Project Time Control

Definition: Controlling

Control = Monitor + Compare + Analysis + Action

- Controlling involves making sure that the results achieved are in line with the planned results.
- The main feature of control is action to correct performance deviations and to insure that expected results are forthcoming.

Project Time Control

PURPOSE:

The successful attainment of set time objective is the essential purpose of the time-management system.

A VAILABLE:

An operational plan and a detailed calendar is prepared to: > meet project objective and

> level resource requirements.

WHY?

> No plan can ever be perfect.

> No planner can anticipate every future circumstances.

> Problems arise that could not have been foreseen.

Process of Project Time Control

- 1.Establish an *operational schedule*.
- 2.Measure and report progress (Establish a progress *monitoring* and information feedback procedure).
- **3.** *Compare* actual achievement with planned.
- 4. Check and *analyze* time progress and determine effect on completion date and milestones.
- 5. Plan *corrective action*
 - Bring work back to schedule.
 - Modify schedule.

6.*Implement* corrective action.

7. Update operational schedule.

1. Establish Operational Schedule

For project control purposes a hierarchy of schedules may be needed, depending on who will use it.

Key Dates Schedule

 For owners and top-level management in terms of MILESTONES or KEY DATES.

Detailed Schedule

- For engineers, work supervisors, material suppliers and subcontractors.
- A schedule of that particular engineer/supervisor work responsibility.
- Provide him with a day-to-day forecast of field operations.
- Critical activities and free float values should be noted.
- Covers limited time spans (2 weeks or 30 days).
- Tabular listings and computer-printed bar charts are common forms.

<u>Methods</u>

- > Estimated number of working days req. to complete the activity.
- > Estimated % completion of the activity.
- Quantities of work units put in place.

<u>Equations</u>

- \Box Working days to complete = d (1 P/100)
- U Working days to complete = d (1 (W/T))

<u>Where</u>

- d= total activity duration in working days
- P = estimated percentage of completion
- W= number of work units put into place.
- T= total number of work units associated with the activity.

Based on the assumption of straight-line variation between time and work accomplishment

How often?

- Balance between management benefits and costs and efforts.
- > To serve other reports benefits such as cost control.
- According to project characteristics and peculiarities.

Weekly Progress reports

- A common procedure in many industries.
- Listing those activities that started, finished, or were in progress during the week and indicating their stages of completion.
- Must include procurement, material delivery information,
- Chose a cutoff date, to be selected to serve both time management and labor cost accounting.

WEEKLY PROGRESS REPORT

Project: Highway bridgeWeek ending: Wednesday, July 21 (working day 27)					
<i>Job. No: </i> <u>7903-50</u> Activity	Activity	Prepared b Date	<u>y: K.M.</u> Date	Percent	Working days to
.	Number	Started	Completed	Complete	complete
Α	110	-	July 15	100	0
В	115	-	-	-	13
С	130	-	-	80	2
D	150	July 15	July15	100	0
E	160	July 16	July 21	100	0

Field Progress

- > To accompany weekly progress reporting.
- Discussion of projected project features.
- General statement about time status.
- Critical or low float activities in difficulty.
- > Potential trouble spots.
- Exceptionally well project areas.

3. Compare and Analysis of Project Progress

Concerned primarily with determining the effect of the latest information on the project completion date and any milestone goals.

 \Box 1st - A quick and simple check for critical activities status.

 $\square 2^{nd}$ - Check the possibility of a new critical path.

<u>SIGNS OF DANGER:</u>

- > Activities fall behind LS schedule.
- Resource availability delays.
- Realizing that time duration of future activities have been materially underestimated.
- Change logic becomes necessary.

4. Corrective Actions

- When there are small delays that are within network time contingency, no action is usually required.
- Otherwise use *Time Reduction Technique* to bring project back on schedule.
- Make periodic job progress meetings to enhance time management efficiency.
 - Weekly, biweekly, monthly.
 - Project managers, field supervisors, major subcontractors, material suppliers, and owner representative.

5. Network Updating (Rescheduling)

- Making necessary network corrections and re-computing activity times and float times.
- Concerned with determining the effect of schedule deviations and plan changes on the portions of the project yet to be constructed.

INFORMATION NEEDED:

- \succ New activities to be added.
- > Existing activities to be deleted.
- > Changes in the resource availability and delivery dates.
- Changes in the job logic.
- > New estimate of the time required to finish unfinished activities.
- Changes in the scope of work.

e initial AON diagram for a small engineering project is shown below with inned activity times in days. *At the end of the 15th day*, the field progress rep ves you the following information:

- Activity "A" was completed on schedule.
- Activity "B" started as planned but four days were lost due to waiting for the required resources.
- Activity "C" was completed one day earlier.
- The remaining duration of Activity "D" is 2 days.
- The duration of activity "H" will be reduced to 12 days instead of 17 days.
- The activity "F" cannot start until the morning of day 22.
- Activity "Z" is expected to take two days more.
- Due to owner requirement the volume of work of activity "X" will be increased by 50% of activity "X" will be increas

onstruct the updated AON diagram, calculate the early and late start times of ch activity, and indicate the critical path. Example

Example

