تقدير تركيز مخلوط من NaNO₂ و NaNO₂ بطريقة طيفية

الطريقة العملية:

- . $5x10^{-2} \,\mathrm{M}$ بتر کیز NaNO $_2$ و NaNO $_3$ بتر کیز 1
- 2. حضري عدة محاليل من كل منهما بتراكيز: M, 0.02 M, 0.025 M, 0.04 M وذلك في دوارق قياسية سعة 10 ml
 - 3. استخدمي أحد المحاليل القياسية (وليكن ذو التركيز M 0.025 M) لتعيين طول الموجة التي يتم
 عندها أقصى امتصاص وذلك في المدى (mm 380 m)
 - قيسي امتصاص المحاليل القياسية لـ $NaNO_3$ عند الطول الموجي الخاص بها و عند الطول الموجي الخاص بـ $NaNO_2$.
 - 5. قيسي امتصاص المحالي القياسية لـ $NaNO_2$ و عند الطول الموجي الخاص بها و عند الطول الموجي الخاص بـ $NaNO_3$.
 - 6. من النتائج التي حصلتي عليها احسبي معاملات الامتصاص الجزيئي لكل مادة.
 - 7. قيسى امتصاص المحاليل المجهولة التركيز كل منها عند طول الموجتين.
- 8. باستخدام قانون بير_لامبرت للمخاليط أوجدي تركيز كل من $NaNO_2$ و $NaNO_2$ في المخاليط المجهولة .

♦ هل ينطبق قانون ببير – المبرت للمخاليط على خليط NaNO₂ و NaNO₂ كماذا ؟

النتائج

λnm	280	290	300	310	320	330	340	350	360	370	380
A(NaNO2)											
A(NaNO ₃)											

 λ max of NaNO₂ = x

 λ max of NaNO₃ =y

C NaNO ₂	A_x	A_{y}
0.01		
0.02		
.025		
.04		

CNaNO ₃	A _x	A_{y}
0.01		
.02		
.025		
.04		

احتياطات التجربة: