP.

Sequence Number and Acknowledgement Number Fields (32 bits each):

The sequence number and acknowledgement number fields perform their usual

function. The acknowledgement number field specifies the next byte expected.

Both are 32 bits long because every byte of data is numbered in a TCP stream.

TCP Header Length Field (4 bits):

The TCP header length field tells the number of 32-bit words in the TCP

header.

Reserved Field (6-bit):

The reserved field is reserved for future use.

Dr. Mohammed Arafah 61

The TCP Segment Header
URG Bit:

The URG bit is set to 1 to indicate that the urgent pointer is valid. The urgent
pointer indicates amount of urgent (expedited) data in the segment.

ACK Bit:

The ACK bit set to 1 to indicate that the acknowledgement number is valid. If

ACK is 0, the segment does not contain an acknowledgement so the

acknowledgement number field is ignored.

PSH Bit:

If the PSH bit is set, the receiver is requested to deliver the data to the

application upon arrival and not buffered until a full buffer has been received.

RST Bit:

The RST bit is used to reset a connection that has become confused due to host

crash or some other reason. It is also used to reject an invalid segment or to

refuse an attempt to open a connection.

Dr. Mohammed Arafah 62

The TCP Segment Header
SYN Bit:

The SYN bit is used to establish connections. The connection request has

SYN=1 and ACK=0 to indicate that the piggyback acknowledgement field is

not in use. The connection reply does bear an acknowledgement, so it has

SYN=1 and ACK=1. Therefore, the SYN bit is used to denote

CONNECTION REQUESTED and CONNECTION ACCEPTED, with

ACK bit used to distinguish between those two possibilities.

FIN Bit:

The FIN bit is used to release connection. It specifies that the sender has no

more data to transmit.

Window Size Field (16 bits):

The window size field relates to the sliding window flow control scheme. It

indicates the number of bytes may be sent starting at the byte acknowledged.

Dr. Mohammed Arafah 63

The TCP Segment Header
Checksum Field (16 bit):

A checksum is provided for extreme reliability. It checksums the header, the

data, and the conceptual pseudoheader. The checksum is the 1's complement of

the sum of all the 16-bit words in the segment added together using 1's

complement arithmetic. As consequence, when the receiver performs the

calculation on the entire segment including the checksum field, the result

should be zero.

The pseudoheader contains the 32-bit IP addresses if the source and destination

machines, the protocol number for TCP (6), and the byte count for the TCP

segment (including the header).

Dr. Mohammed Arafah 64

The TCP Segment Header
Urgent Pointer Field (16 bits):

The urgent pointer indicates the amount of urgent (expedited) data in the

segment. Normally this is delivered by the receiving TCP entity immediately it

is received.

Option Field:

The option field was designed to provide a way to add extra facilities not

covered by the regular header. The most important option is the one that allows

each host to specify the maximum TCP payload it is willing to accept. During

connection setup, each side can announce its maximum, and the smaller of the

two numbers wins. If a host does not use this option, it defaults to a 536-byte

payload.

Dr. Mohammed Arafah 65

The TCP Segment Header
For lines with high bandwidth, high delay, or both, the 64 KByte window is

often a problem.

On a T3 line (44.736 Mbps), it take only 12 msec to output a full 64 KByte

window. If the round trip propagation delay is 50 msec (typical for

transcontinental fiber), the sender will be idle 3/4 of the time waiting for

acknowledgement.

On a satellite connection, the situation is even worse. A larger window size

would allow the sender to keep pumping data out, but using 16-bit window size
field, there is no way to express such a size. Therefore, a window scale option

is proposed, allowing the sender and receiver to negotiate a window scale
option. This number allows both sides to shift the window size field up to 16

bits to the left, allowing windows up to 232 bytes.

Another option proposed is the use of the selective repeat instead of go back n

protocol.

Dr. Mohammed Arafah 66

TCP Connection Management
Connections are established using the three-way handshake.

To establish a connection, one side, say the server, passively waits for an

incoming connection by executing the LISTEN and ACCEPT primitives.

The other side, say the client, executes a CONNECT primitive, specifying the

IP address and port to which it wants to connect and the maximum TCP

segment size it is willing to accept. The CONNECT primitive sends a TCP

segment with the SYN bit on and ACK bit off and waits for response.

When the segment arrives at the destination (server), the TCP entity checks to

see if there is a process that has done a LISTEN on the port given in the

Destination port field. If not, it sends a reply with the RST bit on to reject the

connection.

Dr. Mohammed Arafah 67

TCP Connection Management

If some process is listening to the port, that process is given the incoming TCP

segment. It can either accept or reject the connection. If it accepts, an

acknowledgement segment is sent back. The sequence of TCP segments sent in

the normal case. Note that a SYN segment consumes 1 byte of sequence space

so it can be acknowledged unambiguously.

If two hosts simultaneously attempt to establish a connection between the same

two sockets, only one connection is established.

Dr. Mohammed Arafah 68

Host 1

Segment1 (SYN=1 , ACK=0)

Host 2Segment2 (SYN=1 , ACK=1)

Segment3 (SYN=0 , ACK=1)

ل الرغبة في انشاء الاتصا

2إلى جهاز 1من جهاز

اء اقرار بأنه قد تم انش

1الاتصال من جهاز

2إلى جهاز

الرغبة في انشاء

2الاتصال من جهاز

1إلى جهاز

ال اقرار بأنه قد تم انشاء الاتص

1إلى جهاز 2من جهاز

TCP Connection Management

Dr. Mohammed Arafah 69

Host 1

Segment1 (FIN=1 , ACK=0)

Host 2Segment2 (FIN=1 , ACK=1)

Segment3 (FIN=0 , ACK=1)

من الرغبة في قطع الاتصال

2إلى جهاز 1جهاز

ع اقرار بأنه قد تم قط

1الاتصال من جهاز

2إلى جهاز

الرغبة في قطع

2الاتصال من جهاز

1إلى جهاز

ال اقرار بأنه قد تم قطع الاتص

1إلى جهاز 2من جهاز

TCP Connection Management

Dr. Mohammed Arafah 70

TCP Connection Establishment

(a) TCP connection establishment in the normal case.

(b) Call collision.

Dr. Mohammed Arafah 71

TCP Connection Management

The initial sequence number on a connection is not 0. A clock-based scheme is

used, with a clock tick every 4 msec. For additional safety, when a host crashes, it

may not reboot for the maximum packet lifetime (120 sec) to make sure that no

packets from previous connections are still roaming around the Internet

somewhere.

Although TCP connections are full duplex, connections are released as a pair of

simplex connections. Each simplex party can send a TCP segment with the FIN bit

set, which mean that it has no more data to transmit. When a FIN is

acknowledged, the direction is shut down. Data may continue to flow in the other

direction. When both directions have been shut down, the connection is released.

Normally, four TCP segments are needed to release a connection, one FIN and one

ACK for each direction. However, it is possible for the first ACK and the second

FIN to be contained in the same segment, reducing the total count to three.

Dr. Mohammed Arafah 72

TCP Connection Management

To avoid the two-army problem, timers are used. If a response to a FIN is not

forthcoming within two maximum packet lifetimes, the sender of the FIN
releases the connection. The other side will eventually notice that nobody

seems to be listening to it any more, and times out as well.

The steps required to establish and release a connections can be represented in

a finite state machine with 11 states.

Dr. Mohammed Arafah 73

TCP Connection Management

The states used in the TCP connection management finite state machine.

Dr. Mohammed Arafah 74

TCP connection management

finite state machine. The heavy

solid line is the normal path for

a client. The heavy dashed line

is the normal path for a server.

The light lines are unusual

events. Each transition is

labeled by the event causing it

and the action resulting from it,

separated by a slash.

TCP Connection Management

Dr. Mohammed Arafah 75

Sender Receiver

Receiver’s BufferEmpty

0 4K-1

2K

Application

does a 2K

Write

Application

does a 2K

Write Full

Application

reads 2K

2K

Sender is

blocked

Sender may

send up to 2K

2K1K

TCP Transmission Policy

Window management in TCP.

Dr. Mohammed Arafah 76

TCP Transmission Policy

Silly window syndrome.

Dr. Mohammed Arafah 77

TCP Congestion Control

(a) A fast network feeding a low capacity receiver.

(b) A slow network feeding a high-capacity receiver.

Dr. Mohammed Arafah 78

TCP Congestion Control

An example of the Internet congestion algorithm.

