Allocate and Level Project Resources

Resource Allocation: Defined

Resource Allocation is the **scheduling of activities and the resources** required by those activities while taking into consideration both the <u>resource availability and the project time</u>.

Resource Allocation: Defined

Resource allocation permits efficient use of physical assets

- -Within a project, or across multiple projects
- Drives both the identification of resources, and timing of their application
- **There are generally two conditions for allocating resources:**
 - "Normal" Most likely task duration
 - *"Crashed"* Expedite an activity, by <u>applying additional</u>
 <u>resources</u> to with cost considerations
 - Specialized or additional equipment/material
 - Extra labor (e.g., borrowed staff, temps)
 - More hours (e.g., overtime, weekends)

Resource Levelling: Defined

Resource leveling is a technique used to examine unbalanced use of resources (usually people or equipment) over time, and for resolving over-allocations or <u>conflicts</u> resulting from scheduling certain tasks <u>simultaneously</u>. Such conflicts are:

- * more resources such as <u>machines or people</u> are needed than are available, or
- * a specific person is needed in both tasks, the tasks will have to be rescheduled concurrently or even sequentially to manage the constraint.

It is used to balance the workload of primary resources over the course of the project[s], usually at the expense of one of the traditional triple constraints (time, cost, scope).

Why Resource Allocations and Leveling is important?

- **To complete and finalize project schedule** for completion of the project at maximum efficiency of time and cost (*Project network times are not a schedule until resources have been assigned because the basic PERT/CPM procedures are limited in the sense that resource availabilities are <u>not</u> considered in the scheduling process. The procedures assume that available resources are <u>unlimited</u>).*
- **To smooth the use of resources** for better assignment and levelling of **Manpower**, equipment, materials, subcontractors, and information (better managing of resource utilization over the life of the project)
- **To estimate cost properly** for finding optimum project budget (money resource) and close management control (cost and a budget can not developed until they have been time-phased with resources assigned)
- **To schedule resource constraints properly** to take care of shortage of resources (duration of a project may be increased by delaying the late start of some of its activities if resources are not adequate to meet peak demands)

Objective of Resource Planning

The basic objective of resource management is to *supply and support field operations with the resources required* so that established time objectives can be met and costs can be kept within the budget.

Hence, the goal is to optimize use of limited resources

This Requires making trade-offs

- \succ time constrained
- \succ resource constrained

How <u>limited</u> resources affect schedule slack?

Assume that activities "C" and "G" each require the use of a special piece of equipment, such a hoist crane. But only one crane is available.

How limited resources affect schedule slack?

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Α																		
С				1	1	1	1	1	1									
Ι																		
J																		
К																		
В																		
G						1	1	1	1									
Н																		
D										;								
Е																		
F																		
R				1	1	2	2	2	2									

How limited resources affect schedule slack?

How limited resources affect schedule slack?

The direct result of this resource constraint is that activities "C" and "G" can **not** be performed **simultaneously** as indicated by the *ES* time-only schedule. One or the other of the activities in each pair must be given priority.

In general, the following is true:

Resource constraints reduce the total amount of schedule slack.

□ Slack depends both upon activity relationships and resource limitations.

The critical path in resource-constrained schedule may not be the same continuous chain(s) of activities as occurring in the unlimited resources schedule.

Project Resource Requirement

Project Resource Requirement = Resource Loading Diagram = Resource Histogram = *Resource Profile and S curve*

We need:

- Project network.
- **Resource requirement for each activity.**
- *Bar chart or time-scaled network.*

We make:

- Resource loading diagram (a diagram that highlights the period-by-period resource implications of a particular project schedule).
- > Period-by-period total requirements of units of resources.
- Cumulative resource requirement curve (S curve).

Resource Loading Diagram based on <u>ES</u> schedule

Time	1	•	2	4	=		7	Q	0	10	11	10	12	14	15	10	17	10
Activity	1	Z	3	4	Э	0	/	ð	9	10	11	12	13	14	12	10	1 /	18
Α	3	3	3															
С				3	3	3	3	3	3									
Ι										3	3	3	3					
J														4	4			
K																5	5	5
В	2	2	2	2	2													
G				:		3	3	3	3									
Н				:						2	2	2	2	2				
D				4	4											 .		
Е					:	2	2	2			-							
F					: : : : : : : : :	1	1	1						= = =				
R	5	5	5	0	0	0	Q	0	6	5	5	5	5	6	4	5	5	5
	5	10	15	24	22	12	51		6	71	76	01	00	02	ч 0(101	106	J 111
	2	10	15	24	33	42	51	00	00	/1	/0	01	00	92	90	101	100	111
	25	25	25	01	01	01	01	01	26	25	0.5	0.5	~ ~	26	11	25	07	0.5
<u>K²</u>	25	25	25	81	81	81	81	81	36	25	25	25	25	36	16	25	25	25
$\frac{R^2}{\Sigma R^2}$	25 25	25 50	25 75	81 156	81 237	81 318	81 399	81 480	36 516	25 541	25 566	25 591	25 616	36 652	16 668	25 693	25 718	25 <u>743</u>
R ² ΣR ² 10aaa	25 25	25 50	25 75	81 156	81 237	81 318	81 399	81 480	36 516	25 541	25 566	25 591	25 616	36 652	16 668	25 693	25 718	25 <u>743</u>
R ² ΣR ² 10aaa 9	25 25	25 50	25 75	81 156	81 237	81 318	81 399	81 480	36 516	25 541	25 566	25 591	25 616	36 652	16 668	25 693	25 718	25 <u>743</u>
R ² ΣR ² 10aaa 9 8	25 25	25 50	25 75	81 156	81 237	81 318	81 399	81 480	36 516	25 541	25 566	25 591	25 616	36 652	16 668	25 693	25 718	25 <u>743</u>
R ² ΣR ² 10aaa 9 8 7	25 25	25 50	25 75	81 156	81 237	81 318	81 399	81 480	36 516	25 541	25 566	25 591	25 616	36 652	16 668	25 693	25 718	25 <u>743</u>
R ² D 9 8 7 6	25 25	25 50	25 75	81 156	81 237	81 318	81 399	81 480	36 516	25 541	25 566	25 591	25 616	36 652	16 668	25 693	25 718	25 <u>743</u>
R ² ΣR ² 10aaa 9 8 7 6 5	25 25	25 50	25 75	81 156	81 237	81 318	81 399	81 480	36 516	25 541	25 566	25 591	25 616	36 652	16 668	25 693	25 718	25 <u>743</u>
K² ∑R² 10aaa 9 8 7 6 5 4	25 25	25 50	25 75	81 156	81 237	81 318	81 399	81 480	36 516	25 541	25 566	25 591	25 616	<u>36</u> 652	16 668	25 693	25 718	25 <u>743</u>
R ² ΣR ² 10aaa 9 8 7 6 5 4 3 2	25 25	25 50	25 75	81 156	81 237	81 318 Resou	81 399	81 480	36 516	25 541	25 566 Resou	25 591	25 616 istogra	36 652	16 668	25 693	25 718	25 <u>743</u>

9 0 13 | 9 4 13 3 0 9 Resource Loading Diagram 3 R 3 R 15 0 18 K 15 3 18 3 5 5 5 5 8 13 0 15 18 0 18 D 8 2 10 E .] 13 2 15 FINISH 0 0 0 START 0 0 0 based on <u>LS</u> schedule 2 R 4 R 4 R 5 R 0 R 5 5 8 0 R F 10 3 13 1 R ESTREF Activity LS D LF G 9413 9 4 14 H 2 R 3 R 2 R Resource Tv R Activity 3 : 3 : А С I J K B G Η D Е F R ΣR \mathbf{R}^2 ΣR^2 **Resource Loading Diagram = Resource Histogram**

Cumulative Resource Requirement Curve

Cumulative resource requirement curve (S-curve) may be used for: Planning and Control of progress Preliminary resource allocation

Cumulative resource requirements of resource A, network

Resource Constraint "Criticality"

1.Average Daily Requirement

Avg. daily requirement = 111 / 18 = 6.2 units/day Suppose the analyzed resource is available at a maximum level of 7 units/day.

 \therefore 126 units could be expended over the 18-day project duration, which is more than 111 units. \therefore Project delay is unlikely..

2.Resource Criticality Index

 \therefore Criticality index = 6.2/7.0 = 0.88 < 1 \therefore project on time

Suppose the analyzed resource is available at a maximum level of 6 units/day.

 \therefore Criticality index = 6.2/6.0 = 1.03 > 1 \therefore project will delay

In 18 days a total of only 108 units are will be expended (< 111 units), leaving some work unfinished and thus requiring an extension of the project beyond 18 days.

$$DR_{A} = \frac{T}{D}$$
where;

$$DR_{A} = Avg. \text{ daily requirement}$$

$$T = Total unit of resources$$

$$D = Project duration$$

 $I_{c} = \frac{DR_{A}}{A_{max}}$ where; $I_{c} = \text{Criticality index}$ $DR_{A} = \text{avg. daily units req'd}$ $A_{Max} = \text{max. am't avail. Daily}$

Resource Constraint "Criticality"

2. Resource Criticality Index

- Values of resource criticality index significantly below 1.0 typically are associated with non-constraining resources, while values around and above 1.0 indicate that project delays beyond the original critical path duration will be encountered.
- Higher values of resource criticality index are associated with the most critical (i.e., most tightly constrained) resources.

Scheduling Procedures for Dealing with Resource Constraints

Resource Leveling (Resource Smoothing) Fixed-limits Resource Scheduling (Limited Resource Allocation)

Resource Leveling (Smoothing)

Main Aspects

Sufficient total resources are available

Project must be completed by a specified due date

□ It is desirable or necessary to reduce the amount of **variability (peak and valley)** in the pattern of resource usage over the project duration.

□ The objective is to **level**, as much as possible, the demand for each specific resource during the life of the project.

Project duration is not allowed to increase in this case.

Fixed Resource Limits Scheduling

Main Aspects

Also often called constrained-resource scheduling, or limited resource allocation

Much more common

- □ There are definite limitations on the amount of resources available to carry out the project (or projects) under consideration.
- □ Project duration may **increase** beyond the initial duration determined by the usual "time only" CPM calculations.
- □ The scheduling objective is equivalent to minimizing the duration of the project (or projects) being scheduled, subject to stated constraints on available resources.

Basic General Approach

The basic general approach followed in both resource leveling and fixed resource limits scheduling is similar:

- Set activity priorities according to some criterion and then
- □ Schedule activities in the order determined, as soon as their predecessors are completed and adequate resources are available

Resource Leveling (Smoothing)

- Resource leveling techniques provide a means of distributing resource usage over time *to minimize the period-by-period variations* in manpower, equipment, or money expended.
- □ The essential idea of resource leveling centers about the <u>rescheduling</u> of activities within the limits of available <u>float</u> to achieve better distribution of resource usage.
- □ A systematic procedure for leveling resources was developed by <u>Burgess.</u>
- Burgess method utilized a simple measure of effectiveness given by the sum of the squares of the resource requirements for each "day" (period) in the project schedule.

Resource Leveling (Smoothing)

■ While the *sum of daily resource requirements* over the project duration is constant for all complete schedule, the sum of the squares of the daily requirements decreases as the peaks and valleys are leveled.

□ The measure of effectiveness reaches a minimum for a schedule that is level and equals =

 $Eff = (DR)^{2} \times D$ where; Eff = Effectiveness DR = Average daily requirement D = Project duration

Burgess Leveling Procedure

- **Step 1**. List the project activities in order of precedence. Add to this listing the duration, early start, and float (slack) values for each activity.
- Step 2. Starting with the *last* activity, schedule it period by period to give the *lowest* sum of squares of resource requirements for each time unit. If more than one schedule gives the same total sum of squares, then schedule the activity *as late as possible* to get as much slack as possible in all preceding activities.
- Step 3. Holding the last activity fixed, repeat Step 2 on the *next to the last* activity in the network, taking advantage of any slack that may have been made available to it by the rescheduling in Step 2.
- Step 4. Continue Step 3 until the first activity in the list has been considered; this completes the *first rescheduling cycle*.

Burgess Leveling Procedure

- Step 5. Carry out additional rescheduling cycles by repeating Steps 2 through 4 until no further reduction in the total sum of squares of resource requirements is possible, noting that *only movement of an activity to the right (schedule later)* is permissible under this scheme.
- Step 6. If this resource is particularly *critical*, repeat Steps 1 through 5 on a *different ordering* of the activities. which, of course, must still list the activities in order of precedence.
- Step 7. Choose the best schedule of those obtained in Steps 5 and 6.
- **Step 8**. Make final adjustments to the schedule chosen in Step 7, taking into account factors not considered in the basic scheduling procedure.

Application of Burgess Procedure (initial)

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
A	3	3	3		. .	 :	 :	.	 :	 :		.	:	 :		.	:	
С		:		3	3	3	3	3	3	1	:	; :	:	:	:	; :		
Ι		::::::::	::::::		:					3	3	3	3	[::::::		
J														4	4			
K				, ; ,											· · · · · · · · · · · · · ·	5	5	5
В	2	2	2	2	2					r · · · · · · · · ·		;						
G					:	3	3	3	3	É22				f · · · · · · · · ·				
Н										2	: 2	: 2	2	2				
D				4	4						<u> </u>	f • • • • • • • • •						
E					;	2	2	2	[f			
F					;	1	1	1	I			┌ ─ ─			F			
R	5	5	5	9	9	9	9	9	6	5	5	5	5	6	4	5	5	5
ΣR	5	10	15	24	33	42	51	60	66	71	76	81	86	92	96	101	106	111
R ²	25	25	25	81	81	81	81	81	36	25	25	25	25	36	16	25	25	25
ΣR^2	25	50	75	156	237	318	399	480	516	541	566	591	616	652	668	693	718	743
21									510									<u> </u>
10aaa																		
9																		.
8																		
7																	;	
6																		
5												;						
4																		
3						Resou	rce La	adino	, Diagi	ram =	Resou	rce Hi	stogra	m				
2																		
1						:										:	:	

Start with Delay activity "H" one period

Delay activity "H" <u>one</u> period $\therefore \sum R^2 = 747$

with Delay activity "H" 2 periods

Delay activity "H" <u>2</u> periods $\therefore \sum R^2 = 755$

with Delay activity "H" <u>3</u> periods

Delay activity "H" <u>3 periods</u> :: $\sum R^2 = 763$

with Delay activity "H" <u>4 periods</u>

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
А	3	3	3															
Ī			С	3	3	3	3	3	3									
									Ι	3	3	3	3	l				
					:			:					J	4	4			
															к	5	5	5
в	2	2	2	2	2	: 		: 		1					IX.		5	5
2	_	-								: r				: 1				
					G	3	3	: 3	3	L				! ;				
									Н				•	2	2	2	2	2
			р		<u> </u>	·		÷		<u></u>	i			:				
	-		υ		. 4 :			<u> </u>				: 	:	:				
					E	2	2	2	L			:						
					F	1	1	1						i !				
R	5	5	5	9	9	9	9	9	6	3	3	3	3	6	6	7	7	7
R ²	25	25	25	81	81	81	81	81	36	9	9	9	9	36	36	49	49	49

Delay activity "H" <u>4</u> periods $\therefore \sum R^2 = 771$

Hence, \therefore Lowest $\sum \mathbf{R}^2 = 747$ with Delay activity "H" <u>1</u> period

The result = Delay activity "H" <u>one</u> period :: $\sum R^2 = 747$

Start Delay activity "G" <u>1</u> period

Delay activity "H" one period & Delay activity "G" one period :: $\sum R^2 = 729$

Continue Delay activities of non critical

Delay activity "H" <u>1</u> period, Delay activity "G" <u>1</u> period, Delay activity "F" <u>2</u> periods, Delay activity "E" <u>5</u> periods, and Delay activity "D" <u>2</u> periods $\therefore \sum R^2 = 715$

Minimum values results are:

Sequence of major moves of the first rescheduling cvcle: Delay activity "H" one period $\therefore \sum \mathbf{R}^2 = 747$ Delay activity "G" one period $\therefore \sum \mathbf{R}^2 = 729$ Delay activity "F" two periods $\therefore \sum \mathbf{R}^2 = 727$ Delay activity "E" five periods $\therefore \sum \mathbf{R}^2 = 723$

Estimated Method

<u>Step 1</u>: Draw the network in a time scaled diagram using the early start schedule method.

<u>Step 2</u>: Perform resource loading for the activities and calculate the total number of resources at each period.

<u>Step 3</u>: Reschedule non-critical activities to reduce peaks and to smooth resource usage in the resource loading chart in order to minimize SUM Y_i^2 , where Y_i is the number of resource usage in the resource loading chart.

<u>Step 4</u>: Continue Step 3 until you reach the schedule of having minimum value of $SUM Y_i^2$.

Resource Leveling within the limits of available Floats

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
•	2	2	2	1														
A C	3			3	: · 3	: · 3	: · 3	: 3	: · 3	: 1								
									. <u>J</u>	2	2	2	2	1				
T		:	:		:	:	:	:			. 5	. 3			4	I		: :
J V						-							J	4	4 V	5	5	
n D		:	:	:		: +				: 1					ĸ	5	. 5	
в	2	<u> </u>	<u> </u>	2		<u> </u>				↓ ┳	: :	: +		; 1				
G				:	G	. 3	<u> </u>	<u> </u>	· 3	L		<u></u>		1		:		i
н						: +			н 	2	2	2	2	: 2	<u></u>			!
D			D	4	4	<u> </u>		<u></u>	:	÷		: :		:		:		
Е		:	:		: <u>E</u>	2	2	2	L = = = = = = = = =	=====	: = = = = = = = =	:====:	:=====	1				: :
F		<u> </u>			F	1	1	1	<u> </u>	<u></u>		<u></u>						
Daily R	5	5	5	9	9	9	9	9	6	5	5	5	5	6	4	5	5	5
$\sum R$	5	10	15	24	33	42	51	60	66	71	76	81	86	92	96	101	106	111
$\sum \mathbf{R}^2$	25	50	75	156	237	318	399	480	516	541	566	591	616	652	668	693	718	743
10						:			-					-				
9						:			İ		:							
8					:													
7						:				1								
5				1										1				
4			: :	:		:				:	:			:				
3						Resource	e Loadin	g Diagra	m = Res	source H	istogram	ņ						
2		:																

Delay activity "H" <u>4</u> periods & Delay activity "G" <u>4</u> period :: $\sum R^2 = 717$

Delay activity "H" <u>4</u> periods, Delay activity "G" <u>4</u> periods, Delay activity "E" <u>2</u> periods, Delay activity "F" <u>2</u> periods, and Delay activity "D" <u>2</u> periods $\therefore \sum R^2 = \frac{703}{2}$

Delay activity "H" <u>4</u> periods, Delay activity "G" <u>4</u> periods, Delay activity "F" <u>5</u> periods, Delay activity "E" <u>2</u> periods, and Delay activity "D" <u>2</u> periods $\therefore \sum R^2 = \frac{703}{2}$

Data for small project is listed below:

Activity	Depends on	Duration	Resource Rate	Activity	Depends on	Duration	Resource Rate
A		2	4	F	D	2	2
В		1	2	G	D	1	1
C	А	1	2	Е	D	1	1
D	B, C	4	6				

1. Draw Early Start Time-scaled schedule and calculate the corresponding used

resource.

2. Perform 2 trials Resource Leveling. Also, specify which one of the two trials Timescaled schedules is the final schedule and why.. Example 2 (First Trial)

1	2	3	4	5	6	7	8	9	10
Α		C		D			F		
4R		$2R^7$		6R			2R		
		B					G		
		2R					1R		
							E		
							1 R		
4R	4R	4R	6R	6R	6R	6R	4R	2 R	
16	32	48	84	120	156	192	208	212	$\sum \mathbf{R}^2$

The 2nd trial schedule is the best Resource Leveling result because it has <u>lowest $\sum R^2$ </u>.

Limited Resource Allocation

The work of a small engineering project is planned according to the AON shown below. The labour requirement of each activity is shown below each activity box. What will be the minimum contract duration if no more than **6** labours can be made available for the work and if it is assumed that having started an activity it must be completed without a break?

				3	2	5		7	3	10		10	8	18		18	1	19						
					B				E				Η				Y							
				5	2	7		7	0	10		10	0	18		18	0	19						
					2				1				2				3							
0	3	3		3	4	7						8	5	13		15	2	17			19	5	24	
	Α				С								F	•			Ζ					Χ		
0	0	3		3	0	7						12	4	17		17	2	19			19	0	24	
	4				3		_						3				2					1		
				3	5	8						8	7	15							ES	D	EF	
					D	1							G					1			Activi	ty Desc	riptio n	
				5	2	10						10	2	17							LS	TF	LF	
					5		_						4						F	Requi	red L	abou	ır	
																				-				

EST

_ <u>_</u>	-0																								
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	Α	4	4	4																					
	C				3	3	3	3																	
	E								1	1	1														
	H											2	2	2	2	2	2	2	2						
	Y																			3					
	X																				1	1	1	1	1
	B				2	2														(
	D				5	5	5	5	5																
	F									3	3	3	3	3											
	G									4	4	4	4	4	4	4									
	Z																2	2							
1																									
ľ	R	4	4	4	10	10	8	8	6	8	8	9	9	9	6	6	4	4	2	3	1	1	1	1	1
	ΣR	4	8	12	22	32	40	48	54	62	70	79	88	97	103	109	113	117	119	122	123	124	125	126	127
	R^2	16	16	16	100	100	64	64	36	64	64	81	81	81	36	36	16	16	4	9	1	1	1	1	1
Σ	R ²	16	32	48	148	248	312	376	412	476	540	621	702	783	819	855	871	887	891	900	901	902	903	904	905

<u>LS</u>	<u>T</u>																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A	4	4	4																					
С				3	3	3	3																	
E								1	1	1														
Η											2	2	2	2	2	2	2	2						
Y																			3					
Χ																				1	1	1	1	1
B						2	2																	
D						5	5	5	5	5														
F										••••••	••••••		3	3	3	3	3							
G											4	4	4	4	4	4	4							
Ζ																		2	2					
R	4	4	4	3	3	10	10	6	6	6	6	6	9	9	9	9	9	4	5	1	1	1	1	1
ΣR	4	8	12	15	18	28	38	44	50	56	62	68	77	86	95	104	113	117	122	123	124	125	126	127
R^2	16	16	16	9	9	100	100	36	36	36	36	36	81	81	81	81	81	16	25	1	1	1	1	1
R^2	16	32	48	57	66	166	266	302	338	374	410	446	527	608	689	770	851	867	892	893	894	895	896	897

Eff = DR² * D =(5.291)²*24 = 5.292 = 672.042

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
EAS	u																														
OSS																															
																			<u> </u>												
																			:											:	
																													:		
																			:												
																													:		
																			:												
						:													: :										: :	:	:
																			: :												<u>.</u>
																			:										:	:	
																													:	:	
																													:	:	
Daily R																													İ	İ	

																															\swarrow
Т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
EAS	A			B	D	D	D	D			Н	Н	H	F	F	F	F	F	F	F	Y				Z		X				
								E					F																		
			-										G																		
033	A			C				D					G							F	Y				Z		X				
				B				E					H																		
				D									F																		
		A	_!																												
	4	4	4			С																									
				3	3	3	3																								
	_				B																										
	_			2	2					D			-																		<u> </u>
<u> </u>		_						5	5	5	5	5																		<u> </u>	
<u> </u>	_	_	+					1	E	1		<u> </u>	<u> </u>							<u> </u>					<u> </u>			<u> </u>	<u> </u>	<u> </u>	-
<u> </u>	_	_			_			1	1	1			4	4	4	G	4	4	4	-											-
<u> </u>		_	+	+			$\left \right $						4	4	4	4	4	4	4												-
			+	+		1									<u> </u>	l	H		1	1											\vdash
			1	1									2	2	2	2	2	2	2	2											
																						F									
	_																			3	3	3	3	3							<u> </u>
<u> </u>	_	_	+		_		$\left \right $														V										
<u> </u>			+	+			$\left \right $										<u> </u>				Y 2				,	7					
<u> </u>			+	+			$\left \right $														5				2	2					\vdash
<u> </u>	-		+	+		+																							X		<u> </u>
			+	+		1																					1	1	1	1	1
R	4	4	4	5	5	3	3	6	6	6	5	5	6	6	6	6	6	6	6	5	6	3	3	3	2	2	1	1	1	1	1
D	1	1	1	5	5	2	2	6	6	6	5	5	6	6	6	6	6	6	6	5	6	2	2	2	2	2	1	1	1	1	1
	4	4	4	17	<u> つ つ つ つ つ つ つ つ つ つ つ つ つ つ つ つ つ つ つ</u>	25	2 20	24	40	16	5	5	62	60	74	80	0	02	00	3 102	100	112	115	110	120	122	122	124	175	126	12
	16	16	16	25	22	25	20	26	40	40	25	25	26	26	26	26	26	26	26	25	26	0	115	0	120	122	123	124	125	120	12/
	10	10	10			9	9			50				50																	

Another Procedure

<u>Step 1: $T = 1$</u>	<u>Step 5: T = 20</u>
$\mathbf{ES} \leq 1$	$\mathrm{ES} \leq 20$
E.A.S. {A}	E.A.S. {F}
O.S.S. {A}	O.S.S. {F}
<u>Step 2: $T = 4$</u>	<u>Step 6: T = 21</u>
$\mathbf{ES} \leq 4$	$ES \leq 21$
E.A.S. {B, C, D}	E.A.S. {Y}
LS 6, 4, 6	O.S.S. {Y}
D 2, 4, 5	
O.S.S. { C , B , D }	
<u>Step 3: T = 8</u>	<u>Step 7: T = 25</u>
$\overline{\mathrm{ES}} \leq 8$	$ES \leq 25$
E.A.S. {E, D}	E.A.S. {Z}
LS 8,6	O.S.S. { Z }
O.S.S. { D , E }	
<u>Step 4: T = 13</u>	<u>Step 8:T = 27</u>
$ES \le 13$	$ES \leq 27$
E.A.S. {H, F, G}	E.A.S. {X}
LS 11,13, 11	O.S.S. {X}
D 8, 5, 7	
O.S.S. { G , H , F }	

Another Procedure

Example of multiproject scheduling interactions.