

Titration of a strong acid

- When a strong acid is titrated with a strong base the pH at any point is determined solely by the concentration of un-titrated acid or excess base.
- The conjugated base that is formed has no effect on pH.

Titration of a weak acid

- When a weak acid is titrated with a strong base, the weak acid dissociates to yield a small amount of H⁺.
- Weak acids or bases do not dissociate completely, therefore an equilibrium expression with K_a must be used.

$$HA \longleftrightarrow H^+ + A^-$$

- When OH⁻ ions are added during titration it is neutralized by H⁺ ions to produce H₂O.
- The removal of the H⁺ ions disturbs the equilibrium thus more HA molecules will ionize to produce H⁺ ions to re-establish the equilibrium.
- This process will continue until all the HA molecules are ionized.

Thus the no. of moles of HA will be equal to the no. of moles of proton.

Titration curve of a **monoprotic** weak acid

Example (1)

• Calculate the appropriate pH values and draw the curve for the titration of 500 ml of 0.1 M weak acid HA with 0.1 M KOH, $pK_a = 5$?

pH = 3

A) At the start point: Before the addition of any base

pH of weak acid
$$pH = \frac{1}{2} (pK_a + p [HA])$$
 $pH = \frac{1}{2} [(5 + (-log 0.1)]$

NOTE: at any point during the titration (after any addition of a base), the pH

should be calculated using Henderson-Hasselbalch equation

pH= pka +
$$log \frac{[A^-]}{[HA]}$$

•Here we will use the no. of moles instead of molarity; because when we

calculate the volume it will give the same ratio at the end

B) pH after the addition of 100 ml of KOH

The no. of moles of HA *originally* present = $0.1 \times 0.5 = 0.05$ mole

Used after any addition of base to calculate moles of HA remaining

- -The no. of moles OH^- added = $M \times V = 0.1 \times 0.1 = 0.01$ mole
- -Thus 0.01 moles of KOH will *react* with 0.01 mole of HA to **produce 0.01 mole A**-
- Moles of HA *remaining* = moles of HA *originally* present –moles of HA *titrated to salt*

$$=0.05 - 0.01 = 0.04$$
 mole

$$-pH = pK_a + Log([A-]/[HA])$$

$$-pH = 5 + Log (0.01/0.04)$$

$$-pH = 4.4$$

C) pH after the addition of 250 ml of KOH

The no. of moles OH^- added = $M \times V = 0.1 \times 0.25 = 0.025$ mole

Thus 0.025 moles of KOH will *react* with 0.025 mole of HA to produce 0.025 mole A

no. of HA *remaining* = moles of HA *originally* present –moles of HA *titrated to salt*

$$= 0.05 - 0.025 = 0.025$$
 mole

$$pH = pK_a + Log([A-]/[HA])$$

$$pH = 5 + Log(0.025/0.025)$$

$$pH = 5$$

Here the [A-] = [HA] thus, pH = pKa → acts as a buffer

D) the pH after the addition of 375 ml of KOH

The no. of moles OH^{-} **added** = $M \times V = 0.1 \times 0.375 = 0.0375$ mole

Thus 0.0375 moles of KOH will *react* with 0.0375 mole of HA to produce

0.0375 mole A⁻

The no. of moles of HA *remaining* = 0.05 - 0.0375 = 0.0125 mole

$$pH = pK_a + Log([A-]/[HA])$$

$$pH = 5 + Log(0.0375/0.0125)$$

$$pH = 5.48$$

E) When 500 ml of KOH is added

$$pOH = \frac{1}{2} (pK_b + p[A^-])$$

The no. of moles OH^- added = $M \times V = 0.1 \times 0.5 = 0.05$ mole

Thus 0.05 moles of KOH will react with 0.05 mole of HA to produce 0.05 mole A

Molarity of A^- = no. of moles / vol. in L

The total volume of <u>whole solution</u> = 1000 ml = 1 Lo

Molarity of A^- = no. of moles / vol. in L

Molarity of $A^- = 0.05 / 1 = 0.05 M$

$$p[A^{-}] = -log[A^{-}]$$

$$p[A^{-}] = - log 0.05$$

$$p[A^{-}] = 1.3$$

$$pK_{w} = pK_{a} + pK_{b}$$

 $pK_{b} = pK_{w} - pK_{a} = 14-5= 9$

$$pOH = \frac{1}{2} (pK_b + p[A^-])$$

$$pOH = \frac{1}{2}(9 + 1.3)$$

$$pOH = 5.15$$

$$pK_w = pH + pOH$$

$$pH = pK_w - pOH$$

$$pH = 14 - 5.15 = 8.85$$

Titration Curve of 500ml of 0.1 M HA

- The components of each point in the titration curve from the previous example is:
 - A) All HA is in the form of CH3COOH
 - B) [CH3COOH] > [CH3COO-]
 - C) $[CH_3COOH] = [CH_3COO^{-}]$
 - D) [CH3COOH] < [CH3COO⁻]
 - E) All as CH3COO

NOTICE:

- When the acid is \emph{less} than half titrated the pH is less than $\emph{pK}_\emph{a}$
- When the acid is **half** titrated the pH = pK_a
- When the acid is \emph{more} than half titrated the pH is greater than $\emph{pK}_{\emph{a}}$

How to calculate the pH at different points of titration curve!

➤ At starting point (Weak acid only is present) →

> At any point within the curve (Weak acid and its conjugate base)

$$pH = pKa + log[A^-]/[HA]$$

-Henderson-Hasselbalch equation-

➤ At end point (conjugate base only is present) →

$$pOH = (pKb + p[A-])/2$$

$$pH = pK_w - pOH$$

Example (2)

The K_a for a **weak acid**, is 1.6 ×10⁻⁶. The morality of acid is 10⁻³ M. What are the:

A) pH.

B) Calculate pK_a and pK_{b.}

A)

$$pH = \frac{1}{2} (pK_a + p [HA])$$

$$pK_a = - log K_a$$

$$pK_a = - log K_a = - log 1.6 \times 10^{-6}$$

$$\rightarrow$$
pK_a = 5.796

$$p[HA] = - log[HA] = - log 10^{-3}$$

$$\rightarrow$$
p [HA] = 3

-apply it to "pH of weak acid"-

$$pH = \frac{1}{2}(5.79 + 3)$$

$$pH = 4.398$$

B)
$$pK_a = -\log K_a$$

 $pK_a = -\log K_a = -\log 1.6 \times 10^{-6}$
 $pK_a = 5.796$

$$pK_a + pK_b = 14$$

 $pK_b = 14 - pK_a = 14 - 5.796$
 $pK_b = 8.204$

Titration curve

of polyprotic acids

Dissociation of polyprotic acids

- A polyprotic acid has more than one proton per molecule, thus it ionizes in successive steps.
- Example: H₂A a "polyprotic acid", diprotic acid

$$H_2A \stackrel{K_{a1}}{\longleftarrow} H^+ + HA^- \stackrel{K_{a2}}{\longleftarrow} H^+ + A^-$$

$$K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$$

$$K_{a2} = \frac{[H^+][A^{-2}]}{[HA^-]}$$

For most common weak diprotic acids:

K_{a1} is larger than the K_{a2}

The pH of H₂A solution is **mainly dependent on**

the first ionization step.

Titration of a weak diprotic acid with strong base

Titration curve of H₃PO₄ (a polyprotic acid)

$$H_{3}PO_{4} \stackrel{Ka_{1}}{\rightleftharpoons} H^{+} + H_{2}PO_{4}^{-} PK_{1} = 2.12$$
 $H_{2}PO_{4}^{-} \stackrel{Ka_{2}}{\rightleftharpoons} H^{+} + HPO_{4}^{2-} PK_{2} = 7.21$
 $H^{+} + PO_{4}^{3-} PK_{3} = 12.30$
 $For H_{3}PO_{4} : K_{a1} > K_{a2} > K_{a3}$

Example (1):

How many ml of 0.1 M NaOH are required to titrate 100 ml of 0.1 M
 H₃PO₄?

No. of moles of $H_3PO_4(H^+) = V \times M(n) = 0.1 \times 0.1(3) = 0.03$ mole

Thus: we need 0.03 moles of NaOH to titrate the acid

M = no. of moles / V

V = no. of moles / M

V = 0.03 / 0.1

V = 0.3 L = 300 ml

Buffers

Buffer

• It is a solution which resist large changes in the pH by partially absorbing addition of <u>limited</u> amounts H⁺ of or OH⁻. ions to the system.

• Buffer pH *Do change* upon the addition of H⁺ of or OH⁻ BUT the change is <u>much less</u> than that would occur in case of buffer absence.

There are two types of buffers

Acidic Buffer

Are made from weak acid and its conjugated base its salt.

Example:

- 1. CH₃COOH / CH₃COONa (Pka)
- → CH3COOH (Weak acid)
- → CH3COONa (conjugated base –its salt-)
- 2. NaH_2PO_4 / Na_2HPO_4 (Pka)

Basic Buffer

Are made from weak base and its conjugated acid [its salt].

Example:

- $1. NH_3 / NH_4Cl (Pkb)$
- → NH₃ (Weak base)
- →NH₄Cl (conjugated acid –its salt-)

Mechanism of Action of Buffers

How does a buffer resist changes in pH?

For Example: In the acetate buffer which is made of acetic acid (CH₃COOH) and sodium acetate (CH₃COONa)

When H⁺ are added it will react with the salt:

- →Thus the buffer converted the free H⁺ into acetic acid which does not affect the pH because it is a weak acid.
- When OH- are added it will react with the acetic acid:

$$CH_3COOH + OH^ CH_3COO^- + H_2O$$

→Thus the buffer converted the free OH⁻ in the **into water and salt** which does not affect the pH.

NOTE: It resists pH changes as long as it does not run out of one of its components.

Buffer Capacity

 Quantitative measure of the buffer's ability to resist changes in the pH is referred to as a buffer capacity.

It is defined as either:

• The no. of moles of H⁺ that must be added to one liter of the buffer in order to decrease the pH by one unit.

OR

• The no. of moles of OH⁻ that must be added to one liter of the buffer in order to increase the pH by one unit.

• The buffer capacity is expressed as β and can be from Henderson-Hasselbalch equation:

$$\beta = \frac{2.3 \ K_a [H^+][C]}{(K_a + [H^+])^2}$$
From the equation \Rightarrow the buffer capacity is directly proportional to the buffer concentration.

• Where:

- β = buffer capacity
- [H⁺] = hydrogen ion concentration of the buffer
- K_a= acid dissociation constant
- [C]= total concentration of buffer components = [HA] + [A⁻].

Handerson-Hasselbalch Equation

- It is often used to preform:
 - To calculate the pH of the buffer.
 - To prepare buffer.
 - 3. To calculate the pH in any point within the titration curve (Except starting and ending point)
- It is derived from the dissociation constant.

$$pH = pKa + log \frac{A^{-}}{HA} = pKa + log \frac{base}{acid}$$
 acid form

$$\mathbf{pOH} = \mathbf{pKb} + \mathbf{log} \frac{\left[\mathbf{HB}^{+}\right]}{\left[\mathbf{B}\right]} = \mathbf{pKb} + \mathbf{log} \frac{\left[\mathbf{acid}\right]}{\left[\mathbf{base}\right]}$$
 base form

Handerson-Hasselbalch Equation

• The buffer capacity is optimal when the ratio of the weak acid/weak base to its salt is 1:1; that is, when, pH = $pK_a OR$ pOH = pK_b

• For a good buffer, the pH of the solution must be within one unit of the pK (pH =pK \pm 1).

Preparation of buffers

Example 1:

What is the concentration of acetic acid and acetate in 0.2 M acetate buffer, and which has a pH = 5 and p K_a = 4.77

- Assume $[A^{-}] = y$ thus, [HA] = 0.2 y
- pH=pKa + log[A-]/[HA]
- 5 = $4.77 + \log y/0.2 y$
- $anti\log 0.23 = y/0.2 y$
- 1.7 = y/0.2-y
- y=0.34-1.7y
- y = 0.34/2.7
- $y=0.126 \ molar$.
- Since [HA] = 0.2 –y then [HA] = 0.2 0.126 = 0.074 molar.

Example 2:

Describe the preparation of 3 L of 0.2 M acetate buffer. Starting from solid sodium acetate trihydrate (A $^{-}$), Mwt = 136 and a 1 M solution of acetic acid (HA); the pK_a = 4.77.

From the previous example, the concentration of:

 $[A^{-}] = 0.126 \text{ M}, [HA] = 0.074 \text{ M} \text{ in } 0.2 \text{ M} \text{ solution in } 1 \text{ L}.$

- SINCE the concentration of $[A^-] = 0.126$ M in 1 L; the *Total* no. of moles in buffer of 3 L = $0.126 \times 3 = 0.378$ moles
- SINCE the concentration of [HA] = 0.073 M in 1 L; the *Total* no. of moles in buffer of 3 L = $0.073 \times 3 = 0.222$ moles
- SINCE A is solid the wt needed = no. of moles \times Mwt = 0.378 \times 136 = 51.4 g
- The volume of HA needed = no. of moles / M = 0.222 / 1 = 0.222 L = 222 ml

51.4 g of solid sodium acetate trihydrate is added to 222 ml of acetic acid and the volume is brought up to 3 L.

Example 3:

1.025 g of anhydrous sodium acetate is dissolved in 100 ml of 0.25 M acetic acid CH₃COOH. Calculate:

- A) The pH of the final solution.
- B) The molarity of the final solution (resulting buffer)

Knowing: Mwt of anhydrous sodium acetate = 82; $pK_a = 4.7$

no. of moles of
$$A^-$$
 in buffer = wt / Mwt = 1.025 / 82= 0.0125 moles

Molarity of
$$A^-$$
 = no. of moles / V in L
= 0.0125 / 0.1
= 0.125 M

no. of moles of **HA** in buffer =
$$M \times V$$

= $0.25 \times 0.1 = 0.025$ moles

Molarity of **HA** = no. of moles / v in L
=
$$0.025 / 0.1 = 0.25$$
 M

B) The molarity of the buffer = the molarity of HA + the molarity of A⁻

Buffer molarity =
$$0.25 + 0.125 = 0.375 M$$

<u>OR</u>

No. of moles of buffer = no. of moles of HA + the no. of moles of A

No. of moles of buffer = 0.025 + 0.0125 = 0.0375 moles

Molarity of buffer = no. of moles / V in L

= 0.0375 / 0.1 = 0.375 M

Example 4:

Describe the preparation of 10 liters of 0.045M potassium phosphate buffer,

pH= 7.5?
$$pK_{a1}$$
= 2.12, pK_{a2} = 7.21, pK_{a3} = 12.32?

1st → Write the equations of phosphoric acid dissociation and the pKa of corresponding ones.

2nd → Choose the pKa value which is near the pH value of the required buffer, to be able to know the ionic species involved in your buffer:

$$H_{3}PO_{4} \stackrel{\longleftarrow}{\longrightarrow} H^{+} + H_{2}PO_{4}^{-} \qquad _{PK_{1} = 2.12}$$
 $H_{2}PO_{4}^{-} \stackrel{\longleftarrow}{\longrightarrow} H^{+} + HPO_{4}^{2}^{-} \qquad _{PK_{2} = 7.21}$
 $HPO_{4}^{2} \stackrel{\longleftarrow}{\longrightarrow} H^{+} + PO_{4}^{3} \qquad _{PK_{3} = 12.30}$

The pH of the required buffer [pH =7.5] is near the value of pKa₂. consequently, **the two** major ionic species present are $H_2PO_4^{-1}$ (conjugate acid) and HPO_4^{2-1} (conjugate base), with the HPO_4^{2-1} predominating {since the pH of the buffer is slightly basic}.

3rd → calculate No. of moles for the two ionic species in the buffer

The buffer can be prepared by several ways as:

- 1. By mixing KH₂PO₄ and K₂HPO₄ in proper proportions.
- 2. By starting with KH_2PO_4 and converting a portion of it into K_2HPO_4 by adding KOH.
- 3. By starting with K_2HPO_4 and converting a portion of it into KH_2PO_4 by adding strong acid as HCl.
- 4. From concentrated H₃PO₄ and solution of KOH

Regardless of which method is used, first calculate the proportion and amounts of the 2 ionic species in the buffer.

- pH = pKa_2 + log [HPO_4^{2-}] / [$H_2PO_4^{--}$] \rightarrow Note that : [A⁻] = HPO_4^{2-} , [HA] = $H_2PO_4^{--}$
- Since the buffer concentration is **0.045M**, so assume \rightarrow [A-] = y , [HA]= **0.045** y
- $7.5 = 7.2 + \log (y / 0.045 y)$
- $7.5-7.2 = \log (y / 0.045-y)$
- 0.3= log(y / 0.045-y) {antilog for both sides}
- 2=(y / 0.045-y) \rightarrow y= 0.09 2 y \rightarrow 3 y = 0.09 \rightarrow y= 0.9/3 = 0.03M \rightarrow conc. of [HPO₄ ²⁻]
- So, conc. of $[H_2PO_4^{-1}] = [HA] = 0.045 y \rightarrow = 0.045 0.03 = 0.015 M$

Now find the number of mole for the two ionic species in the buffer:

- No. of moles of $HPO_4^{2-}(A^-) = M \times V = 0.03 \times 10 = 0.3$ moles.
- No. of moles of H_2PO_4 (HA)= M x V = 0.015 x 10 = 0.15 moles.

Note that Total no. of moles of phosphate buffer = $M \times V$ = 0.045 x 10 = 0.45 moles.

From solid KH₂PO₄ (HA) and K₂HPO₄ (A⁻):

$$wt_g ext{ of } K_2HPO_4 = no. ext{ of moles } x ext{ MW}$$

$$= 0.3 ext{ x } 174 = \textbf{52.2g}$$

$$wt_g ext{ of } KH_2PO_4 = no. ext{ of moles } x ext{ MW}$$

$$= 0.15 ext{ x } 136 = \textbf{20.4g}$$

Dissolve the two solutes in some water and make up the volume to 10L by water.

From solid KH₂PO₄ and solid KOH:

Start with 0.45 mole (same as buffer's total no. of moles) of KH_2PO_4 (HA) and add 0.3 moles of KOH to convert KH_2PO_4 to give K_2HPO_4 (A⁻)

 wt_g of KH_2PO_4 needed = no. of moles x MW = 0.45 x 141.98 = 63.8 g wt_g of KOH needed = no. of moles x MW = 0. 3 x 40 = 12 g

 \rightarrow So, dissolve the 63.8g of KH_2PO_4 and 12g of KOH in some water, mix; then add sufficient water to bring the final volume to 10 liters and check the pH.

From solid K₂HPO₄(A⁻) and 2M HCl:

Start with 0.45 mole (same as buffer's total no. of moles) of K_2HPO_4 (A^-) and add 0.15 moles of HCI to convert K_2HPO_4 to give KH_2PO4 (HA)

$$wt_{g} of K_{2}HPO_{4} = no. of moles x MW$$

$$= 0.45 x 174 = 78.3g.$$

$$M = No. of moles / V_{(L)} thus, V_{(L)} = No. of moles / M$$

$$= 0.15 / 2$$

Dissolve 78.3g of the K_2HPO_4 in a little water then add 75ml of the 2M HCl and make up the volume up to 10 liters with water.

0.075L

• From concentrated (15M) H₃PO₄ and solution of 1.5 M KOH:

Start with 0.45 mole (same as buffer's total no. of moles) of H_3PO_4 and add 0.45 moles of KOH to convert H_3PO_4 to give KH_2PO_4 (HA), THEN add 0.3 moles of KOH to convert KH_2PO_4 to give K_2HPO4 (A⁻)

No. of moles needed of KOH= 0.45+0.3= 0.75 moles

Volume of **KOH** needed= no.of moles / M = 0.75/1.5 = 0.5 L = 500 ml

Volume of H_3PO_4 needed =no.of moles / M = 0.45/15 =0.03 L = 30 ml

 \rightarrow So, Add 500ml of KOH to the30ml of concentrate H₃PO₄, mix; then add sufficient water to bring the final volume to 10 liters, and check the pH.

SELF SOLVE EXAMPLE

 5 L of 0.1 M phosphate buffer with a pH = 12.32 was prepared from Na₃PO₄ and Na₂HPO₄.

Calculate the weight in grams of each component which was used to prepare the buffer, $pK_a = 12$.

Importance of Buffers in Physiological Systems:

- pH plays an important role in almost all biological processes.
- Small change in pH i.e. deceased or high pH can cause metabolic implications in human body like acidosis and alkalosis that can cause death within minutes.
- Important buffers that are dominant in human body are:
 - 1. Bicarbonate buffers
 - 2. Phosphate buffers
 - 3. Protein buffers

Bicarbonates buffers (Buffering in blood)

• Blood is a biological fluid in which Carbonic acid and Hydrogen carbonate buffer system plays an important role in maintaining pH around 7.4.

• In this buffer, carbonic acid (H_2CO_3) act as a weak acid and hydrogen carbonate ion (HCO_3^-) act as conjugate base of a weak acid or salt of weak acid.

$$H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$$

When there is excessive amount of H⁺ in the blood it is consumed by HCO_3^- forming carbonic acid that is a weak acid which does not alter the blood pH so much and when there is excessive amount of OH^- in the blood it is consumed by H_2CO_3 as it will release the H⁺ ions upon excess amount of OH^- in the blood forming H_2O .

Phosphate buffer (Buffering of internal cell fluids)

• This buffer system consists of dihydrogen phosphate ions $(H_2PO_4^{-1})$ as a weak acid and hydrogen phosphate ions (HPO_4^{-2-}) as a conjugate base of weak acid. $H_2PO_4^{-1} \longleftrightarrow H^+ HPO_4^{-2-}$

- If additional hydrogen ions enter the cellular fluid, they are consumed in the reaction with HPO_4^{2-} , and the equilibrium shifts to the left.
- If additional hydroxide ions enter the cellular fluid, they react with $H_2PO_4^-$, producing HPO_4^{2-} , and shifting the equilibrium to the right.

Protein buffer

(Buffering in Cells and Tissues)

• Proteins are mainly composed of amino acids. These amino acids contain functional groups that act as weak acid and bases (COOH and NH₂) when there are sharp changes in pH in order to stabilize the pH within the body cells.

At a near neutral pH, like the pH of blood:

• The carboxyl group is actually COO⁻ instead of COOH. Then, if a protein finds itself in a more acidic solution, the carboxyl group will be able to take on the extra hydrogen ions and return to the COOH configuration.

The amino group is actually NH₃⁺ rather than just NH₂. Then, if a protein finds itself in a more basic environment, its amino groups on its amino acids can actually release their hydrogen ions and return to NH₂.