
 

Chapter 1: Introduction 

    Q: What is a time series? 

A time series is a collection of observations of some phenomenon 

collected sequentially over a period of time.  For example, volume of 

rain over months of the year, number of daily accidents in Saudi Arabia, 

value of quarterly foreign remittances, etc.. .  This means that data have 

chronological order. 



There are many examples of time series in many fields of knowledge 

it can be found in Agriculture - Medicine - Economics - Engineering - 

Education and others.  Therefore, the methods used in time series 

analysis play an important role in the science of statistics. 

 

 

 



Example 1: Figure 1.1 illustrates the profit gain of a company over a 

period of 50 years. 
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Figure 1.1 The profit gain of a company over a period of 50 years 

 

 



Example 2: Figure 1.2 illustrates the average monthly temperatures 
in a city during a period of 6 years. 
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Figure (1.2): average monthly temperatures in a city during a period of 6 years 

 

 

 

 



 

Example 3: Figure 1.3 illustrates the monthly sales for some 
industrial piece during a period of 15 years 
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Figure (1.3): monthly sales for some industrial piece during a period of 15 years 

 

 



1.2 Some used terminology 

A time series is said to be continuous, when observations are taken in a 

continuous manner over time, and to be discrete when observations are 

taken at specific times (usually at equal intervals). In this course we will 

be interested in discrete time series. 

As we know, most of the statistical theory, which we have already 

studied is interested in studying random samples that in which 

observations are independent. But as we have seen from the above 



examples, the nature of time series indicate that the observations 

are not independent. Therefore, statistical analysis to be used for the 

analysis must take into consideration the chronological (or spatial) order 

of the observations. 

When observations are not independent of each other, then it is possible 

to predict future values of the series using the previous values. If it is 

possible to predict the future with complete accuracy, then the series is 

called deterministic.  However, most of the time series are 



stochastic and therefore completely accurate predictions are not 

possible. 

 

Goals of time series analysis 

There are several goals for the analysis of time series, some of which are: 

1- Description 

Time series analysis is used to describe and portray the available 

information that shows how the studied phenomenon evolve over time. 

That is, describe the main features of the time series, which will help in 



determining the best mathematical model that can be appropriate to 

achieve the other goals of the analysis, and get to know the upward and 

downward movements in the time series, and to identify the major 

components such as trend and seasonal changes. So when analyzing any 

time series, the first step must be carried out is to plot the time series as 

we have seen in the   previous examples and get some descriptive 

characteristics. 

 



For example, in Figure (1.3),  
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we notice the existence of strong seasonal effects, as sales increase in 

the middle of the year, and decreases at the ends.  It also seems 

that annual sales increase from year to year (i.e. there is a growing 



trend, so for some series, description of the observations can be 

achieved through a simple model that includes trend component and 

seasonal component. However, some series may need a more 

complicated models. 

2- Interpretation 
 
Interpretation means explaining the changes occurring in the 

phenomenon using other time series that are related to it, or by using 

environmental factors affecting the phenomenon, for example, 



one can study how the sea level is affected by temperature, or how sales 

are affected by advertising.  

3- Control 

In production lines (in the factories), one may get time series that 

designate the product quality in the manufacturing process, and the goal 

here might be to control product quality so that it does not exceed a 

specified level. 

 



4- Forecasting 
Forecasting is considered one of the most important goals of time series 

analysis. As one might want to know or expect the future values of a time 

series. 

 Analysis of time series usually starts by identifying an appropriate model 

that explains the evolution pattern of the series, and then uses the 

model to extrapolate this pattern into the future. 

 The main assumption here is that this pattern will continue in the near 

future. It should be noted that any forecasting method will not give good 



forecasting results if the pattern did not continue in the future, so it is 

always advisable to restrict forecasting to the near future, and update 

the forecasts as new observations become available. 

 

Measuring forecasting errors 

Usually a time series is studied for the purpose of finding out the 

evolution pattern of the historical values of the phenomenon and then 

use this pattern to forecast the future values. However, any future 



forecast will contain a certain amount of uncertainty, this could be 

reflected by adding an error component in the forecasting model.  

Error component is one representing factors that cannot be explained 

by the typical or regular components in the model. Of course, whenever 

the error component is small, this will increase our ability to forecast 

accurately, and vice versa.  

If we assume that the value of the phenomenon at time 𝑡 is 𝑦𝑡 , and that 

our forecast at time 𝑡 is �̂�𝑡 , then forecast error at time 𝑡 is defined as: 



𝜀𝑡 = �̂�𝑡 − 𝑦𝑡  .    𝑡 = 1.2. … . 𝑛 

Where  𝑛 is the length of the series (i.e. no. of observations in the series). 

Examining successive forecasting errors 𝜀𝑡 reveals how good is the 

forecasting model. As we know from regression analysis, a good model 

must produce errors that are random, i.e. errors that are free of any 

systematic changes, as shown in the following figure: 
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If these errors are acceptable, so that the forecasting method is 

considered appropriate then we should measure the size of these errors. 

There are some measures of error size, the most important are: 



a. Mean absolute deviation (MAD):  

It is defined as, 

𝑀𝐴𝐷 =
1

𝑘
∑|𝜀𝑡|

𝑘

𝑖=1

 

                 =
1
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MAD measures the deviations in the same units as the original data. 

 

 



b. Mean Absolute Percentage Error (MAPE): 

This measure finds out how accurate is the model fitted to the data, it is 

given as, 
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It gives the forecasting errors as a percentage, this provide us with a tool 

to compare different models, and their forecasting ability. 

 



c. Mean Squared Deviation (MSD): 
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This measure is similar to the usual measure MSE (mean squared error), 

but it is better in comparing the different models, because the MSE uses 

in the denominator (𝑛 − 𝑟) degrees of freedom, where 𝑟 represent the 

number of estimated parameters in the models, which change with the 



used model, whereas, MSD uses in the denominator (𝑘) degrees of 

freedom (i.e. the number of  obtained forecasts), which does not change 

with the model. Also note that MSD gives more weight for large errors 

as it squares them. 

In all the measures above, we choose the model that produce the lowest 

values for MAD, MSD, MAPE.  

 

 

 



Choosing the appropriate method for forecasting 
 
Choosing the appropriate method of forecasting is one of the most 

important steps in the analysis of time series, which is not an easy task, 

and requires experience, skills, and employing the appropriate statistical 

methods for the data, but generally it depends on many factors 

including:  

A) Minimizing forecasting errors, which is the first criteria analyst  



should pay attention to, these are measured through the three 

criteria mentioned above. 

B) Quality of required forecast. If a point forecast is required, then  

     using simple traditional methods will be enough to achieve the  

    goal. Whereas, if we require to estimate interval forecast and   

   to evaluate it through test of hypothesis, then more sophisticated 

methods should be employed, such as BOX-Jenkins methods. 

C) Cost of used statistical methodology and availability of relevant  



      statistical software. 

D) Extent to which theoretical assumptions upon which forecasting 

model rely are satisfied. This is a very important consideration and 

should be checked. 

Forecasting methods 

It is possible to identify two main forecasting methods: 

 

 



1- Regression approach 

This approach is based on identifying the variable(s) that may have a 

causal relationship with the variable under study that we want to 

predict, this variable is called the dependent variable, then determine 

the appropriate statistical model or appropriate functional relationship 

which explains how the dependent variable is associated to the 

independent or explanatory variables. Using this model, we can predict 



the dependent variable under study. The main disadvantages of this 

approach are: 

a- Difficulty of identifying all the explanatory variables that are   

        related to the dependent variable. 

b- Requires the availability of detailed historical information  

        about all the explanatory variables, and the ability of knowing   

         these variables or predicting them. 

 



2- Time series approach 
 
  This approach relies on analyzing historical data of the variable under 

study in order to determine the pattern it follows. Assuming that this 

pattern will continue in the future, we use it to predict future values of 

the variable. Time series models are divided into three major types: 

a) deterministic models 

b) ad hoc methods 

c) stochastic time series models 



 

• Deterministic models: 

As we know from our study in statistics that the mean model can be 

expressed in the following general form: 

 

𝑦𝑡 = 𝐸(𝑦𝑡) + 𝜀𝑡 

  Where 𝜀𝑡 are uncorrelated  random variables with mean equal to zero 

and a constant variance, this model is called deterministic if we are able 

to express 𝐸(𝑦𝑡) as a direct function of time 𝑡 , and let it be 𝑓(𝑡. 𝛽), 



where the vector 𝛽 denote the parameters of this function. In this case 

it is possible to express the observations of the time series 𝑦𝑡 in the form: 

𝑦𝑡 = 𝑓(𝑡. 𝛽) + 𝜀𝑡 .       𝑡 = 1.2.… . 𝑛 

Which means that future values of the series can be expressed in the 

form: 

𝑦ℎ = 𝑓(ℎ. 𝛽) .       ℎ = 𝑡 + 1.  𝑡 + 2.… 

  This indicate that future values of the series takes on a deterministic 

form, i.e. a non-random form 𝑓(ℎ. 𝛽).  These models are based on two 

main assumptions: 



1) The function 𝑓(𝑡. 𝛽) is a deterministic nonrandom function. 

2) 𝜀𝑡 are uncorrelated random variables with mean zero and a 

constant variance. 

These assumptions indicate that the variables 𝑦1. 𝑦2. … . 𝑦𝑛 are 

uncorrelated. Examples of mathematical functions used in these 

models are the polynomials, exponential functions, and trigonometric 

functions. 

  The deterministic models have some disadvantages: 

1) These methods focus on mathematical logic in trying to find a 

suitable mathematical function that can be used to fit the data more 



than trying to discover the important statistical features of the series, 

and the most important feature is their correlation structure. So they 

are just models to regenerate the observations 𝑦1. 𝑦2. … . 𝑦𝑛.  

2) These models assume that the long-term evolution of the series is 

systematic and regular so that it can be predicted very accurately. 

 

3) These models also assume that the observations are not 

correlated, which is rarely true in different application areas. 



Because of all these disadvantages, the deterministic models usually 

produce statistically less accurate forecasts. 

 

• Ad hoc methods 

   These methods rely on expressing the forecast of the series at time 𝑡 

in terms of the current value 𝑦𝑡, and its past values 𝑦1. 𝑦2. … . 𝑦𝑡−1. So 

if we assume that 𝑡 represent a certain origin point, and that we want 



to predict the value of the series after 𝑘 time intervals, then this 

approach indicate using the following functional relationship: 

�̂�𝑡+𝑘 = 𝑓(𝑦1. 𝑦2. … . 𝑦𝑡−1. 𝑦𝑡) 

Many ways exist to carry out such predictions, such as moving 

averages method, and    exponential smoothing methods. 

a) Simple Moving Average 

This method uses the most recent 𝑘 values of the series to 

predict next value :  



�̂�𝑡+1 =
1

𝑘
[𝑦𝑡 + 𝑦𝑡−1 + …+ 𝑦𝑡−(𝑘−2) + 𝑦𝑡−(𝑘−1)].   𝑡 = 𝑘. 𝑘 + 1. … . 𝑛 

   this means that:   

�̂�𝑡+2 =
1

𝑘
[𝑦𝑡+1 + 𝑦𝑡 + …+ 𝑦𝑡−(𝑘−2)] 

That is, to find a simple moving average �̂�𝑡+2 we use the same values 

used in finding the previous mean �̂�𝑡+1 after replacing the older value 

𝑦𝑡−(𝑘−1) with the most recent one 𝑦𝑡+1 , and it this that gave this 

procedure its name, moving average, because always the mean is 

updated by dropping the oldest observation and adding a new one. 



For example for 𝑘 = 3 , we can form a simple moving average as 

follows: 

             �̂�4 =
1

3
[𝑦3 + 𝑦2 + 𝑦1] 

          �̂�5 =
1

3
[𝑦4 + 𝑦3 + 𝑦2] 

          �̂�6 =
1

3
[𝑦5 + 𝑦4 + 𝑦3] 

                 ⋮ 

        �̂�𝑛 =
1

3
[𝑦𝑛−1 + 𝑦𝑛−2 + 𝑦𝑛−3] 



Choosing the right value for 𝑘 depends on the experience of the 

researcher. Indeed, it is one of the difficulties of using simple moving 

average method.  

Another problem is in assigning equal weights for all observations, for 

example for 𝑘 = 8 , the weight given to the most recent value 𝑦𝑡 is 

equal to the oldest value 𝑦𝑡−7, which contradicts with properties of 

time series, as it is more logical to assign larger weights to the most 

recent observations, that’s why it is preferred to use simple moving 



averages in forecasting when the observed time series is random in 

nature. 

Example:    For the following data, calculate a moving average of            

                     order 𝑘 = 3 : 

355,  451,   435,  558,  556,  573,  565,  608 

 

solution: 

𝑚𝑎1(3) =
𝑦3 + 𝑦2 + 𝑦1 

3
=  
435 + 451 + 355

3
= 419.68 



𝑚𝑎2(3) =
𝑦4 + 𝑦3 + 𝑦2 

3
=  
558 + 435 + 451

3
= 481.33 

In the same manner, we get, 

𝑚𝑎3(3) = 516.33.𝑚𝑎4(3) = 562.33.   𝑚𝑎5(3) = 582.    

𝑚𝑎6(3) = 626.33 

Example: In MINTAB program, open data file “EMPLOY.MTB”, Use 

data Variable (Metals): 

44.2 44.3 44.4 43.4 42.8 44.3 44.4 
44.8 44.4 43.1 42.6 42.4 42.2 41.8 
40.1 42.0 42.4 43.1 42.4 43.1 43.2 
42.8 43.0 42.8 42.5 42.6 42.3 42.9 
43.6 44.7 44.5 45.0 44.8 44.9 45.2 



45.2 45.0 45.5 46.2 46.8 47.5 48.3 
48.3 49.1 48.9 49.4 50.0 50.0 49.6 
49.9 49.6 50.7 50.7 50.9 50.5 51.2 

50.7 50.3 49.2 48.1 

Plotting the data, we get: 
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And we can apply the moving average with order k = 3 as Follows: 

 



 



 
And get the following: 
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• single exponential smoothing 

As we have seen, simple moving average assigns the same weight to all 

observations, that is, it gives both old and recent observations the same 

importance in smoothing, but real life applications dictate that most 

recent observations should have more influence on the smoothing than 

older ones.  

AS previously seen, for the time series 𝑦1. 𝑦2. … . 𝑦𝑡, the simple moving 

average (SMA) of order k has the form: 



�̂�𝑡 =
1

𝑘
(𝑦𝑡 + 𝑦𝑡−1 +⋯+ 𝑦𝑡−𝑘+1)  .   

 

Or,  

�̂�𝑡 =
1

𝑘
𝑦𝑡 +

1

𝑘
𝑦𝑡−1 +⋯+

1

𝑘
𝑦𝑡−𝑘+1 

Or,  

�̂�𝑡 = 𝛼𝑦𝑡 + 𝛼𝑦𝑡−1 +⋯+ 𝛼𝑦𝑡−𝑘+1 

This means that SMA gives all observations the same weight 𝛼. 



This problem can be avoided by giving the old observations 

weights that decrease exponentially, which is called the simple 

exponential smoothing (SES), 

𝑆𝑡 = 𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)
2𝑦𝑡−2….  

   𝑡 = 1.…𝑛.   0 < 𝛼 < 1 

the value 𝑆𝑡 is a weighted average that decreases exponentially, it 

can be written in an recursive manner as follows:  

𝑆𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑆𝑡−1     . 𝑡 = 1.…𝑛;        𝑆0 = �̅� .  0 < 𝛼 < 1 



Example:  Open data file  "EMPLOY.MTB" , use data variable 

(Metals), smooth the data using single exponential smoothing. 

Solution: 

From Minitab, we have: 



 



we get the following window: 

 

And the result is: 
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Where we note that the smoothing is better than that obtained 

from SMA . 



Note also the difference between giving a small value for 𝛼 and 

larger values. If the value is large then we give recent values larger 

effect, while older values has little effect in forecasting.  For small 

values for 𝛼, the resulting series will be smoother, and vice versa for 

large values of 𝛼.  This means that in case the series has lots of 

fluctuations then we use a small value for 𝛼. Usually, we try several 

values for 𝛼 and choose the value that gives the best value of the 

accuracy measures we have seen before.  



  

Note: SES does not provide good forecasts if the series contains 

trend component (see forecasts in the above figure), and therefore 

there are other ways of exponential smoothing that provide better 

forecasts in this case. For example, the so- called double 

exponential smoothing method, which is a generalization to SES, 

where in a first step the original data is smoothed by single 

exponential smoothing, and in the second step the smoothed data is 



smoothed again.  Note that in this case we have two smoothing 

parameters, one for the level of the series, and the other for 

trend. The following figure shows the result of using this method to 

data from the previous example: 



 



 

we get the following: 
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1.6.2.3 Stochastic time series models 

The techniques discussed in the previous lecture are simple and 

traditional, and none of them can be considered to be statistically 

structured methodology for the analysis of time series. The Stochastic 

time series analysis provide more sophisticated methods of 

forecasting. The random model always assumes the existence of a 

theoretical stochastic process able to generate the time series at our 

hands. If it is assumed theoretically that such a process is used to 



produce large group of series on the same time interval under study, 

then every series will be different from the others, however, all group 

of series will follow same probability rules. This is exactly the same 

case as the population and the sample, where we can select many 

different samples from the same population, however these samples 

will follow same probability rules as the population. 

Therefore, the proposed method suggested here, assumes that the 

observations of the time series (𝑦1. 𝑦2. … . 𝑦𝑛) that are observed in the 



time interval (1.2. … . 𝑛) is a realization drawn from multivariate 

random vector (𝑌1. 𝑌2. … . 𝑌𝑛) that have cumulative distribution 

function 𝐹(𝑦1. 𝑦2. … . 𝑦𝑛) which is used to make inferences about the 

future of the stochastic process.  It is well known in statistical science, 

that knowing or determining such a cumulative distribution function is 

a very difficult task, but it is the norm to create a model to describe 

the behavior of the series efficiently, this efficiency depend on how 

such model can reflect properties of the true probability distribution.  



We will present in this course a modern statistical methodology 

for the analysis of time series called Box-Jenkins methodology 

denoted shortly as ARIMA models. 

1.7 Types of change in time series  

Traditional methods of time series analysis rely on dismantling the 

change in a time series into four different components: 

• trend component 



• seasonal component 

• cyclical component 

• random component 

1.7.1 trend component  

If there exist a long term increase (or decrease) in the level of the 

series, then we say there exist a trend component in the series, see 

figure 1.3 for an example. 
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 So when examining the time series plot, often we notice the 

presence of a slow and gradual changes in the short term (increase or 

decrease), and a general tendency to increase in the long term, as it 

happens, for example, in time series of the number of births, or 



the number of pilgrims, or prices of goods annually. On the other 

hand, we may find a general tendency to decrease in the long term, as 

for example, in the series of the number of deaths, or oil stocks, or 

for a particular disease. 

1.7.2 seasonal component  

     Many time series in practice can be affected by what is called 

seasonal pattern changes, by which we mean the series repeats its 

behavior at certain periods of the year, for example, the electric power 



consumption reaches its peak in summer and fall in winter, see figure 

(1.2) for the time series of daily temperature as an example. 
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 Seasonal changes occur at specific periods less than a year, such as 

hour, day, week, month, quarter, etc.  

1.7.3 cyclical variation 

These changes are similar to seasonal variation, but they appear 

in long periods of time (more than one year), and to discover the 

cyclical variation one need a very long annual series, for example, 

climate changes needs data of thirty years or more to discover its 



cycle. Also, economic cycles need a long periods of time, for 

example five or ten Years, to appear. 

1.7.4 Random variation 

After getting rid of seasonal, trend, or cyclical components from the 

data, we are left with a residual series, which represent the irregular 

changes. These changes differ from the other components, as they 

can’t be predicted, and they do not occur according to any law or 

system. 



 Chapter 2:  Basic Concepts 

As we mentioned earlier, the modern time series analysis presented by 

Box and Jenkins in the year (1971), is based on examining the random 

nature of the time series. This methodology assumes that 

there is always a theoretical random process (Stochastic process) 

capable of generating infinite number of time series of a certain 

length 𝑛, and that the observed series we are studying (called 

sometimes  a sample) is just one of them.  We study this sample for the 



purpose of understanding and describing the nature of the random 

stochastic process that generated it.              

Box-Jenkins methodology is popularly used in the scientific 

community of theoretical and applied sciences. It has proven to be 

highly efficient in modeling and forecasting time series that arise in 

various fields of knowledge such as economics, business 

administration, environment, chemistry and engineering,        



among others. The method of Box-Jenkins has several advantages 

including: 

1- It is a comprehensive approach, in the sense that it offers good 

solutions for all stages of analysis in the form of a more scientific 

and rational scheme than other methods through building models, 

diagnosis and estimating the parameters and forecasting future 

values. 



2 - Richness of the stochastic models that this methodology is 

capable of dealing with, enables Box-Jenkins methodology to reflect 

the probabilistic mechanism for a lot of stochastic processes that 

appear in various areas of application. These models are known as 

Autoregressive Moving Average models or ARMA models in short. 

3 - It does not assume independence between the observations of the 

time Series but, in fact, it takes advantage of the dependence 

structure between the observations in the modeling and forecasting 



process, which usually lead to a more accurate and credible 

forecasts than the ones we get through the conventional methods. 

4 - It gives more credible confidence intervals for future values 

when compared to other conventional methods such as 

exponential smoothing. 

However, the method of Box-Jenkins has some disadvantage, 

the most important one is that it requires availability of a large 



number of observations (at least 50 observations), to be able to get a 

good model. 

2.1 Stationarity 

Modern time series analysis assumes that any observation  𝑦𝑡1  at 

certain point of time 𝑡1 is just a single observation randomly chosen 

from a random variable 𝑌𝑡1  (which represents all observations that can 

be observed at time 𝑡1)  and has a cumulative distribution function 

𝐹(𝑌𝑡1). 



Similarly, it assumes that any two observations (𝑦𝑡1 . 𝑦𝑡2) at any two 

different time points (𝑡1. 𝑡2) represents a single point   drawn from 

bivariate random variable (𝑌𝑡1 . 𝑌𝑡2) (which represents all 

observations that can be observed at the two time points (𝑡1. 𝑡2)  

and has a cumulative distribution function 𝐹(𝑌𝑡1 . 𝑌𝑡2). 

 In   general   modern time series analysis assumes the existence of a 

(theoretical) stochastic process capable of generating an infinite 

number of time series, and that the observed time series at hand is 



just one of them, and that there is a probabilistic distribution for the 

random variables (Y1. Y2. … . Yn) . 

2.1.1 Strict Stationarity 

We say that a time series is strictly stationary if the joint cumulative 

probability distribution of any subset of the variables that make up 

the series is not affected by displacing the time forward or backward 

any number of time units. So, if  (𝑡1. 𝑡2. … . 𝑡𝑚) is any subset of time 

units, where 𝑚 = 1.2.3. … and 𝑘 = ±1.±2.… , then we say the series 



is strictly stationary if the joint cumulative probability distribution for 

the variables (𝑌𝑡1 . 𝑌𝑡2 . … . 𝑌𝑡𝑚) is the same as  the joint cumulative 

probability distribution for the variables (𝑌𝑡1+𝑘. 𝑌𝑡2+𝑘. … . 𝑌𝑡𝑚+𝑘) for 

any time point 𝑡 and any time shift k .  Mathematically we can write 

the condition of strict stationarity as:  

𝐹(𝑌𝑡1 . 𝑌𝑡2 . … . 𝑌𝑡𝑚)  = 𝐹(𝑌𝑡1+𝑘. 𝑌𝑡2+𝑘. … . 𝑌𝑡𝑚+𝑘) 

       ⇒                   𝑃(𝑌𝑡1 ≤ 𝑐1. 𝑌𝑡2 ≤ 𝑐2. … . 𝑌𝑡𝑚 ≤ 𝑐𝑚) 

                           = 𝑃(𝑌𝑡1+𝑘 ≤ 𝑐1. 𝑌𝑡2+𝑘 ≤ 𝑐2. … . 𝑌𝑡𝑚+𝑘 ≤ 𝑐𝑚) 



Strict stationarity simply means that the mechanism of generating the 

observations for the stochastic process under consideration is constant 

through time, so that the shape of the model and the parameter estimates 

do not change with time shift.  

 



 

 

 From this definition we can see that strict stationarity necessarily leads 

to the fact that the mean and the variance of the stochastic process are 

constant (of course provided they exist). Also the covariance between 



any two variables 𝑌𝑡 and 𝑌𝑠 depend only on time lag (i.e. the time 

distance between them). 

So strict stationarity leads to the following: 

i) 𝜇𝑡 = 𝐸(𝑌𝑡) =  𝜇 .     𝑡 = 0.±1.±2.… 

ii) 𝜎𝑡
2 = 𝑉𝑎𝑟(𝑌𝑡) =  𝜎

2 .      𝑡 = 0.±1.±2.… 

iii) 𝛾(𝑠. 𝑡) = 𝐶𝑜𝑣(𝑌𝑠. 𝑌𝑡) = 𝐸[(𝑌𝑠 − 𝜇)(𝑌𝑡 − 𝜇)] = 𝛾(𝑠 − 𝑡) 

that is the covariance between (𝑦𝑠. 𝑦𝑡) will be a function in the time lag 

(𝑠 − 𝑡) only, so: 



𝛾(𝑡. 𝑡 − 𝑘) = 𝐶𝑜𝑣(𝑌𝑡. 𝑌𝑡−𝑘) = 𝛾(𝑘) 

 As we know, the variance could be considered as a special case of the 

covariance function 𝛾(𝑠. 𝑡) if  𝑠 = 𝑡 , i.e.  

𝑉𝑎𝑟(𝑌𝑡) = 𝛾(𝑡. 𝑡) 

and if the series is stationary then,  

𝑉𝑎𝑟(𝑌𝑡) = 𝛾(𝑡. 𝑡) = 𝛾(0).     𝑡 = 0.±1.±2.… 

 



2.1.2 Weak Stationarity 

We say that a series is weakly stationary if the moments up to second 

order exist, and: 

1- The expected value or the mean of the process 𝜇𝑡 does not 

depend on time t , i.e. : 

𝜇𝑡 = 𝐸(𝑌𝑡) =  𝜇 . 𝑡 = 0.±1.±2.… 

2- The variance  𝜎𝑡
2 does not depend on time t , i.e. 

𝜎𝑡
2 = 𝑉𝑎𝑟(𝑌𝑡) =  𝜎

2 . 𝑡 = 0.±1.±2.… 



3- Covariance between any two variables depend only on the time 

lag between them, i.e.,  

𝐶𝑜𝑣(𝑌𝑡−𝑘. 𝑌𝑡) = 𝛾(𝑘).   𝑡 = 0.±1.±2.… ; 𝑘 = ±1.±2.… 

 

From the above we can see that strict stationarity always leads to weak 

stationarity, the vice versa is only correct in the case that the joint 

cumulative distribution of the variables (𝑌𝑡1 . 𝑌𝑡2 . … . 𝑌𝑡𝑚) is the 

multivariate normal distribution since this distribution is completely 



defined by its first two moments, in this case only if the stochastic 

process is weakly stationary then it is strictly stationary. 

From now on, if we mention stationarity from now on, then we mean 

weak stationarity. 

2.1.3 The importance of stationarity 

If the statistical characteristics of the stochastic process that generated 

the time series is not stationarity, we will face many difficulties. The 

most important is the large number of parameters, such as expectations, 



variances and covariance’s and the difficulty of interpreting these 

parameters. 

• Reducing the number of parameters: 

If we assume that the process 𝑦𝑡 is stationary and that one 

observation is available at every time point, which is the case in most 

real life time series, so that we have the following observed series  

(𝑦1 . 𝑦2. … . 𝑦𝑛), then the major parameters of the theoretical process 

are :   



𝐸(𝒀) = [𝐸(𝑌1) 𝐸(𝑌2)…𝐸(𝑌𝑛)]
𝑡 = [𝜇1  𝜇2…𝜇𝑛]

𝑡 

 

𝑉𝑎𝑟(𝑌) = 𝛾(𝑠. 𝑡) = [

𝛾(1.1) 𝛾(1.2)… 𝛾(1. 𝑛)

𝛾(2.1) 𝛾(2.2)… 𝛾(2. 𝑛)
⋮ ⋮ ⋮

𝛾(𝑛. 1) 𝛾(𝑛. 2)… 𝛾(𝑛. 𝑛)

] 

 

Where we interpret the mean of the stochastic process at time 𝑡 , i.e. 

𝜇𝑡 as the mean for all values that this process can generate at time 𝑡, 



also, we interpret the variance of the stochastic process at time 𝑡 , i.e. 

𝛾(𝑡. 𝑡) as the variance for all these values. Whereas, the covariance 

𝛾(𝑠. 𝑡) measures the linear dependence between all values that this 

process can generate at time s and time 𝑡.  

Now notice that number of expectations is n, and the number of 

parameters of the variance and covariance matrix is 

𝑛(𝑛 + 1) 2⁄  . Thus, the total number of main parameters to be 

estimated if the process is not stationary are 𝑛(𝑛 + 1) 2⁄ + 𝑛 =



  𝑛(𝑛 + 3) 2⁄  which is a large number especially if the number of 

observations n is large. However, in the case of stationarity, number 

of parameters will be (𝑛 + 2) which are: 

𝜇. 𝛾(0). 𝛾(1). … . 𝛾(𝑛)   

Where in case of stationarity, 𝜇 represent level of the series. Also the 

variance 𝛾(0) measures variability of the process around 𝜇. In the 

same manner we can interpret the auto-covariance at time lag k (i.e. 

𝛾(𝑘)), so 𝛾(1) represent the auto-covariance between variables one 



period of time apart, 𝛾(2) represent the auto-covariance between 

variables two period of times apart, etc. 

Preliminary Stationarity tests 

There are several ways to test the stationarity of the series, some 

of these methods are accurate others are approximate. If the series 

follows a known theoretical model then we can test its stationarity by 

calculating its expectation, variance and covariance functions. If both 

the expectation and variance does not depend on time, and the auto-



covariance function depend only on time lag between any two 

variables, then stationarity of the series can be decided. 

Example:  If the series follow the following model: 

𝑦𝑡 = 𝛽0 + 𝜀𝑡 .     𝑡 = 1.2. … . 𝑛 

Where 𝛽0 is a fixed constant, and the variables 𝜀1. 𝜀2. … are 

uncorrelated random variables with mean zero and contrast variance 

𝜎2. Is the series stationary? 

solution: 



Calculate the expectation, variance and covariance of the process: 

𝐸(𝑌𝑡) = 𝛽0  .   𝑡 = 0.±1.±2.… 

𝑉(𝑌𝑡) =  𝑉(𝛽0 + 𝜀𝑡) = 𝑉(𝜀𝑡) = 𝜎
2 

𝐶𝑜𝑣(𝑌𝑡. 𝑌𝑡−𝑘) = 𝐶𝑜𝑣(𝛽0 + 𝜀𝑡 . 𝛽0 + 𝜀𝑡−𝑘) = 0 .   𝑘 = ±1.±2.… 

Therefore, we note that all the weak stationarity conditions are fulfilled 

here. 

Example:   If the series follow the following model: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜀𝑡 .     𝑡 = 1.2. … . 𝑛 



Where 𝛽0. 𝛽1 are  fixed constants, and the variables 𝜀1. 𝜀2. … are 

uncorrelated random variables with mean zero and contrast variance 

𝜎2. Is the series stationary? 

solution: 

We calculate the expectation of the process: 

𝐸(𝑦𝑡) = 𝛽0 + 𝛽1𝑡  .   𝑡 = 1.2. … 

This means that the expected value of the series is not constant but 

increasing (decreasing) by a constant value if 𝛽1 > 0,  (𝛽1 < 0) i.e. 



the series has a trend component in case 𝛽1 ≠ 0, and hence it is not 

stationary. 

Example: If the series {𝑦𝑡} follow the following model: 

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡 .     𝑡 = 1.2.… . 𝑛 

where {𝜀𝑡}  is a random process as defined in the previous example. Is 

the process stationary?  

solution: 

𝐸(𝑦𝑡) = 𝐸(𝑦𝑡−1) + 𝐸(𝜀𝑡) = 𝐸(𝑦𝑡−1) + 0 = 𝐸(𝑦𝑡−1) .   𝑡 = 1.2. …𝑛 



Which means that the mean of the series is constant, and does not 

depend on time 𝑡. Now we look at the variance,  

Var(𝑦𝑡) = Var(𝑦𝑡−1) + 𝜎
2 + 2𝐶𝑜𝑣(𝑦𝑡−1. 𝜀𝑡) 

                                       = Var(𝑦𝑡−1) + 𝜎
2 

So that Var(𝑦𝑡) ≠ Var(𝑦𝑡−1), i.e. the variance is not constant , and 

hence the process is not stationary. 

 Previous examples have shown how to check stationarity of a time 

series if the mathematical model that explains the behavior of the 



random process generated it is known. But in practical applications 

often this is not the case, and we will mention later some methods 

for investigating stationarity of the series. But as a general guideline is 

to check the plot of time series, and if we notice the observations to 

oscillate around a constant line that pass through the middle of the 

series, then we might be able to believe that the series is stationary.  

However, if we notice existence of a trend component and/or that the 

dispersion of the data change over time then we find this an indication 

of non-stationarity of the series, see figure bellow:  
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If the series is not stationary, then sometimes some mathematical 

transformations might be able to transform it to stationarity, we will 

see this in section 2.5. 

2.2 Auto-Correlation function (ACF) 

For any stationary process {𝑌𝑡}, the auto-covariance function between 

𝑌𝑡 and 𝑌𝑡−𝑘  is defined as: 

𝛾𝑘 = 𝐶𝑜𝑣(𝑌𝑡. 𝑌𝑡+𝑘) = 𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡+𝑘 − 𝜇)] 



This function measure the degree of linear association 

between any two variables of the same time series, for 

example,  𝛾(1.2) measures linear association between all values that 

could be generated by the stochastic process at time point 1, and 

those at time point 2. 

Notes: 



1 - If  𝛾(𝑠. 𝑡) = 0, this means that the two variables 𝑌𝑡 and 𝑌𝑠 are 

linearly uncorrelated, however, they might still be nonlinearly 

correlated. 

2 – If  𝛾(𝑠. 𝑡) = 0, and the two variables 𝑌𝑡 , 𝑌𝑠 have bivariate normal 

distribution then this lead to the fact that they are independent. 

3 - Sample variance can be regarded as a special case of auto-

covariance function 𝛾(𝑠. 𝑡),  by letting 𝑠 = 𝑡, this means that 

𝑣𝑎𝑟(𝑌𝑡) = 𝛾(𝑡. 𝑡). 



4 - If the series is stationary, then auto-covariance function 𝛾(𝑠. 𝑡) is 

a function of the time lag 𝑘 = |𝑠 − 𝑡| only, and usually we denote 

it as 𝛾(|𝑠 − 𝑡|), or 𝛾(𝑘). 

 

2.2.1 what is Autocorrelation 

It is known that the use of covariance function to measure the degree 

of linear dependence between two variables raises some practical 

problems.  



The first: being the lack of reference boundaries (low, high) that can 

be referenced to determine the strength or weakness of the linear 

relationship. Secondly: the covariance depends on the measurement 

units of the data, so it is always preferable to calibrate the covariance 

by dividing by the product of standard deviation of the variables 𝒀𝒕   

and 𝒀𝒔  to get what is known as auto-correlation function. 

Definition: 



The correlation coefficient 𝜌(𝑠. 𝑡) is defined as the correlation 

coefficient between the variables 𝑌𝑡 and 𝑌𝑠 and is given by the form: 

𝜌(𝑠. 𝑡) =
 𝛾(𝑠. 𝑡)

√𝑉𝑎𝑟(𝑌𝑠) 𝑉𝑎𝑟(𝑌𝑡)
 

    =
 𝐸[(𝑌𝑠 − 𝜇𝑠)(𝑌𝑡 − 𝜇𝑡)]

√𝐸(𝑌𝑠 − 𝜇𝑠)
2 𝐸(𝑌𝑡 − 𝜇𝑡)

2
  ; 

                              Where  𝑠. 𝑡 = 0.±1.±2.… 



Since it measures the linear correlation between the same random 

variable data but at different time points, so usually the term 

"autocorrelation function" is used, and in short written as ACF. 

2.2.2 Characteristics of the autocorrelation function 

1 - Autocorrelation between the variable 𝑌𝑡 and itself equal 

one, that is 𝜌(𝑡. 𝑡) = 1. 

2 - 𝜌(𝑡. 𝑠) = 𝜌(𝑠. 𝑡) because  𝛾(𝑡. 𝑠) =  𝛾(𝑠. 𝑡). 

3 - Value of 𝜌(𝑡. 𝑠) always lies in the interval [−1 . 1]. 



4- If 𝛾(𝑠. 𝑡) = 0 , then this indicate that the variables 𝑌𝑡 and 𝑌𝑠 are 

linearly uncorrelated, however, they might still be nonlinearly 

correlated. 

 

If the stochastic process that generated the time series is 

stationary, then we redefine the auto-correlation coefficient as: 

𝜌(𝑘) =
𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)]

√𝐸(𝑌𝑡 − 𝜇 )
2

 



                   =
𝛾(𝑘)

𝛾(0)
;   𝑘 = 0. ±1.±2. .. 

Where 𝛾(0) denote the variance of the stationary process, and 𝛾(𝑘) 

denote its auto-covariance  at time lag k. For example, 𝜌(1) 

measures degree of linear correlation between any two variables 

that are one time period apart, i.e. between 𝑌1 and 𝑌2, or 𝑌99 and 

𝑌100, in general between 𝑌𝑡 and 𝑌𝑡−1. In the same manner,  𝜌(3) 

measures degree of linear correlation between any two variables 



that are 3 time periods apart, i.e. between 𝑌1 and 𝑌4, or 𝑌10 and 𝑌13, 

in general between 𝑌𝑡 and 𝑌𝑡−3. 

2.2.3 The importance of the autocorrelation function 

When analyzing time series, we might face many forms 

of autocorrelation functions, for example: 

• we might find it decaying slowly. 
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• or, decaying very quickly in an exponential form. 
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• or, decaying in sine function form. 
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• Sometimes it cut off suddenly (i.e. equal zero) after a certain 

number of time lags. 

Autocorrelation function ρ(k), plays an   important and  essential 

role  when using Box - Jenkins  methodology for analyzing time 

series.  As the form of the ACF can determine the initial appropriate 



model for the data. It is also one of the important tools in diagnostic 

tests of the residuals of the initial model in order to improve it. 

Example:    Let the random process {𝜀𝑡} be uncorrelated random 

variables with mean zero and constant variance 𝜎2, find 

autocorrelation function of the process {𝜀𝑡} .  

Note: {εt} is called the “white noise process” , and it will be used 

frequently in this course. 

solution: 



According to the definition of the process, then: 

𝐸(𝜀𝑡) = 0.   𝑡 = 0.±1.±2.… 

𝑉𝑎𝑟(𝜀𝑡) = 𝜎
2.   𝑡 = 0.±1.±2.… 

𝛾(𝑘) = 𝐶𝑜𝑣(𝜀𝑡 . 𝜀𝑡−𝑘) = 0.  𝑘 ≠ 0;   𝑡 = 0.±1. ±2.… 

 

𝜌(𝑘) =
𝛾(𝑘)

𝛾(0)
= 0.  𝑘 ≠ 0 

This means that: 



𝜌(𝑘) = {
1. 𝑘 = 0
0. 𝑘 ≠ 0

 

Example: 

If the series  𝑦𝑡 have the following model: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜀𝑡 .     𝑡 = 1.2. … . 𝑛 

Where {𝜀𝑡} is the white noise process as defined in the previous 

example. Find autocorrelation function of the series  𝑦𝑡. 

solution: 



𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝛽0 + 𝛽1𝑡 + 𝜀𝑡) = 𝑉𝑎𝑟(𝜀𝑡) = 𝜎
2 

This is because (𝛽0 + 𝛽1𝑡) is not a random variable, but it is a 

deterministic function.  

and,  

𝛾(𝑠. 𝑡) = 𝐶𝑜𝑣(𝛽0 + 𝛽1𝑠 + 𝜀𝑠.   𝛽0 + 𝛽1𝑡 + 𝜀𝑡) = 0.  𝑠 ≠ 𝑡 

          = 𝐶𝑜𝑣(𝜀𝑠.   𝜀𝑡) = 0.                𝑠 ≠ 𝑡 

So that, 



𝜌(𝑘) = {
1. 𝑘 = 0
0. 𝑘 ≠ 0

 

Example: 

If the process  {𝑦𝑡} have the following model: 

𝑦𝑡 = 𝜀𝑡 − 𝜃𝜀𝑡−1.     𝑡 = 1.2.… . 𝑛 

Where {𝜀𝑡} is the white noise process as defined in the previous 

example. Find the autocorrelation function of the process  {𝑦𝑡}. 

solution: 



𝐸(𝑦𝑡) = 0.   𝑡 = 1.2. … . 𝑛 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟(𝜀𝑡 − 𝜃𝜀𝑡−1) 

                      = 𝑉𝑎𝑟(𝜀𝑡) + 𝜃
2𝑉𝑎𝑟(𝜀𝑡−1) − 2𝐶𝑜𝑣(𝜀𝑡 . 𝜀𝑡−1)              

= 𝜎2 + 𝜃2𝜎2 − 0 = 𝜎2(1 + 𝜃2) ; 𝑡 = 1.2. … 

Now, we find the auto-covariance function for observations that are 

one time lag apart i.e. 𝛾(1): 

𝛾(𝑡. 𝑡 + 1) = 𝐶𝑜𝑣(𝑦𝑡 . 𝑦𝑡+1) 

                      = 𝐶𝑜𝑣(𝜀𝑡 − 𝜃𝜀𝑡−1.   𝜀𝑡+1 − 𝜃𝜀𝑡) = −𝜃𝜎
2 



In the same manner, we find the auto-covariance function for 

observations that are two time lags apart i.e. 𝛾(2): 

𝛾(𝑡. 𝑡 + 2) = 𝐶𝑜𝑣(𝑦𝑡 . 𝑌𝑡+2) 

                      = 𝐶𝑜𝑣(𝜀𝑡 − 𝜃𝜀𝑡−1.   𝜀𝑡+2 − 𝜃𝜀𝑡+1) = 0 

in the same manner, it can also be shown that 𝛾(3) = 𝛾(4) = ⋯ = 0 

So the auto-covariance function has the form: 



𝛾(𝑘) = {
𝜎2(1 + 𝜃2) 𝑘 = 0

−𝜃𝜎2 𝑘 = 1
0. 𝑘 ≥ 2

 

 

thus the auto-correlation function for this process is: 

𝜌(𝑘) = {

1. 𝑘 = 0
−𝜃

1 + 𝜃2
. 𝑘 = 1

0 𝑘 ≥ 2

 

 



2.2.4 Estimating the Autocorrelation Function 

As stated previously the importance of imposing stationarity 

conditions on the stochastic process that generated the observed time 

series. The most important was, reduction of the number of major 

parameters of the process (first and second moments), and easiness 

of their interpretation,  and the possibility of estimating these 

parameters using the available observations 𝑦1. 𝑦2. … . 𝑦𝑛 of the time 



series.  Based on these estimates, we can estimate the sample auto-

correlation function for the stationary process as follows:  

𝑟𝑘 = �̂�(𝑘) =
∑ (𝑦𝑡
𝑛−𝑘
𝑡=1 − �̅�)(𝑦𝑡+𝑘 − �̅�)

∑ (𝑦𝑡
𝑛
𝑡=1 − �̅�)2

 

It can be shown that if the random  process {𝑦t} is  stationary and 

linear, and the  fourth moment 𝐸(yt
4) is bounded, then the estimate 

𝑟𝑘 of the auto-correlation function follow asymptotically a normal 

distribution with mean 𝜌𝑘 and a known variance that also depend 



on 𝜌𝑘. Then it is possible to perform testing of hypothesis for the 

significance of various auto-correlation coefficients at different 

time lags. 

• Bartlett 1946, has proven that if observations q time lags apart 

are not correlated, that is,  

𝜌𝑘 = 0.    𝑘 > 𝑞 

then the sample variance of the statistic 𝑟𝑘 can be 

approximated by: 



𝑉(𝑟𝑘) ≅  
1

𝑛
 (1 + 2 ∑𝜌𝑗

2).     𝑘 > 𝑞

𝑞

𝑗=1

 

Then one can get approximate estimates of standard errors (SE) 

of the estimators 𝑟𝑘 by  replacing 𝜌𝑘 by 𝑟𝑘 and taking the square 

root in the previous form: 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 (1 + 2 ∑𝑟𝑘

2)     

𝑞

𝑗=1

. 𝑘 > 𝑞 



• In the special case when all observations are uncorrelated, 

that is 𝜌𝑘 = 0.  for 𝑘 > 0  then this equation simplifies to: 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 .  𝑘 > 𝑞 

 So if we assume that the process {𝑦t} is completely random, that 

is a white noise process  then, for large sample size the 

distribution of the estimator 𝑟𝑘 (according to central limit 

theorem) is normal distribution with mean 𝜌𝑘 and variance 
1

𝑛
  i.e., 



𝑟𝑘~ 𝑁 (𝜌𝑘.
1

𝑛
) 

This means that if the series at hand is completely random, then 

we can find a 95% Confidence interval for 𝜌𝑘, which is: 

𝑟𝑘 − 1.96 √𝑣𝑎𝑟(𝑟𝑘) < 𝜌𝑘 < 𝑟𝑘 + 1.96 √𝑣𝑎𝑟(𝑟𝑘) 

That is: 

𝑟𝑘 − 1.96 √
1
𝑛⁄ < 𝜌𝑘 < 𝑟𝑘 + 1.96 √

1
𝑛⁄  



• Anderson in 1942 have shown that for a sample of moderate 

size and assuming that the estimator 𝜌𝑘 = 0.  then the 

sample estimator 𝑟𝑘 follows approximately the normal 

distribution, and thus the statistic: 

𝑧 =
𝑟𝑘 − 0

𝑆𝐸(𝑟𝑘)
 

follows approximately standard normal distribution under the 

hypothesis 𝜌𝑘 = 0, thus it can be used to test the hypothesis: 

𝐻0: 𝜌𝑘 = 0   vs   𝐻1: 𝜌𝑘 ≠ 0   for 𝑘 > 𝑞 



We reject the null hypothesis, at significance level 𝛼 if |𝑧| >

𝑧𝛼 2⁄ . 

Note: 

It has been the norm in practical applications to reject the null 

hypothesis: 

 𝜌𝑘 = 0, if |𝑧| > 2  assuming that 𝛼 = 0.05,  

but it should be noted that it is not always preferable to fix 𝛼 at 

a certain value to test the significance of the autocorrelation 



coefficients for all time lags.  Some recent studies have concluded that 

it is preferable to use larger values for 𝛼 at lower time lags, and then 

use smaller values for 𝛼 at larger time lags. Choosing the right value of 

𝛼, depends actually more on the expertize of the researcher, and how 

he reads the different graphs of the data.  

Example: 

The following data represents the number of sold units 

(percentage) yearly at a large department stores: 



Year 1992 1993 1994 1995 1996 1997 1998 1999 

𝑦𝑡 1 3 2 4 3 2 3 2 

 

Calculate the autocorrelation coefficients, and draw the estimated 

autocorrelation function. 

solution: 

One can easily calculate: 

�̅� =
20

8
= 2.5    ;      ∑ (𝑦𝑡

8

𝑡=1
− 2.5)2 = 6 



Also we can find the pairs (𝑦𝑡 − 2.5) : 

Year 1992 1993 1994 1995 1996 1997 1998 1999 

(𝑦𝑡 − 2.5) -1.5 0.5 -0.5 1.5 0.5 -0.5 0.5 -0.5 

 

According to the definition of autocorrelation function 𝑟𝑘 , then: 

𝑟1 = �̂�(1) =
∑ (𝑦𝑡
7
𝑡=1 − 2.5)(𝑦𝑡+1 − 2.5)

6
 



𝑟1 =
1

6
[(−1.5)(0.5) + (0.5)(−0.5) + (−0.5)(1.5) + (1.5)(0.5)

+ (0.5)(−0.5) + (−0.5)(0.5) + (0.5)(−0.5)] = −0.29 

Also,  

𝑟2 = �̂�(2) =
∑ (𝑦𝑡
6
𝑡=1 − 2.5)(𝑦𝑡+2 − 2.5)

6
= 0.17 

Similarly, the rest of the values are calculated: 

𝑟3 = −0.21.  𝑟4 = −0.33.   𝑟5 = 0.21.   𝑟6 = −0.17.   𝑟7 = 0.13 



The auto-correlation function can be drawn such that, on 

the horizontal axis the time lags, 𝑘, and on the vertical axis auto-

correlation coefficients, this figure is called the correlogram. 

 

 



2.2 Auto-Correlation function (ACF) 

For any stationary process {𝑌𝑡}, the auto-covariance function between 

𝑌𝑡 and 𝑌𝑡−𝑘  is defined as: 

𝛾𝑘 = 𝐶𝑜𝑣(𝑌𝑡. 𝑌𝑡−𝑘) = 𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)] 

This function measure the degree of linear association 

between any two variables of the same time series, for 

example,  𝛾(1.2) measures linear association between all values that 



could be generated by the stochastic process at time point 1, and 

those at time point 2. 

 

Notes: 

5 - If 𝛾(𝑠. 𝑡) = 0, this means that the two variables 𝑌𝑡 and 𝑌𝑠 are 

linearly uncorrelated, however, they might still be nonlinearly 

correlated. 



6 - If 𝛾(𝑠. 𝑡) = 0, and the two variables 𝑌𝑡 , 𝑌𝑠 have bivariate normal 

distribution then this lead to the fact that they are independent. 

7 - Sample variance can be regarded as a special case of auto-

covariance function 𝛾(𝑠. 𝑡),  by letting 𝑠 = 𝑡, this means that 

𝑣𝑎𝑟(𝑌𝑡) = 𝛾(𝑡. 𝑡). 

8 - If the series is stationary, then auto-covariance function 𝛾(𝑠. 𝑡) is 

a function of the time lag 𝑘 = |𝑠 − 𝑡| only, and usually we denote 

it as 𝛾(|𝑠 − 𝑡|), or 𝛾(𝑘). 



 

 

2.2.1 what is Autocorrelation 

It is known that the use of covariance function to measure the degree 

of linear dependence between two variables raises some practical 

problems.  



The first: being the lack of reference boundaries (low, high) that can 

be referenced to determine the strength or weakness of the linear 

relationship. Secondly: the covariance depends on the measurement 

units of the data, so it is always preferable to calibrate the covariance 

by dividing by the product of standard deviation of the variables 𝒀𝒕 

and  𝒀𝒔to get what is known as auto-correlation function. 

Definition: 



The correlation coefficient 𝜌(𝑠. 𝑡) is defined as the correlation 

coefficient between the variables 𝑌𝑡 and 𝑌𝑠 and is given by the form: 

𝜌(𝑠. 𝑡) =
 𝛾(𝑠. 𝑡)

√𝑉𝑎𝑟(𝑌𝑠) 𝑉𝑎𝑟(𝑌𝑡)
 

    =
 𝐸[(𝑌𝑠 − 𝜇𝑠)(𝑌𝑡 − 𝜇𝑡)]

√𝐸(𝑌𝑠 − 𝜇𝑠)
2 𝐸(𝑌𝑡 − 𝜇𝑡)

2
  ; 

                              where  𝑠. 𝑡 = 0.±1.±2.… 



Since it measures the linear correlation between the same random 

variable data but at different time points, so usually the term 

"autocorrelation function" is used, and in short written as ACF. 

 

2.2.2 Characteristics of the autocorrelation function 

4 - Autocorrelation between the variable 𝑌𝑡 and itself equal 

one, that is 𝜌(𝑡. 𝑡) = 1. 



5 - 𝜌(𝑡. 𝑠) = 𝜌(𝑠. 𝑡) because  𝛾(𝑡. 𝑠) =  𝛾(𝑠. 𝑡). 

6 - Value of 𝜌(𝑡. 𝑠) always lies in the interval [−1.1]. 

5- If 𝛾(𝑠. 𝑡) = 0 , then this indicate that the variables 𝑌𝑡 and 𝑌𝑠 are 

linearly uncorrelated, however, they might still be nonlinearly 

correlated. 

 

If the stochastic process that generated the time series is 

stationary, then we redefine the auto-correlation coefficient as: 



𝜌(𝑘) =
𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)]

√𝐸(𝑌𝑡 − 𝜇 )
2

 

                   =
𝛾(𝑘)

𝛾(0)
;   𝑘 = 0.±1.±2.. 

Where 𝛾(0) denote the variance of the stationary process, and 𝛾(𝑘) 

denote its auto-covariance  at time lag k. For example, 𝜌(1) 

measures degree of linear correlation between any two variables 

that are one time period apart, i.e. between 𝑌1 and 𝑌2, or 𝑌99 and 

𝑌100, in general between 𝑌𝑡 and 𝑌𝑡−1. In the same manner,  𝜌(3) 



measures degree of linear correlation between any two variables 

that are 3 time periods apart, i.e. between 𝑌1 and 𝑌4, or 𝑌10 and 𝑌13, 

in general between 𝑌𝑡 and 𝑌𝑡−3. 

2.2.3 The importance of the autocorrelation function 

When analyzing time series, we might face many forms 

of autocorrelation functions, for example: 

• we might find it decaying slowly. 



• or, decaying very quickly in an exponential form. 

• or, decaying in sine function form. 

• Sometimes it cut off suddenly (i.e. equal zero) after a certain 

number of time lags. 

Autocorrelation function ρ(k), plays an   important and  essential 

role  when using Box - Jenkins  methodology for analyzing time 

series.  As the form of the ACF can determine the initial appropriate 



model for the data. It is also one of the important tools in diagnostic 

tests of the residuals of the initial model in order to improve it. 

Example:    Let the random process {𝜀𝑡} be uncorrelated random 

variables with mean zero and constant variance 𝜎2, find 

autocorrelation function of the process {𝜀𝑡} .  

Note: {εt} is called the “white noise process” , and it will be used 

frequently in this course. 

solution: 



According to the definition of the process, then: 

 

𝐸(𝜀𝑡) = 0.   𝑡 = 0.±1.±2.… 

𝑉𝑎𝑟(𝜀𝑡) = 𝜎
2.   𝑡 = 0.±1.±2.… 

𝛾(𝑘) = 𝐶𝑜𝑣(𝜀𝑡 . 𝜀𝑡−𝑘) = 0.       𝑘 ≠ 0;   𝑡 = 0.±1.±2.… 

 

𝜌(𝑘) =
𝛾(𝑘)

𝛾(0)
= 0.  𝑘 ≠ 0 



This means that: 

𝜌(𝑘) = {
1. 𝑘 = 0
0. 𝑘 ≠ 0

 

Example: 

If the series  𝑦𝑡 have the following model: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜀𝑡 .     𝑡 = 1.2. … . 𝑛 

Where {𝜀𝑡} is the white noise process as defined in the previous 

example. Find autocorrelation function of the series  𝑦𝑡. 



solution: 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝛽0 + 𝛽1𝑡 + 𝜀𝑡) = 𝑉𝑎𝑟(𝜀𝑡) = 𝜎
2 

This is because (𝛽0 + 𝛽1𝑡) is not a random variable, but it is a 

deterministic function.  

and,  

𝛾(𝑠. 𝑡) = 𝐶𝑜𝑣(𝛽0 + 𝛽1𝑠 + 𝜀𝑠.   𝛽0 + 𝛽1𝑡 + 𝜀𝑡) 

              = 𝐶𝑜𝑣(𝜀𝑠.   𝜀𝑡) = 0.  𝑠 ≠ 𝑡 



So that, 

𝜌(𝑘) = {
1. 𝑘 = 0
0. 𝑘 ≠ 0

 

Example: 

If the process  {𝑦𝑡} have the following model: 

𝑦𝑡 = 𝜀𝑡 − 𝜃𝜀𝑡−1.     𝑡 = 1.2.… . 𝑛 

Where {𝜀𝑡} is the white noise process as defined in the previous 

example. Find the autocorrelation function of the process  {𝑦𝑡}. 



solution: 

𝐸(𝑦𝑡) = 0.   𝑡 = 1.2. … . 𝑛 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝜀𝑡 − 𝜃𝜀𝑡−1) 

                 = 𝑉𝑎𝑟(𝜀𝑡) + 𝜃
2𝑉𝑎𝑟(𝜀𝑡−1) − 2𝐶𝑜𝑣(𝜀𝑡 . 𝜀𝑡−1) 

                 = 𝜎2 + 𝜃2𝜎2 − 0 = 𝜎2(1 + 𝜃2) ; 𝑡 = 1.2. … 

Now, we find the auto-covariance function for observations that are 

one time lag apart i.e. 𝛾(1): 



𝛾(𝑡. 𝑡 + 1) = 𝐶𝑜𝑣(𝑦𝑡 . 𝑦𝑡+1) 

                      = 𝐶𝑜𝑣(𝜀𝑡 − 𝜃𝜀𝑡−1.   𝜀𝑡+1 − 𝜃𝜀𝑡) = −𝜃𝜎
2 

In the same manner, we find the auto-covariance function for 

observations that are two time lags apart i.e. 𝛾(2): 

𝛾(𝑡. 𝑡 + 2) = 𝐶𝑜𝑣(𝑦𝑡 . 𝑌𝑡+2) 

                      = 𝐶𝑜𝑣(𝜀𝑡 − 𝜃𝜀𝑡−1.   𝜀𝑡+2 − 𝜃𝜀𝑡+1) = 0 

in the same manner, it can also be shown that 𝛾(3) = 𝛾(4) = ⋯ = 0 

So the auto-covariance function has the form: 



𝛾(𝑘) = {
𝜎2(1 + 𝜃2) 𝑘 = 0

−𝜃𝜎2 𝑘 = 1
0. 𝑘 ≥ 2

 

 

thus the auto-correlation function for this process is: 

𝜌(𝑘) = {

1. 𝑘 = 0
−𝜃

1 + 𝜃2
. 𝑘 = 1

0 𝑘 ≥ 2

 

 



2.2.4 Estimating the Autocorrelation Function 

As stated previously the importance of imposing stationarity 

conditions on the stochastic process that generated the observed time 

series. The most important was, reduction of the number of major 

parameters of the process (first and second moments), and easiness 

of their interpretation,  and the possibility of estimating these 

parameters using the available observations 𝑦1. 𝑦2. … . 𝑦𝑛 of the time 



series.  Based on these estimates, we can estimate the sample auto-

correlation function for the stationary process as follows:  

𝑟𝑘 = �̂�(𝑘) =
∑ (𝑦𝑡
𝑛−𝑘
𝑡=1 − �̅�)(𝑦𝑡+𝑘 − �̅�)

∑ (𝑦𝑡
𝑛
𝑡=1 − �̅�)2

 

It can be shown that if the random  process {𝑦t} is  stationary and 

linear, and the  fourth moment 𝐸(yt
4) is bounded, then the estimate 

𝑟𝑘 of the auto-correlation function follow asymptotically a normal 

distribution with mean 𝜌𝑘 and a known variance that also depend 



on 𝜌𝑘. Then it is possible to perform testing of hypothesis for the 

significance of various auto-correlation coefficients at different 

time lags. 

• Bartlett 1946, has proven that if observations q time lags apart 

are not correlated, that is,  

𝜌𝑘 = 0.    𝑘 > 𝑞 

then the sample variance of the statistic 𝑟𝑘 can be 

approximated by: 



𝑉(𝑟𝑘) ≅  
1

𝑛
 (1 + 2 ∑𝜌𝑗

2).     𝑘 > 𝑞

𝑞

𝑗=1

 

Then one can get approximate estimates of standard errors (SE) 

of the estimators 𝑟𝑘 by  replacing 𝜌𝑘 by 𝑟𝑘 and taking the square 

root in the previous form: 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 (1 + 2 ∑𝑟𝑘

2)     

𝑞

𝑗=1

. 𝑘 > 𝑞 



• In the special case when all observations are uncorrelated, 

that is 𝜌𝑘 = 0.  for 𝑘 > 0  then this equation simplifies to: 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 .  𝑘 > 𝑞 

 So if we assume that the process {𝑦t} is completely random, that 

is a white noise process  then, for large sample size the 

distribution of the estimator 𝑟𝑘 (according to central limit 

theorem) is normal distribution with mean 𝜌𝑘 and variance 
1

𝑛
  i.e., 



𝑟𝑘~ 𝑁 (𝜌𝑘.
1

𝑛
) 

This means that if the series at hand is completely random, then 

we can find a 95% Confidence interval for 𝜌𝑘, which is: 

𝑟𝑘 − 1.96 √𝑣𝑎𝑟(𝑟𝑘) < 𝜌𝑘 < 𝑟𝑘 + 1.96 √𝑣𝑎𝑟(𝑟𝑘) 

That is: 

𝑟𝑘 − 1.96 √
1
𝑛⁄ < 𝜌𝑘 < 𝑟𝑘 + 1.96 √

1
𝑛⁄  



• Anderson in 1942 have shown that for a sample of moderate 

size and assuming that the estimator 𝜌𝑘 = 0.  then the 

sample estimator 𝑟𝑘 follows approximately the normal 

distribution, and thus the statistic: 

𝑧 =
𝑟𝑘 − 0

𝑆𝐸(𝑟𝑘)
 

follows approximately standard normal distribution under the 

hypothesis 𝜌𝑘 = 0, thus it can be used to test the hypothesis: 

𝐻0: 𝜌𝑘 = 0   vs   𝐻1: 𝜌𝑘 ≠ 0   for 𝑘 > 𝑞 



We reject the null hypothesis, at significance level 𝛼 if |𝑧| >

𝑧𝛼 2⁄ . 

Note: 

It has been the norm in practical applications to reject the null 

hypothesis: 

 𝜌𝑘 = 0, if |𝑧| > 2  assuming that 𝛼 = 0.05,  

but it should be noted that it is not always preferable to fix 𝛼 at 

a certain value to test the significance of the autocorrelation 



coefficients for all time lags.  Some recent studies have concluded that 

it is preferable to use larger values for 𝛼 at lower time lags, and then 

use smaller values for 𝛼 at larger time lags. Choosing the right value of 

𝛼, depends actually more on the expertize of the researcher, and how 

he reads the different graphs of the data.  

 

 

Example: 



The following data represents the number of sold units 

(percentage) yearly at a large department stores: 

Year 1992 1993 1994 1995 1996 1997 1998 1999 

𝑦𝑡 1 3 2 4 3 2 3 2 

 

Calculate the autocorrelation coefficients, and draw the estimated 

autocorrelation function. 

solution: 



One can easily calculate: 

�̅� =
20

8
= 2.5    ;      ∑ (𝑦𝑡

8

𝑡=1
− 2.5)2 = 6 

Also we can find the pairs (𝑦𝑡 − 2.5) : 

Year 1992 1993 1994 1995 1996 1997 1998 1999 

(𝑦𝑡 − 2.5) -1.5 0.5 -0.5 1.5 0.5 -0.5 0.5 -0.5 

 

According to the definition of autocorrelation function 𝑟𝑘 , then: 



𝑟1 = �̂�(1) =
∑ (𝑦𝑡
7
𝑡=1 − 2.5)(𝑦𝑡+1 − 2.5)

6
 

𝑟1 =
1

6
[(−1.5)(0.5) + (0.5)(−0.5) + (−0.5)(1.5) + (1.5)(0.5)

+ (0.5)(−0.5) + (−0.5)(0.5) + (0.5)(−0.5)] = −0.29 

Also,  

𝑟2 = �̂�(2) =
∑ (𝑦𝑡
6
𝑡=1 − 2.5)(𝑦𝑡+2 − 2.5)

6
= 0.17 

Similarly, the rest of the values are calculated: 



𝑟3 = −0.21. 𝑟4 = −0.33.   𝑟5 = 0.21.    

𝑟6 = −0.17.   𝑟7 = 0.125 

The auto-correlation function can be drawn such that, on 

the horizontal axis the time lags, 𝑘, and on the vertical axis auto-

correlation coefficients, this figure is called the correlogram. 

 



 

2.3 Partial autocorrelation function 

The idea of this correlation arise as follows: 



 If  two variables, say,   𝑌1 and 𝑌3 are found to be correlated , then 

this might be because of correlation between them and a third 

variable, 𝑌2 , so if we can calculate correlation between  𝑌1 and 𝑌2 , 

and correlation between 𝑌3 and  𝑌2, and remove or control this 

correlation, then the resulting correlation is  called partial auto-

correlation . 

𝑌2 𝑌3 𝑌1 



The autocorrelation between   𝑌1 and 𝑌3 where the effect of  𝑌2 has 

been removed  or controlled is called the partial auto-

correlation  between 𝑌1 and 𝑌3 . 

This idea can be applied to any number of variables, such that the 

correlation between any two variables with the removal of the 

effect of variables that falls between them.  

One can calculate the auto-correlation between the two variables 

𝑌𝑡 and 𝑌𝑡−𝑘 , and removing or controlling the effect of all the 



variables that fall between them, i.e. (𝑌𝑡−𝑘+1. … . 𝑌𝑡−1), this is called 

the partial auto-correlation  between 𝑌𝑡 and 𝑌𝑡−𝑘 . 

 

 

   The basic idea behind the partial auto-correlation is calculating 

the linear correlation coefficient between [𝑌𝑡 −

𝐸(𝑌𝑡|𝑌𝑡−1. … . 𝑌𝑡−𝑘+1)] and [𝑌𝑡−𝑘 − 𝐸(𝑌𝑡−𝑘|𝑌𝑡−1. … . 𝑌𝑡−𝑘+1)]  

 ........... 𝑌t−k 𝑌t−k+1 𝑌t−1 𝑌t 



Where 𝐸(𝑌𝑡|𝑌𝑡−1. … . 𝑌𝑡−𝑘+1) and 𝐸(𝑌𝑡−𝑘|𝑌𝑡−1. … . 𝑌𝑡−𝑘+1) are 

calculated from the corresponding  conditional probability 

distributions . 

2.3.1  Yule-Walker system of equations  

Assuming that we have a stationary process with mean equal 

to zero, we can write a multiple regression model of order 

𝑝 as Follows: 

𝑌𝑡 = 𝜙11𝑌𝑡−1 + 𝜙22𝑌𝑡−2 +⋯+𝜙𝑘𝑘𝑌𝑡−𝑝 + 𝜀𝑡 



Where  𝜀𝑡 is the white noise process, multiplying both sides by 

𝑌𝑡−𝑘 , and taking expectations, we find: 

𝐸(𝑌𝑡𝑌𝑡−𝑘)

= 𝜙11𝐸(𝑌𝑡−1𝑌𝑡−𝑘) + 𝜙22𝐸(𝑌𝑡−2𝑌𝑡−𝑘) + ⋯+𝜙𝑘𝑘𝐸(𝑌𝑡−𝑝𝑌𝑡−𝑘)

+ 𝐸(𝜀𝑡𝑌𝑡−𝑘) 

i.e, 

𝛾𝑘 = 𝜙11𝛾𝑘−1 + 𝜙22𝛾𝑘−2 +⋯+𝜙𝑘𝑘𝛾𝑘−𝑝 

And dividing both sides by 𝛾0 , we find: 



𝜌𝑘 = 𝜙11𝜌𝑘−1 + 𝜙22𝜌𝑘−2 +⋯+𝜙𝑘𝑘𝜌𝑘−𝑝  , 𝑘 ≥ 1 

This is called the Yule-Walker system of equations, and consists of 

a 𝑘 linear equation in the unknowns 𝜙11, 𝜙22, … , 𝜙𝑘𝑘 .  We 

can solve this system by the determinants to get 𝜙𝑘𝑘 ( The 

mathematical derivation details for this is not the concern of this 

course) : 



𝜙𝑘𝑘 =

{
 
 
 
 

 
 
 
 

1 . 𝑘 = 0
𝜌1 . 𝑘 = 1

|

1 𝜌1 ⋯ 𝜌𝑘−2  𝜌1
𝜌1 1 ⋯ 𝜌𝑘−3   𝜌2
⋮     ⋮         ⋮    ⋮ ⋮
𝜌𝑘−1 𝜌𝑘−2 … 𝜌1 𝜌𝑘

|

|

1   𝜌1 ⋯ 𝜌𝑘−2 𝜌𝑘−1
𝜌1 1 ⋯ 𝜌𝑘−3 𝜌𝑘−2
⋮              ⋮     ⋮    ⋮ ⋮
𝜌𝑘−1 𝜌𝑘−2 … 𝜌1 1   

|

. 𝑘 = 2.3. …

}
 
 
 
 

 
 
 
 

 

Where | | denote the determinant. 



We note that for large values of 𝑘, the above solution is difficult to 

find, thus another approach that uses recurrence relations is 

proposed in the literature, as follow: 

𝜙00 = 1 

𝜙11 = 𝜌1 

  

𝜙𝑘𝑘 =
𝜌𝑘 − ∑ 𝜙𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝜙𝑘−1,𝑗𝜌𝑗
𝑘−1
𝑗=1

 



Where,  

𝜙𝑘𝑗 = 𝜙𝑘−1.𝑗 − 𝜙𝑘𝑘𝜙𝑘−1.𝑘−𝑗     .𝑗=1.2.….𝑘−1 

2.3.2  Properties of partial autocorrelation function (PACF) 

This function has several properties, including: 

1- partial autocorrelation coefficient at time lag zero is equal 

to one, that is, 𝜙00 = 1. 

2- The value of 𝜙𝑘𝑘 always fall in the closed interval [−1,1]. 



3-  𝜙11 = 𝜌1 , this is because there are no observations fall 

between 𝑌𝑡−1 and 𝑌𝑡 . 

4- If 𝜙𝑘𝑘 = 0, then this means there is no linear partial 

autocorrelation between 𝑌𝑡−𝑘 and 𝑌𝑡 , however, there might be 

a nonlinear partial autocorrelation between them. 

 

 

 



2.3.3 Estimating the partial autocorrelation function 

One can get the sample partial autocorrelation function from 

the previous equations by replacing 𝜙𝑘𝑘 by 𝑟𝑘𝑘 , and 𝜌𝑘  by  𝑟𝑘 . 

The statistic 𝑟𝑘𝑘 is an estimator for 𝜙𝑘𝑘 i.e.: 

�̂�𝑘𝑘 = 𝑟𝑘𝑘   . 𝑘 = 0.1.… 

To function 𝑟𝑘𝑘 has the following properties: 



1- Anderson and Quenouille  (1949) have found that if the 

partial correlation coefficient 𝜙𝑘𝑘 = 0, and for a large sample 

size, then the estimated sample partial autocorrelation 

coefficients 𝑟𝑘𝑘 follow the normal distribution with estimated 

standard error:  

𝑠𝑒(𝑟𝑘𝑘) ≅ √
1

𝑛  
,     𝑘>0 

2- For large sample size n, we can carry out the following test: 

𝐻0: 𝜙𝑘𝑘 = 0 



𝐻1: 𝜙𝑘𝑘 ≠ 0 

Where we use the statistic: 

𝑍 =
|𝑟𝑘𝑘| − 0

√1
𝑛
 

= √𝑛  |𝑟𝑘𝑘| 

and reject 𝐻0 at significance level 𝛼, if  |𝑍| > 𝑧𝛼 2⁄  

Example:  



The following data represent the daily demand of a particular 

product: 

158 222 248, 216 226 239, 206 178 169 

Calculate the autocorrelation function and partial 

autocorrelation function and draw them. 

solution: 

1- Finding the autocorrelation function 𝑟𝑘: 



First we calculate the mean of the series:  

 

�̅� =
1

9
∑𝑍𝑖 =

1

9
[158 +⋯+ 169] = 206.89 

 

sample autocorrelation function has the form: 

𝑟𝑘 =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝑘 − �̅�)
9
𝑡=𝑘+1

∑ (𝑦𝑡 − �̅�)
29

𝑡=1

. 𝑘 = 0.1. …. 

We need to find the quantities: 



 

𝑟1 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡−1−�̅�)
9
𝑡=2

∑ (𝑦𝑡−�̅�)
29

𝑡=1
,  ………………..….,   

 𝑟8 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡−8−�̅�)
9
𝑡=9

∑ (𝑦𝑡−�̅�)
29

𝑡=1
 

Which means that if we have 𝑛 observations, then we need to 

calculate (𝑛 − 1) coefficients of 𝑟𝑘 . To simplify calculations, we 

will find first the following pairs, (𝑦𝑡 − �̅�) = (𝑦𝑡 − 206.89) as 

follow: 



(158 − 206.89). (222 − 206.89).… . (169 − 206.89) 

⟹ (−48.89). (15.11). (41.11). (9.11) … . (−37.89) 

Then we get the required 𝑟𝑘 coefficients as follow: 

𝑟1 =
(−48.89 × 15.11) + (15.11 × 41.11) + ⋯+ (−28.89 × −37.88)

(−48.89)2 + (15.11)2 +⋯+ (−37.89)2
= 0.2651 

𝑟2 =
(−48.89 × 41.11) + (15.11 × 9.11) + ⋯+ (−0.89 × −37.88)

(−48.89)2 + (15.11)2 +⋯+ (−37.89)2
= −0.212 

And the same for other coefficients, 

𝑟3 = −0.076 .   𝑟4 = −0.183 .  𝑟5 = −0.387.  



 𝑟6 = −0.242, 

𝑟7 = 0.104.  𝑟8 = 0.230 

Drawing the correlogram , we have: 
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The following table shows the result of calculations in the Minitab 

: 

Autocorrelation Function: C2 

Lag  ACF       T    

1  0.265116  0.80  
2 -0.211557 -0.59   
3 -0.076111 -0.21   
4 -0.182772 -0.49   
5 -0.386675 -1.01   
6 -0.242061 -0.57   
7  0.104208  0.24   
8  0.229851  0.52  

 

We can also estimate the variance of 𝑟𝑘 from relationship: 



�̂�(𝑟𝑘) ≅  
1

𝑛
 (1 + 2 ∑𝑟𝑗

2).     𝑞 < 𝑘

𝑞

𝑗=1

 

Then: 

�̂�(𝑟1) ≅  
1

9
 (1 + 2 ∑𝑟𝑗

2).     𝑞 < 1

0

𝑗=1

 

  ≅  
1

9
(1 + 2𝑟0

2) =  
1

9
(1 + 2(0)2) =

1

9
= 0.11  

�̂�(𝑟2) ≅  
1

9
 (1 + 2 ∑𝑟𝑗

2).     𝑞 < 2

1

𝑗=1

 



            ≅  
1

9
(1 + 2𝑟1

2) =
1

9
(1 + 2(0.2651)2) = 0.12 

and the same for the rest of the values we get: 

 

�̂�(𝑟3) ≅  
1

9
(1 + 2𝑟1

2 + 2𝑟2
2) ≅ 0.1367 

�̂�(𝑟4) ≅ 0.138 ,  �̂�(𝑟5) ≅ 0.1454 ,  �̂�(𝑟6) ≅ 0.1787. 

�̂�(𝑟7) ≅ 0.1931. �̂�(𝑟8) ≅ 0.2013. 

 

We note that the as time lag between the variables increase, then 

the variance of the estimated correlation coefficients increases. 



2- Finding the partial autocorrelation 𝑟𝑘𝑘: 

 

𝑟00 = 1 

𝑟11 = 𝑟1 = 0.265. 

And the rest of the coefficients are found through the 

recurrence relation: 

𝑟𝑘𝑘 =
𝑟𝑘 − ∑ 𝑟𝑘−1.𝑗𝑟𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝑟𝑘−1.𝑗𝑟𝑗
𝑘−1
𝑗=1

.   𝑘 = 2.3. … 

 



Where, 

𝑟𝑘𝑗 = 𝑟𝑘−1.𝑗 − 𝑟𝑘𝑘𝑟𝑘−1.𝑘−𝑗     . 𝑗 = 1.2. … . 𝑘 − 1 

So,  

 

𝑟22 =
𝑟2 − ∑ 𝑟1.𝑗  𝑟2−𝑗

1
𝑗=1

1 − ∑ 𝑟1.𝑗  𝑟𝑗
1
𝑗=1

=
𝑟2 − 𝑟11𝑟1
1 − 𝑟11𝑟1

 

                                         = 
(−0.212)−(−0.265)(0.265)

1−(−0.265)(0.265)
= −0.304 

 

𝑟33 =
𝑟3 − ∑ 𝑟2.𝑗  𝑟3−𝑗

2
𝑗=1

1 − ∑ 𝑟2.𝑗  𝑟𝑗
2
𝑗=1

=
𝑟3−[𝑟21𝑟2 + 𝑟22𝑟1]

1 − [𝑟21𝑟1 + 𝑟22𝑟2]
 



So we need the value of 𝑟21: 

     𝑟21 = 𝑟11 − 𝑟22𝑟11 = 0.345 

Thus, 

𝑟33 =
−0.076 − [(0.345)(−0.212) + (−0.304)(0.265)]

1 − [(0.345)(0.265) + (−0.304)(−0.212)]
= 0.092 

The same calculations for the other values: 

𝑟44 = −0.298 

𝑟55 = −0.294 



𝑟66 = −0.207 

𝑟77 = 0.013 

𝑟88 = 0.042 

The variance of these coefficients is estimated by: 

�̂�(𝑟𝑘𝑘) ≅  
1

𝑛
=
1

9
 

The following table shows the result of calculations in 

the Minitab: 

 



 

 

 

 Partial Autocorrelation Function: C2 

                                                                                 Lag     ACF            T 

1   0.265116   0.80 

2  -0.303151  -0.91 

3   0.091617   0.27 

4  -0.298000  -0.89 

5  -0.294454  -0.88 

6  -0.206605  -0.62 

7   0.013411   0.04 

8   0.042363   0.13 
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2.4 Time series operators 

Proper understanding of Box-Jenkins methodology (which will be 

discussed later) depends on understanding how some important 



operators work, such as difference operator, and backshift 

operator.  

2.4.1 Backshift operator 

If the value of the series at time 𝑡 is 𝑦𝑡, and at time 𝑟 is 𝑦𝑟 , then the 

backshift operator B, is defined as follow: 

𝐵𝑦𝑡=𝑦𝑡−1 

𝐵2𝑦𝑡=𝐵𝑦𝑡−1 = 𝑦𝑡−2 

⋮ 

𝐵𝑟𝑦𝑡=𝑦𝑡−𝑟 .   𝑟 = 1.2. … 

 
 



For example, for the model: 
𝑦𝑡 = 𝑦𝑡−1 + 𝑒𝑡  

 
It can be rewritten using the backshift operator as follows: 

𝑦𝑡 − 𝑦𝑡−1 = 𝑒𝑡 ⇒ 𝑦𝑡 − 𝐵𝑦𝑡 = 𝑒𝑡  ⇒ (1 − 𝐵)𝑦𝑡 = 𝑒𝑡 

 
The backshift operator plays an important role in the algebraic 

manipulations when working with Box-Jenkins methodology, 

where it is used in polynomial forms, such as: 

1- Autoregressive operator 

This is defined as: 

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯− 𝜙𝑝𝐵

𝑝 



Where 𝜙(𝐵) is a polynomial of order 𝑝 in the operator 𝐵, and 

𝜙1. 𝜙2. … . 𝜙𝑝 are constants. 

The polynomial 𝜙(𝐵) is used with values of the time series 𝑦𝑡 as 

follows: 

𝜙(𝐵)𝑦𝑡 = 𝑦𝑡 − 𝜙1𝑦𝑡−1 − 𝜙2𝑦𝑡−2 −⋯− 𝜙𝑝𝑦𝑡−𝑝 

2- Moving Averages operator 

This is defined as: 

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞  

Where 𝜃(𝐵) is a polynomial of order 𝑞 in the operator 𝐵, and 

𝜃1. 𝜃2. … . 𝜃𝑞 are constants. 



The polynomial 𝜃(𝐵) is used with values of the white noise 

process 𝜀𝑡 as follows: 

𝜃(𝐵)𝜀𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 

2.4.2  Difference operator 

This operator is denoted as ∇, an is defined as follows: 

If we have a time series 𝑦𝑡, then the difference operator is defined 

as: 

∇𝑦𝑡=𝑦𝑡 − 𝑦𝑡−1 

∇2𝑦𝑡=∇∇𝑦𝑡 = ∇(𝑦𝑡 − 𝑦𝑡−1) 

                                           = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) 

                         = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 



The relationship between the backshift and difference operators 
can be noted from the following relation: 

∇= (1 − B) 
 and in general, 

∇𝑟𝑦𝑡 = (1 − B)
𝑟𝑦𝑡 

For example if we applied this relation to find ∇2𝑦𝑡, we get: 
∇2𝑦𝑡 = (1 − B)

2𝑦𝑡 

                     = (1 − 2B + B2)𝑦𝑡 

                        = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 
 
which is the same result that we found previously. 
 

2.5 Transformations for non-stationary time series 



Time series in many applications are often not stationary in 

the mean, where we find the level of the series is either increasing 

or decreasing with time. It is also possible to find some series that 

have variance changing with time, and it is possible to have both 

forms of non-stationarity to exist in a time series. However, luckily, 

in many situations it is possible to transform the time series into a 

stationary series through simple transformations. In this case we 

call the time series as homogeneous stationary time series. 

 In what follows we will cast some light on some of the most 

important mathematical transformations used to transform the 

nonstationary stochastic models into stationary ones. 



2.5.1 Differences of the series 

If the observed time series 𝑦𝑡 shows some trend component –either 

deterministic or stochastic- then taking the first differences of 𝑦𝑡  

usually succeeds in transforming the series into a stationary series, 

so if we denote the resulting series as 𝑧𝑡, then: 

𝑧𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 . 𝑡 = 2.3. … . 𝑛 

 
Where 𝑛 denote the number of observations available, or what is 

called the length of the series. So, if the observations of the 

nonstationary series are 𝑦1. 𝑦2. … . 𝑦𝑛, then the first differences are 

found as follows: 



𝑧𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 𝑦𝑡−1 𝑦𝑡 

- - 𝑦1 

𝑧2 = 𝑦2 − 𝑦1 𝑦1 𝑦2 

𝑧3 = 𝑦3 − 𝑦2 𝑦2 𝑦3 

   

𝑧𝑛 = 𝑦𝑛 − 𝑦𝑛−1 𝑦𝑛−1 𝑦𝑛 

And as we note that taking differences of first order, we lose one 

observation, and taking difference of order two, we lose two 

observations, etc. 

Example: 

If the series 𝑦𝑡 follow the following model: 



𝑦𝑡 = 𝛽0 + 𝛽1𝑡 +𝑊𝑡 .     𝑡 = 1.2. … 𝑛 

Where {𝑊𝑡} is a stationary process having a mean 𝜇, variance 𝜎2, 

and covariance function 𝛾𝑘 , prove that the series 𝑦𝑡is not 

stationary. How would you transform it to a stationary series? 

 
  Solution: 

𝐸(𝑦𝑡) = 𝛽0 + 𝛽1𝑡 + 𝜇 

It is clear that the mean changes with time, Therefore the series 

is not stationary in the mean. Now we find the following: 

𝑦𝑡−1 = 𝛽0 + 𝛽1(𝑡 − 1) +𝑊𝑡−1 

From which we can find the first differences: 



 

And we could create the first series of the differences ∇𝑦𝑡: 

   𝑧𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

                     = [𝛽0 + 𝛽1𝑡 +𝑊𝑡] − [𝛽0 + 𝛽1(𝑡 − 1) +𝑊𝑡−1] 

                               = 𝛽1 +𝑊𝑡 −𝑊𝑡−1  . 𝑡 = 2.3. … . 𝑛 

 

Now we can see the effect of taking the first differences 

transformation on the series: 

𝐸(𝑧𝑡) = 𝛽1 + 𝜇 − 𝜇 = 𝛽1 

This means that the series 𝑧𝑡 is stationary in the mean. 

Also, its variance is: 



 

 

𝑉𝑎𝑟(𝑧𝑡) = 𝑣𝑎𝑟(𝛽1 +𝑊𝑡 −𝑊𝑡−1 ) = 𝑉𝑎𝑟(𝑊𝑡 −𝑊𝑡−1) 

= 𝑉𝑎𝑟(𝑊𝑡) + 𝑉𝑎𝑟(𝑊𝑡−1) − 2𝐶𝑜𝑣(𝑊𝑡 .𝑊𝑡−1) 

                                        = 2𝜎2 − 2𝛾1 

Which is free of time 𝑡, so 𝑧𝑡 is stationary in the variance. We can 

also, see the effect of difference operator on the auto-covariance 

function, lets denote the auto-covariance function for transformed 

series 𝑧𝑡 as 𝛾𝑧(𝑘), then: 

 

 



𝛾𝑧(1) = 𝐶𝑜𝑣(𝑧𝑡 . 𝑧𝑡−1) 

             = 𝐶𝑜𝑣( [𝛽1 +𝑊𝑡 −𝑊𝑡−1]. [𝛽1 +𝑊𝑡−1 −𝑊𝑡−2]) 

               = 𝐶𝑜𝑣(𝑊𝑡 .𝑊𝑡−1) − 𝐶𝑜𝑣(𝑊𝑡 .𝑊𝑡−2) − 𝐶𝑜𝑣(𝑊𝑡−1.𝑊𝑡−1)   

                       +𝐶𝑜𝑣(𝑊𝑡−1.𝑊𝑡−2) 

              = 𝛾1 − 𝛾2 − 𝜎
2 + 𝛾1 = 2𝛾1 − 𝛾2 − 𝜎

2 

Which means that 𝛾𝑧(1) does not depend on time 𝑡. 

Similarly, we can find 𝛾𝑧(2): 

𝛾𝑧(2) = 𝐶𝑜𝑣(𝑧𝑡 . 𝑧𝑡−2) 

           = 𝐶𝑜𝑣( [𝛽1 +𝑊𝑡 −𝑊𝑡−1]. [𝛽1 +𝑊𝑡−2 −𝑊𝑡−3]) 

           = 𝐶𝑜𝑣(𝑊𝑡 .𝑊𝑡−2) − 𝐶𝑜𝑣(𝑊𝑡 .𝑊𝑡−3) − 𝐶𝑜𝑣(𝑊𝑡−1.𝑊𝑡−2) +

                 𝐶𝑜𝑣(𝑊𝑡−1.𝑊𝑡−3) 



            = 𝛾2 − 𝛾3 − 𝛾1 + 𝛾2 = 2𝛾2 − 𝛾3 − 𝛾1 

Which means that 𝛾𝑧(2) does not depend on time 𝑡.  Generally, we 

can show that: 

𝛾𝑧(𝑘) = 2𝛾𝑘 − 𝛾𝑘+1 − 𝛾𝑘−1 

Hence, since the auto-covariance function depend on time lag 𝑘, 

and not on time 𝑡, so the series 𝑧𝑡 is stationary. 

 
Example:  

If  the series 𝑦𝑡 can be modeled as: 

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡  . 𝑡 = 1.2. … . 𝑛 



Where 𝜀𝑡 is the white noise process. Show that the series 𝑦𝑡 is not 

stationary. How can you transform it to a stationary process? 

Solution: 

𝐸(𝑦𝑡) = 𝐸(𝑦𝑡−1) + 0 

So the series is stationary in the mean, since the mean function 

does not depend on time 𝑡. 

And for the variance: 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝑦𝑡−1) + 𝑉𝑎𝑟(𝜀𝑡) + 2𝐶𝑜𝑣(𝑦𝑡. 𝜀𝑡) 

= 𝑉𝑎𝑟(𝑦𝑡−1) + 𝜎
2 + 0 



Which indicate that 𝑉𝑎𝑟(𝑦𝑡) ≠ 𝑉𝑎𝑟(𝑦𝑡−1), so the series is not 

stationary in the variance. Now, we can try to apply the first 

differences operator to try to stabilize it: 

Subtracting 𝑦𝑡−1 from both sides of the model equation, we get 

𝑦𝑡 − 𝑦𝑡−1 = 𝑦𝑡−1 + 𝜀𝑡  − 𝑦𝑡−1 

i.e.   

∇𝑦𝑡 = 𝜀𝑡 

so the first difference operator transformed the series into white 

noise series, which is stationary series by definition. 

But this is not always the case, as sometimes the variance might 

increase or decrease with time, in this case we might need a 



different tool for stabilizing the series. Some of common 

transformations for stabilizing the variance are mentioned in the 

following section. 

   

2.5.2 Variance stabilizing transformations 

• Logarithmic  
• Square root  
• Reciprocal  

 
The logarithmic transformation is used if the variance of the series 

is increasing or decreasing with time, and the mean is almost 

constant. It is assumed that the values of the observations are all 



positive (since the logarithm is only defined for positive numbers). 

It is also possible to use the square root or reciprocal 

transformation or any other transformation from the Box-Cox 

family of transformations. However, the logarithmic 

transformation is the most commonly used one in such cases. 

 
The most important case of non-stationarity, is the one in which 

lack of stationarity happens in both mean and variance together. 

Many examples in economic, social and demographic fields can 

have their values at time 𝑡  are greater than their value at time 𝑡 −



1 with a constant rate, plus a component of random errors. In such 

cases we can represent the series approximately in the form: 

𝑦𝑡 = 𝛼 𝑦𝑡−1 + 𝑦𝑡−1 . 0 <  𝛼 < 1 

 

This kind of series features a growing trend in both mean and 

variance, and almost constant growing rate of the phenomenon. To 

use the logarithmic transformation, we rewrite the model as: 

𝑦𝑡 = (1 + 𝛼) 𝑦𝑡−1 

   Taking logarithm of both sides, we find, 

𝑙𝑛 (𝑦𝑡) = 𝑙𝑛(1 + 𝛼) + 𝑙𝑛 ( 𝑦𝑡−1) 

Subtracting 𝑙𝑛 ( 𝑦𝑡−1) from both sides, we find, 



𝑙𝑛 (𝑦𝑡) − 𝑙 𝑛(𝑦𝑡−1) = 𝑙𝑛(1 + 𝛼) = 𝛿 

Where 𝛿 is a constant quantity, this means that : 

𝑧𝑡 = ∇𝑙𝑛 (𝑦𝑡) = 𝑙𝑛 (𝑦𝑡) − 𝑙 𝑛(𝑦𝑡−1) = 𝛿 

so the first differences of the logarithm of the data turned it into a 

stationary process. 

Notes:  It is recommended not to use this type of transformation 

before the use of the normal differences of the data, and if the 

normal differences failed to stabilize the variance, then we resort 

to logarithmic transformation. 

• You must make sure that all the values of the series are 

positive before using this transformation. In case there 



were negative values in the data, then you can, for example, 

address this problem by adding a certain constant term for 

each value so that all values become positive.  

 Note that the addition of a constant term to a variable does not 

affect the variance and the autocorrelation function of this 

variable, and therefore this process will not affect the 

autocorrelation structure of the series while helping to ensure 

stationary.  

The transformed series can be studied and analyzed, and after 

the completion of the analysis, researcher should reverse the 



transformation process so that the results be consistent with 

the data he wanted to analyze in the first place. 

• In some cases, the first difference transformation may still be 

not stationary, and therefore we may need to take the second 

differences of logarithms to stabilize the series. 

2.5.3 Box-Cox transformations 

This family of transformations are common in the field of design 

of experiments, it takes the following form: 

𝑔(𝑥) = {
𝑥λ − 1

λ
. λ ≠ 0

ln(𝑥) . λ = 0

 



 
Note: Subtracting 1, and dividing by λ, makes the function 𝑔(𝑥) 

change smoothly as λ approach zero. As we know from 

calculus  that lim
λ⟶0

𝑥λ−1

λ
= ln (𝑥). Also, note that choosing λ = 0.5, 

impose a square root transformation, this is useful if the data are 

count data that follows Poisson distribution, and λ = −1 is the 

reciprocal of the data. 

 
  



Chapter 3: Random Time Series Models  

3.1 Meaning of linearity in regression models and in time series 

models 

As we know in regular regression models of the form: 

𝑦 = 𝑓(𝑥1. 𝑥𝑝. … . 𝑥𝑝 + 𝛽0. 𝛽1. … 𝛽𝑝) + 𝜀 

We mean by linearity, the linearity in coefficients, or main 

parameters  𝜷 = (𝛽0. 𝛽1. … 𝛽𝑝)
𝑇 regardless of the shape of the 

explanatory variables 𝒙 = (𝑥1. 𝑥𝑝. … . 𝑥𝑝)
𝑇 . For instance, the simple 

linear regression 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝜀   is linear regression model 



because it is linear in the parameters, the same is true for the 

models 𝑦 = 𝛽0 + 𝛽1𝑥1
2 + 𝜀, and  𝑦 = 𝛽0 + 𝛽1ln (𝑥) + 𝜀  they are all 

linear in the parameters, note we can redefine the explanatory 

variables as 𝑤 = 𝑥1
2 for the first model, then it takes the form of a 

liner model, and the estimating equations for the parameters are 

the same and will not be affected, 

 β̂ = (𝑤𝑇𝑤)−1𝑤𝑇𝑦. Whereas, the model 𝑦 = 𝛽0 + 𝛽1
2𝑥1 + 𝜀  is not 

linear, because it is not linear in the parameter 𝛽1 and thus general 

regression rules can’t be applied here. 



 

On the other hand, in time series context there exist many form of 

functions that relate the values of the variable under study 𝑦𝑡 with 

its previous values 𝑦𝑡−1. 𝑦𝑡−2. … and the values of a completely 

random variables we called them white noise 𝜀𝑡 . 𝜀𝑡−1. 𝜀𝑡−2. … . We 

will only study the linear time series models in this course. 

 Linearity in the time series context is completely different than 

linearity in regression context, as it mean here linearity in the 

explanatory variables 𝑦𝑡−1. 𝑦𝑡−2. … but not in the model 



parameters. It is interesting to know that most of the time series 

models are not linear in the parameters! and this is one of the 

difficulties in studying time series. 

3.2 Static and dynamic models 

Traditional regression models of the form: 

  𝑦𝑡 = 𝑓(𝑥1. 𝑥𝑝. … . 𝑥𝑝. 𝛽0. 𝛽1. … 𝛽𝑝) + 𝜀𝑡  applied to time series data 

is considered static models , that is they are not dynamic. Since the 

model  𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡 depend on the variable 𝜀𝑡 which 



represent  the disturbance that affect the system at time 𝑡, but its 

effect does not extend to time period (𝑡 + 1) because the system at 

time (𝑡 + 1) is affected by 𝜀𝑡+1 only , and this variable is not 

correlated with 𝜀𝑡 (this result from the definition of the white noise 

process), so such systems have no memory, in the sense that it 

completely “forget” disturbances  that occurred in the past , so such 

systems are called “static systems”. 

Time series random models, on the other hand, depend on the 

history of the series 𝑦𝑡−1. 𝑦𝑡−2. … or on the disturbances occurred 



in the past 𝜀𝑡−1. 𝜀𝑡−2. …, or on both of them as explanatory variables. 

Thus, these models consist of three main groups of models. The 

first is known as the autoregressive models, and it is such a models 

where the variables 𝑦𝑡−1. 𝑦𝑡−2. … plays the role of explanatory 

variables that affect the dependent variable 𝑦𝑡. 

The simplest of these models is the autoregressive model of order 

one, which takes the form: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝜀𝑡  ; 𝑡 = 1.2. … . 𝑛 
 
It might be thought at first glance of the model that the system at 

time 𝑡 depends on the variable 𝜀𝑡 only, and not on previous 

disturbance 𝜀𝑡−1, but checking the model carefully, then we would 



notice that the model depend on 𝜀𝑡−1 through 𝑦𝑡−1, since this 

variable (according to the model  formula) can be written as: 

𝑦𝑡−1 = 𝛽0 + 𝛽1𝑦𝑡−2 + 𝜀𝑡−1 
 
Thus the system actually does not forget the random variable 𝜀𝑡−1, 

in fact it does not forget all the disturbances 𝜀𝑡−1. 𝜀𝑡−2. …(by 

continue substituting in the model). Thus the autoregressive model 

belongs to the dynamic systems. 

The second group of the random time series models is called the 

moving average models, and it is a more complicated models than 

the autoregressive models, where the system at time 𝑡 is related 

directly to the disturbances 𝜀𝑡−1. 𝜀𝑡−2. … that occurred in the past. 



Hence these models have memory, and belong to the dynamic 

systems.  

The simplest of these models is the moving average model of order 

one, which takes the form: 

𝑦𝑡 = 𝛽0 + 𝜀𝑡 + 𝛽1𝜀𝑡−1  ; 𝑡 = 1.2. … . 𝑛   

The third group of random time series models contains both 

autoregressive and moving average parts, where the system at time 

𝑡 depends on disturbances 𝜀𝑡−1. 𝜀𝑡−2. …  and on the history of the 

phenomenon 𝑦𝑡−1. 𝑦𝑡−2. …, the simplest example of those models is 

the autoregressive-moving average model of order 1, denoted 

shortly as ARMA(1,1) : 



𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝜀𝑡 + 𝛽2𝜀𝑡−1  ; 𝑡 = 1.2. … . 𝑛   

3.3  Linear Stochastic Processes 

Dynamic models assume presence of a particular form of 

autocorrelation between the observations of the time series that 

belong to the processes that follow the behavior of such 

models. This might cause some difficulties when dealing with 

these time series, especially if the autocorrelation coefficients are 

large. This led the scientists to explore the possibility of studying 

such processes through a simpler process. 



Wold (1938 ) has published his theory indicating that:  

“Every stationary process can be expressed as a linear 

combination of uncorrelated random variables with mean zero 

and constant variance σ2” 

 

3.3.1 Definition of the general linear process 

The random process {𝑦𝑡} is called general  linear process  if it is 

possible to express it in the form: 

𝑦𝑡 = 𝜇 + 𝜀𝑡 + 𝜓1𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯ .  𝑡 = 0.±1.±2.… 



𝑦𝑡 = 𝜇 +∑𝜓j𝜀𝑡−j

∞

𝑗=0

 

Where {𝜀𝑡} is the white noise process, 𝜇 is a constant, and {𝜓𝑡} is a 

sequence of fixed values. The process {𝑦𝑡}is stationary if one of 

the following conditions is satisfied: 

1- The constants 𝜓1. 𝜓2. … are finite. 

2- The constants 𝜓1. 𝜓2. … are not finite, but they are 

asymptotic and fulfill the condition ∑ 𝜓𝑖
2 < ∞∞

i=0  , this ensures 

the variance to be finite. If the process {𝑦𝑡} is stationary then 𝜇 

is considered the mean of the process, otherwise it is just 



considered a reference point. In most of the course we will 

assume 𝜇 = 0, this will not affect our discussions of the 

different models we will consider), and in case 𝜇 ≠ 0 we will 

assume that 𝑦𝑡 represent the original series after subtracting 

the constant 𝜇. 

 

3.4 Invertibility formula 

Under certain conditions , we can express the general linear 

process as a weighted sum of the history of the process 𝑦𝑡−1. 𝑦𝑡−2. …  



and the current disturbance value 𝜀𝑡 . This formula is known as the 

π − weights formula, it takes the following form: 

𝑦𝑡 = 𝜀𝑡 + 𝜋1𝑦𝑡−1 + 𝜋2𝑦𝑡−2 +⋯.   

And in short as: 

(1 − 𝜋1B − 𝜋2B
2 − 𝜋2B

2 −⋯)𝑦𝑡 = 𝜀𝑡 

Or, 

𝜋(𝐵)𝑦𝑡 = 𝜀𝑡                              (1)  

Where,  

𝜋(𝐵) = (1 − 𝜋1B − 𝜋2B
2 − 𝜋2B

2 −⋯) 

𝜋(𝐵) = 1 −∑ 𝜋𝑖B
i

∞

𝑖=1
 



The constants 𝜋1. 𝜋2. … represent the weights or importance of the 

variables representing history of the process 𝑦𝑡−1. 𝑦𝑡−2. … . If the 

number of the weights that is not equal to zero is limited then we 

get what we call the autoregressive models of certain order, such 

as AR (1), and AR (2), these models can be stationary or not, we 

will discuss this later. 

3.5 White noise formula 



In the same manner, we can express the general linear process as a 

weighted sum of the  current and past values of the disturbances 

𝜀𝑡 . 𝜀𝑡−1. 𝜀𝑡−2. …. . This formula is known as  ψ-weights  formula, it 

takes the following form: 

𝑦𝑡 = 𝜀𝑡 + ψ
1
𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯.   

and in short as: 

𝑦𝑡 = (1 + ψ1B + ψ2B
2 + ψ2B

2 +⋯)𝜀𝑡 

Or, 

𝑦𝑡 = ψ(𝐵)𝜀𝑡                          (2)  

Where,  



ψ(𝐵) =∑ ψ𝑖B
i  ;    ψ0 = 1  

∞

𝑖=0
 

The constants ψ
1
.ψ
2
. … represent the weights or importance of the 

variables representing the past disturbances  𝜀𝑡−1. 𝜀𝑡−2. …. If the 

number of the weights that is not equal to zero is limited then we 

get what we call the moving average models of certain order, such 

as MA (1), and MA (2). The polynomial ψ(𝐵) is called the transfer 

function, or the linear filter that associates the random process {𝑦𝑡} 

with the white noise process {𝜀𝑡}. The function ψ(𝐵) is considered 



as a generating function for the constants ψ𝑖 , because the 

coefficient of Bi in the expansion of  ψ(𝐵) represent the weights ψ𝑖 . 

Also, the relation between the two polynomials ψ(𝐵) and 𝜋(𝐵) 

can be found by substituting 𝜀𝑡 from (1)  into (2): 

𝑦𝑡 = ψ(𝐵) 𝜋(𝐵)𝑦𝑡 

Which means,  

1 = ψ(𝐵) 𝜋(𝐵) 



And thus, 

𝜋(𝐵) = ψ−1(𝐵) 

 

Example:      

For the model  𝑦𝑡 = 𝜀𝑡 + 0.5 𝑦𝑡−1, find the first three 𝜋 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑠  

and first three ψ −weights. 

solution:  

Using  the formula 𝑦𝑡 = 𝜀𝑡 + 𝜋1𝑦𝑡−1 + 𝜋2𝑦𝑡−2 +⋯,  we find: 



𝜋1 = 0.5  ; 𝜋2 = 𝜋3 = 0 

And for ψ −weights, we find: 

𝑦𝑡 = 𝜀𝑡 + 0.5 𝑦𝑡−1                      (i) 

Also,    

𝑦𝑡−1 = 𝜀𝑡−1 + 0.5 𝑦𝑡−2              (ii) 

 

And,                        𝑦𝑡−2 = 𝜀𝑡−2 + 0.5 𝑦𝑡−3              (iii) 

𝑦𝑡−3 = 𝜀𝑡−3 + 0.5 𝑦𝑡−4              (iv) 

Substitute from (ii) into (i), we find: 

𝑦𝑡 = 𝜀𝑡 + 0.5 [𝜀𝑡−1 + 0.5 𝑦𝑡−2  ] 



𝑦𝑡 = 𝜀𝑡 + 0.5 𝜀𝑡−1 + (0.5)
2 𝑦𝑡−2         (v)       

In the same manner, substitute from (iii) into (v), we get: 

𝑦𝑡 = 𝜀𝑡 + 0.5 𝜀𝑡−1 + (0.5)
2 𝜀𝑡−2  + (0.5)

3 𝑦𝑡−3        (vi)       

Also,  

𝑦𝑡 = 𝜀𝑡 + 0.5 𝜀𝑡−1 + (0.5)
2 𝜀𝑡−2   + (0.5)

3 𝜀𝑡−3  + (0.5)
4 𝑦𝑡−4            

And comparing the last equation with the ψ −weights formula, 

we find: 



ψ
1
= 0.5.  ψ

2
= (0.5)2 = 0.25.  ψ

3
= (0.5)3 = 0.125  

Example:      

For the model  𝑦𝑡 = 𝜀𝑡 − 0.3 𝜀𝑡−1, find the first three 𝜋 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑠  

and first three ψ −weights. 

solution:  

Comparing with the ψ −weights formula: 

𝑦𝑡 = 𝜀𝑡 + ψ
1
𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯.   

We find that: 



ψ1 = −0.3  ; ψ2 = ψ3 = 0 

To find the 𝜋 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, we rewrite the model as: 

𝜀𝑡  = 𝑦𝑡 + 0.3 𝜀𝑡−1                      (i) 

So that,  

𝜀𝑡−1 = 𝑦𝑡−1 + 0.3 𝜀𝑡−2           (ii) 

𝜀𝑡−2 = 𝑦𝑡−2 + 0.3 𝜀𝑡−3              (iii) 

 𝜀𝑡−3 = 𝑦𝑡−3 + 0.3 𝜀𝑡−4              (iv) 

Substituting from (ii) into (i), we get: 

𝜀𝑡 = 𝑦𝑡 + 0.3 [𝑦𝑡−1 + 0.3 𝜀𝑡−2  ] 

𝜀𝑡 = 𝑦𝑡 + 0.3 𝑦𝑡−1 + (0.3)
2 𝜀𝑡−2         (v)       



In the same manner, substituting from (iii) into (v), we find: 

𝜀𝑡 = 𝑦𝑡 + 0.3 𝑦𝑡−1 + (0.3)
2 𝑦𝑡−2  + (0.3)

3 𝜀𝑡−3        (vi)       

And,  

𝜀𝑡 = 𝑦𝑡 + 0.3 𝑦𝑡−1 + (0.3)
2 𝑦𝑡−2  + (0.3)

3 𝑦𝑡−3  + (0.3)
4 𝜀𝑡−4           

Thus, 

𝑦𝑡 = 𝜀𝑡 − 0.3 𝑦𝑡−1 − (0.3)
2 𝑦𝑡−2  − (0.3)

3 𝑦𝑡−3  − (0.3)
4 𝜀𝑡−4            



And comparing the last equation with the 𝜋 weights formula, we 

find: 

𝜋1 = −0.3, 𝜋2 = − (0.3)
2 = −0.09,   𝜋3 = − (0.3)

3 = −0.027 

 

3.6  Autoregressive Processes 

We mentioned earlier that any invertible linear process can be 

expressed as: 

𝑦𝑡 = 𝜀𝑡 + 𝜋1𝑦𝑡−1 + 𝜋2𝑦𝑡−2 +⋯.   



In fact, many of the demographic, economic, environmental, 

engineering and other applications can be represented in this form 

using a limited number of constants 𝜋 as follows :    

𝑦𝑡 = 𝜀𝑡 + 𝜋1𝑦𝑡−1 + 𝜋2𝑦𝑡−2 +⋯𝜋𝑝𝑦𝑡−𝑝   ;   𝑡 = 0.±1.±2.…       

We call any process that can be represented in this form as the 

Auto-regressive process of order 𝐩, and in the literature it is 

written in the following format: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝   ;   𝑡 = 0.±1.±2.…       



It is denoted as AR(p), the constants 𝜙1, 𝜙2, …𝜙𝑝 are the main 

parameters of the model, and they fulfill the invertibility 

conditions, that is because the number of non-zero 𝜋𝑖 weights are 

limited.  

These models might be stationary or not stationary, depending on 

the values of the parameters 𝜙1. 𝜙2. …𝜙𝑝. The order of the models 

in most of the applications does not exceed 2, however in some 

applications we might need to have larger orders, especially in 



those where we use the AR models as approximations of other 

models such as MA models. Thus in this course we will concentrate 

on autoregressive models of order one and two (AR(1), AR(2)), 

and just mention some general remarks on the model AR(P). 

 

3.6.1 Auto-regressive model of order one AR (1) 

This model takes the form of regressing the value of the series at 

time 𝑡 (i.e 𝑦𝑡 ),  on both the value of the series at time 𝑡 − 1 (i.e 



𝑦𝑡−1 ) and the current value of the disturbance 𝜀𝑡 , the AR(1) 

model takes the form: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1𝑦𝑡−1 ;   𝑡 = 0.±1.±2.…       

 

Where 𝜀𝑡 is the white noise process, 𝜙1 is a constant value 

representing the main parameter of the model, and usually we 

assume {𝜀𝑡} to follow normal distribution with mean zero, and 

constant variance, that is 𝜀𝑡 ~ 𝑖𝑖𝑑 𝑁(0. 𝜎
2). The AR(1) process 



always fulfill the invertibility condition no matter what the value 

of 𝜙1, this is because: 

𝜋1 = 𝜙1.  𝜋𝑖 = 0. 𝑖 > 1 

i.e. the number of non-zero 𝜋𝑖 terms is limited. The AR (1) model 

can be written in the form: 

𝜙(𝐵)𝑦𝑡 = 𝜀𝑡 

Where 𝜙(𝐵) = 1 − 𝜙1𝐵 is called the autoregressive operator, or 

the model characteristic function. 



 

 

3.6.1.1 stationarity condition 

We mean by the stationarity conditions, the conditions that the 

model must satisfy in order to be able to write the model in the 

white noise formula. We will denote the past values of the series 

as:  

𝑦𝑡−1 = 𝜙1 𝑦𝑡−2 + 𝜀𝑡−1 



𝑦𝑡−2 = 𝜙1 𝑦𝑡−3 + 𝜀𝑡−2 

⋮ 

𝑦𝑡−𝑘 = 𝜙1 𝑦𝑡−𝑘−1 + 𝜀𝑡−𝑘 

 

and substituting 𝑦𝑡−1 in the AR(1) formula, we get: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1[𝜙1𝑦𝑡−2 + 𝜀𝑡−1]  = 𝜀𝑡 + 𝜙1𝜀𝑡−1 + 𝜙1
2𝑦𝑡−2 

substituting 𝑦𝑡−2 in this form, we get: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1𝜀𝑡−1 + 𝜙1
2 𝜀𝑡−2 + 𝜙1

3𝑦𝑡−3 



and continue this process 𝑘 times we get: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1𝜀𝑡−1 + 𝜙1
2 𝜀𝑡−2 +⋯+ 𝜙1

𝑘−1 𝜀𝑡−𝑘+1 + 𝜙1
𝑘𝑦𝑡−𝑘 

or,  

𝑦𝑡 = ∑𝜙1  
𝑗
𝜀𝑡−𝑗 + 𝜙1

𝑘𝑦𝑡−𝑘 

𝑘−1

𝑗=0

 

Form the previous formula, we notice that if |𝜙1| < 1, and 𝑘 ⟶ ∞, 

then the term 𝜙1
𝑘𝑦𝑡−𝑘 will tend to zero, thus it will be possible to 

write the AR(1) model in the white noise formula: 



𝑦𝑡 = ∑𝜙1  
𝑗
𝜀𝑡−𝑗  

𝑘−1

𝑗=0

 

And comparing this formula with the white noise formula, we 

notice that the coefficients in this formula takes the form 

 𝜓𝑗 = 𝜙1  
𝑗

, with the condition that |𝜙1| < 1. Notice that if 

 |𝜙1| > 1, then it is not possible to write the AR(1) model in the 

white noise formula, so we conclude that the stationarity 

condition for the AR(1) model is that |𝜙1| < 1. 



• Equivalent stationarity condition of AR (1) model  

Stationarity condition for AR(1) model can be checked in a more 

general way by inspecting the characteristic equation of the model 

𝜙(𝐵) = 1 − 𝜙1𝐵 , and if |𝜙1| < 1 then the root of the characteristic 

equation 𝜙(𝐵) = 0 must lie outside the unit circle, i.e. root must 

satisfy   |𝐵| > 1. 

 

3.6.1.3 Autocorrelation function of AR (1) model   



We will assume that the model satisfies the stationarity condition, 

|𝜙1| < 1, the model has the form: 

𝑦𝑡 = 𝜙1𝑦𝑡−1+ 𝜀𝑡        

Where 𝜀𝑡 ~𝑖𝑖𝑑 𝑁(0. 𝜎
2), the white noise process. 

taking expectations for both sides: 

𝐸(𝑦𝑡) = 𝜙1𝐸(𝑦𝑡−1) + 0 

since the process is stationary, then 𝐸(𝑦𝑡) = 𝐸(𝑦𝑡−1), thus: 



𝐸(𝑦𝑡)(1 − 𝜙1) = 0 ⇒ 𝐸(𝑦𝑡) = 0 

also, the variance of 𝑦𝑡 is: 

𝑣𝑎𝑟(𝑦𝑡) = 𝜙1
2𝑣𝑎𝑟(𝑦𝑡−1)+ 𝑣𝑎𝑟(𝜀𝑡)        

and since the process is stationary, then 𝑣𝑎𝑟(𝑦𝑡) = 𝑣𝑎𝑟(𝑦𝑡−1) =

𝛾(0), so: 

𝛾(0)(1 − 𝜙1
2) = 𝜎2 

or,  



𝛾(0) =
𝜎2

(1 − 𝜙1
2)
 .   |𝜙| < 1 

the auto-covariance at lag one is: 

 

𝛾(1) = 𝑐𝑜𝑣 (𝑦𝑡. 𝑦𝑡−1) = 𝑐𝑜𝑣(𝜙1𝑦𝑡−1+ 𝜀𝑡 . 𝑦𝑡−1)  

                                  = 𝜙1𝑐𝑜𝑣(𝑦𝑡−1 . 𝑦𝑡−1) + 𝑐𝑜𝑣( 𝜀𝑡 . 𝑦𝑡−1) 

                                     = 𝜙1𝛾(0) + 0 

and the auto-covariance at lag 2 is: 



                    

                   𝛾(2) = 𝑐𝑜𝑣 (𝑦𝑡. 𝑦𝑡−2) = 𝑐𝑜𝑣(𝜙1𝑦𝑡−1+ 𝜀𝑡 . 𝑦𝑡−2)       

                  =  𝜙1𝑐𝑜𝑣(𝑦𝑡−1 . 𝑦𝑡−2) + 0 = 𝜙1𝛾(1) 

 

in general, at lag 𝑘, it has the form: 

𝛾(𝑘) = 𝜙1𝛾(𝑘 − 1).     𝑘 = 1.2.…  

Dividing both sides by 𝛾(0), we get the auto-correlation function 

of the AR(1) model: 



𝜌(𝑘) = 𝜙1𝜌(𝑘 − 1).     𝑘 = 1.2. …  

And by continually substituting we get: 

𝜌(𝑘) = 𝜙1
2𝜌(𝑘 − 2) = 𝜙1

3𝜌(𝑘 − 3) = ⋯ = 𝜙1
𝑘𝜌(0) = 𝜙1

𝑘  

Which indicate that this model remembers everything happened in 

the past, or we say that it has an infinite memory, however we 

notice that this memory decrease in an exponential manner as the 



time lag between current observation 𝑦𝑡 and observation 𝑦𝑡−𝑘 

increases. 

To show the behavior of the auto-correlation function for the AR(1) 

model, we plot this function for some values of 𝜙1. 
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(b) ACF for AR(1) model with 

𝜙1 = 0.5 

 

(a) ACF for AR(1) model with 

                    𝜙1 = −0.5 

 



We notice from figure (a) that the auto-correlation takes the form 

of a declining sine-wave form because the parameter value is 

negative, and from figure (b) the auto-correlation takes the form of 

a declining exponential form because the parameter value is 

positive. Also, we note that this decline will be slow at the non-

stationarity boundaries 𝜙1 = ±1, for example at 𝜙1 = ±0.9, the 

ACF will take the form: 
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(b) ACF for AR(1) model with 

𝜙1 = 0.9 

(a) ACF for AR(1) model with 

𝜙1 = −0.9 

Note: The general form of the AR(1) model when the model mean 

is not equal to zero , i.e. when 𝐸(𝑦𝑡) = 𝜇 is: 



𝑦𝑡 − 𝜇 = 𝜙1(𝑦𝑡−1 − 𝜇) + 𝜀𝑡  

or,  

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1 + 𝜀𝑡  

where 𝛿 = 𝜇(1 − 𝜙1). 

The AR(1) model could be interpreted for example, if we assume 𝑦𝑡 

represent the number of population of a certain country at a certain 

year, then this number is a fraction 𝜙1 (fraction of those who are 



still alive) multiplied by the population number in the previous 

year 𝑦𝑡−1, added to them a random component 𝜀𝑡 (representing the 

new citizens of the country). Another example, 𝑦𝑡 might represent 

number of unemployed people at a certain month, January for 

example, then this number is a fraction 𝜙1 (fraction of those who 

are still unemployed) multiplied by the number of unemployed in 

the previous month 𝑦𝑡−1, added to them a random component 𝜀𝑡 

(representing the new unemployed looking for job). 



3.6.1.4 Partial autocorrelation function for AR (1) model  

To find the partial autocorrelation function for the AR(1) model,  

𝜙00 = 1 . 

𝜙11 = ρ1 = 𝜙
1 =  𝜙. 

𝜙22 =
|
1 ρ1
ρ1 ρ2

|

|
1 ρ1
ρ1 1

|
=

|
1 𝜙

𝜙 𝜙2
|

|
1 𝜙
𝜙 1

|
=
𝜙2 − 𝜙2

1 − 𝜙2
= 0 

 Thus for any time lag 𝑘 , we can find the partial autocorrelation 

function (PACF) as: 



𝜙kk =

|

1           𝜌1  …   𝜌1
𝜌1          1 …   𝜌2
⋮          ⋮  …    ⋮

𝜌𝑘−1    𝜌𝑘−2  …   𝜌𝑘

|

|

1           𝜌1  …   𝜌𝑘−1
𝜌1          1 …   𝜌𝑘−2
⋮          ⋮  …    ⋮

𝜌𝑘−1    𝜌𝑘−2  …    1

|

 

 



=

|

1           𝜙 …     𝜙

𝜙          1 …      𝜙2

⋮          ⋮  …        ⋮
𝜙𝑘−1    𝜙𝑘−2  … 𝜙𝑘

|

|

1             𝜙 …   𝜙𝑘

𝜙             1 …   𝜙𝑘−1

⋮               ⋮      …    ⋮
𝜙𝑘−1    𝜙𝑘−2  …    1

|

=  
0

|

1             𝜙 …   𝜙𝑘

𝜙             1 …   𝜙𝑘−1

⋮               ⋮      …    ⋮
𝜙𝑘−1    𝜙𝑘−2  …    1

|

= 0 

The determinant of the numerator equals zero because the 

columns are not independent, where we notice that the last 



column equals 𝜙 multiplied by the first column. So, the PACF for 

the AR(1) model have the form: 

𝜙𝑘𝑘 = {
1 .         𝑘 = 0
𝜙 .        𝑘 = 1
0 .         𝑘 ≥ 2

 

The behavior of the PACF for the AR(1) model is as follow: 
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PACF for AR(1) model when 

𝜙 > 0 

PACF for AR(1) model when 

𝜙 < 0 

 

3.6.2  AR (2) Model 



This model takes the form: 

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1+𝜙2𝑦𝑡−2 + 𝜀𝑡  

Where 𝜀𝑡 is the white noise process, i.e. 𝜀𝑡~𝑊𝑁(0. 𝜎
2),  and 𝜙1 

, 𝜙2 are  constant values representing the model parameters. 

Now applying the backshift operator, we can rewrite the model in 

form: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑦𝑡  = 𝛿 + 𝜀𝑡 

  𝑦𝑡 = (1 − 𝜙1𝐵 − 𝜙2𝐵
2)−1 𝛿 + (1 − 𝜙1𝐵 − 𝜙2𝐵

2)−1 𝜀𝑡             (1) 



Returning to the general linear process: 

𝑦𝑡 = 𝜇𝑌 +∑𝜓𝑗

∞

𝑗=0

𝜀𝑡−𝑗 

𝑦𝑡 = 𝜇𝑌 + (1 + 𝜓1𝐵 + 𝜓2𝐵
2  + 𝜓3𝐵

3 +⋯)𝜀𝑡 

𝑦𝑡 = 𝜇𝑌 + 𝜓(𝐵)𝜀𝑡                                      (2) 

So, from (1) and (2) the 𝜓(𝐵) function for AR(2) model is: 

𝜓(B) = (1 − 𝜙1𝐵 − 𝜙2𝐵
2)−1 



Multiplying both sides by (1 − 𝜙1𝐵 − 𝜙2𝐵
2), we get: 

𝜓(B)(1 − 𝜙1𝐵 − 𝜙2𝐵
2) = 1 

That is,  

(1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯) (1 − 𝜙1𝐵 − 𝜙2𝐵

2) = 1 

And for this equality to hold, the 𝐵𝑗  coefficients for 𝑗 ≥ 0, must be 

equal, as follow: 

𝐵1: 𝜓1 − 𝜙1 = 0                      ⟹ 𝜓1 = 𝜙1 



 𝐵2: 𝜓2 − 𝜙1𝜓1 − 𝜙2 = 0      ⟹ 𝜓2 = 𝜙1𝜓1 + 𝜙2 = 𝜙1
2 + 𝜙2 

 𝐵3: 𝜓3 − 𝜙1𝜓2 − 𝜙2𝜓1 = 0 ⟹ 𝜓3 = 𝜙1𝜓2 + 𝜙2𝜓1 

    𝐵4: 𝜓4 − 𝜙1𝜓3 − 𝜙2𝜓2 = 0  ⟹ 𝜓4 = 𝜙1𝜓3 + 𝜙2𝜓2 

 

Thus, in general the general form of the 𝜓𝑗  weights for the AR(2) 

model has the form: 

𝜓𝑗 = 𝜙1𝜓𝑗−1 + 𝜙2𝜓𝑗−2  . 𝑗 ≥ 2  



And for the AR(2) to be stationary, the 𝜓𝑗  weights must converge, 

thus we must put some conditions on 𝜙1 and 𝜙2 to satisfy this: 

As we remember, the stationarity condition for AR(1) was that 

|𝜙| < 1 or equivalently, the solution of the characteristic equation 

(1 − 𝜙𝐵) = 0, which is 𝐵 = |
1

𝜙
| should be greater than one. 

However, for AR(2), we have a quadratic equation: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2) = 0 



So we must look at two solutions 𝐺1
−1 and 𝐺2

−1, and are usually 

called the solutions of the characteristic equation, now: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2) = (1 − 𝐺1𝐵)(1 − 𝐺2𝐵) = 0 

𝐺1
−1 and 𝐺2

−1 can be real or complex numbers. So, the stationarity 

conditions for the AR(2) process is that |𝐺1
−1| > 1 and |𝐺2

−1| > 1. 



Note: note that  |𝑥| means the absolute value for   𝑥 if it is a real 

number, but it means   √𝑎2 + 𝑏2 if it is a complex number, i.e. one 

that can be written in the form 𝑥 = 𝑎 + 𝑖𝑏. 

Examples: 

Suppose that we have an AR(2) model with parameters 𝜙1 = 0.8 

and 𝜙2 = −0.15, so the characteristic equation has the form: 

(1 − 0.8𝐵 + 0.15𝐵2) = (1 − 0.5𝐵)(1 − 0.3𝐵) = 0 



So, the solution is 𝐺1
−1 =

1

0.5
= 2 and 𝐺2

−1 =
1

0.3
= 3.33, and both 

are greater than one in absolute value, so this model is stationary. 

Suppose that we have an AR(2) model with parameters 𝜙1 = 1.5 

and 𝜙2 = −0.5, so the characteristic equation has the form: 

(1 − 1.5𝐵 + 0.5𝐵2) = (1 − 𝐵)(1 − 0.5𝐵) = 0 

So, one root is 𝐺1
−1 = 1, which is not greater than one, so this 

model is not stationary. 



Suppose that we have an AR(2) model with parameters 𝜙1 = 1 

and 𝜙2 = −0.5, so the characteristic equation has the form: 

(1 − 𝐵 + 0.5𝐵2) = 0 

 

Which means that 𝑎 = 1 and 𝑏 = 1, in this case the solutions are: 

|𝐺1
−1| = |𝐺2

−1| = √12 + 12 = √2 

and both are greater than in one, so this model is stationary. 



 

 An equivalent method of checking stationarity of AR(2) model is  

by looking directly to the parameters 𝜙1 and 𝜙2: 

We say that the AR(2) process is stationary if the following 

conditions are satisfied: 

−1 < 𝜙2 < 1 

𝜙1 + 𝜙2 < 1 



𝜙2 − 𝜙1 < 1 

And if any of them is not satisfied, then the process is not 

stationary. 

3.6.2.1 Autocorrelation function of AR (2) model   

For simplicity, we will assume that 𝜇 = 0 , so the general  form of 

the model is: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡 



Multiply both sides by 𝑌𝑡−𝑘 and taking expectations: 

𝛾𝑘 = 𝐸[𝑦𝑡𝑦𝑡−𝑘] = 𝜙1𝐸[𝑦𝑡−1𝑦𝑡−𝑘] + 𝜙2𝐸[𝑦𝑡−2𝑦𝑡−𝑘] + 𝐸[𝜀𝑡𝑦𝑡−𝑘] 

And since 𝑌𝑡−𝑘 depends only on  𝜀𝑡−𝑘 . 𝜀𝑡−𝑘−1. …, then we have: 

𝐸[𝜀𝑡𝑦𝑡−𝑘] = {
𝜎𝜀
2     , 𝑘 = 0

0    , 𝑘 = 1,2,3
 

So that, 

𝛾0 = 𝜙1𝛾−1 + 𝜙2𝛾−2 + σε
2 



= 𝜙1𝛾1 + 𝜙2𝛾2 + 𝜎𝜀
2, 

and, 

𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2.  𝑘 > 0 

From which we can get the auto-correlation function 𝜌𝑘:  

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2   . 𝑘 = 1.2. … 

Which is the Yule-Walker equations for this model. 

For example, for 𝑘 = 1: 



𝜌1 = 𝜙1𝜌0 + 𝜙2𝜌1 

𝜌1(1 − 𝜙2) = 𝜙1  ⟹ 𝜌1 =
𝜙1

(1 − 𝜙2)
 

for 𝑘 = 2: 

𝜌2 = 𝜙1𝜌1 + 𝜙2𝜌0  ⟹ 𝜌2 =
𝜙1

2

(1 − 𝜙2)
+ 𝜙2 

i.e.  



𝜌2 =
𝜙1

2 + 𝜙2 − 𝜙2
2

(1 − 𝜙2)
 

In the same manner, we gat get the form of  𝜌𝑘 for any value 𝑘. 

 

3.6.2.2 Partial autocorrelation function of AR (2) model   

𝜙00 = 1 . 

𝜙11 = ρ1 =
𝜙1

(1−𝜙2)
 .    



𝜙22 =
|
1 ρ1
ρ1 ρ2

|

|
1 ρ1
ρ1 1

|
=
ρ2 − ρ1

2

1 − ρ1
2

 

Where, 𝜌2 =
𝜙1

2+𝜙2−𝜙2
2

(1−𝜙2)
 . 

𝜙33 =

|

1 ρ1 ρ1=𝜙1𝜌0+𝜙2𝜌1
ρ1 1 ρ2=𝜙1𝜌1+𝜙2𝜌0
ρ2 ρ1 ρ3=𝜙1𝜌2+𝜙2𝜌1

|

|

1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

|

=
0

|

1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

|

= 0 



Because the last column is a linear combination of the first column 

(they are not independent). So, it is possible to prove that 𝜙kk =

0    for k ≥ 3. 

Thus the PACF for AR(2) can be written as follow: 

𝜙𝑘𝑘 =

{
 
 

 
 
1.                  𝑘 = 0
ρ1.                𝑘 = 1

ρ2 − ρ1
2

1 − ρ1
2
.   𝑘 = 2

0.                    𝑘 ≥ 3

 



Thus, we can summarize the properties of the AR(2) model as 

following: 

 

• If the stationarity conditions are satisfied, i.e.: 

 −1 < 𝜙2 < 1   and     𝜙2 − 𝜙1 < 1        and        𝜙1 + 𝜙2 < 1 

or equivalently, the roots of the characteristic equation: 



(1 − 𝜙1𝐵 − 𝜙2𝐵
2) = (1 − 𝐺1𝐵)(1 − 𝐺2𝐵) = 0 satisfy |𝐺1

−1| > 1 

and |𝐺2
−1| > 1, then: 

𝐸(𝑦𝑡) =
𝛿

(1 − 𝜙1 − 𝜙2) 
 

which is a constant value for all 𝑡. 

• The ACF depends on the values of the roots of the 

characteristic equation: 



- If the roots are real, then the ACF decline in an exponential 

fashion. 

- If the roots are complex, then the ACF decline in a sin-wave 

fashion. 

• The PACF has only two values not equal to zero (𝜙11and 𝜙22) 

, whereas the rest of the values equal zero. 

To show the behavior of the PACF for the AR(2) model we take 

the following examples. 



The following figure shows the ACF and  PACF for 𝜙1 = 1,𝜙2 =

−0.5 : 
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PACF for AR(2) model when ACF for AR(2) model when 



𝜙1 = 1. 𝜙2 = −0.5 𝜙1 = 1.𝜙2 = −0.5 

 

We note from figure (a) that the ACF takes the form of a decaying 

sine-wave, and from figure (b) that the PACF has only two 

coefficients differ from zero, and the function cut-off after two 

time lags. 



The following figure shows the ACF and  PACF for 𝜙1 = 0.4. 𝜙2 =

0.5  : 
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PACF for AR(2) model when ACF for AR(2) model when 



𝜙1 = 0.4 . 𝜙2 = 0.5 𝜙1 = 0.4. 𝜙2 = 0.5 

The ACF decline in an exponential format, and again the PACF 

cuts-off after two time lags. 

 

3.6.3 Autoregressive Model of order p  

This has the following form: 

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1+𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 



Where 𝜀𝑡~𝑊𝑁(0. 𝜎
2). 

using the backshift operator: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯− 𝜙𝑝𝐵𝑝) 𝑦𝑡 = 𝛿 + 𝜀𝑡  

or:       

ϕ(𝐵) 𝑦𝑡 = 𝛿 + 𝜀𝑡 

 

  



These models are always invertible regardless of the values 

of parameters 𝜙𝑖 , this is because the number of non-zero 𝜋𝑖 

weights are limited. AR(p) models might be stationary or not 

depending the values of the coefficients 𝜙𝑖 ,  however, it can be 

shown that if the roots of the characteristic function ϕ(𝐵) = 0 fall 

outside the unit circle, then the model is stationary. 

The autocorrelation function of the AR (p) model can be shown to 

satisfy the following   difference equation: 



𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 +⋯+ 𝜙𝑝𝜌𝑘−𝑝   . 𝑘 ≥ 1 

we will not derive mathematical solution of this function, however, 

we will just mention the forms this function can take (it is very 

similar to the forms of the AR(1), and AR(2) cases): 

The ACF extend infinitely and consist of a mixture of decaying 

exponential or sine-wave functions. So, always the ACF function is 

a good indicator whether a series in practical applications can be 

modeled by autoregressive models. However, it is not enough in 



determining the order 𝑝 of the autoregression, so we have to 

examine the PACF, which cuts-off after the order 𝑝. 

 

3.7  Moving Average Processes 

We mentioned earlier that any stationary linear process can be 

written in the form: 

𝑦𝑡 = 𝜀𝑡 +∑𝜓𝑗  𝜀𝑡−𝑗  

∞

𝑗=1

;   𝑤ℎ𝑒𝑟𝑒 ∑𝜓𝑗
2

𝑗

< ∞ 



In fact many phenomena in economics or social sciences can be 

represented (may be after first or second difference) in the same 

manner, however with limited number of constants 𝜓𝑗 , as follow: 

𝑦𝑡 = 𝜀𝑡 + 𝜓1𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯+𝜓𝑞𝜀𝑡−𝑞   

The processes that can be represented in this form is called the 

Moving Average of order 𝑞, or MA(q) in short. In literature, it is 

written in a special format, so that they can be distinguished from 

other operations: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯−𝜃𝑞𝜀𝑡−𝑞 

The constants 𝜃𝑖 are the main parameters of the model. 



The MA models are always stationary no matter what the 

parameters values are, because the number of non-zero  𝜓1 values 

in the linear process representation are limited: 

𝜓1 = −𝜃1.  𝜓2 = −𝜃2. … . 𝜓𝑞 = −𝜃𝑞 ;   𝜓𝑗 = 0.  𝑗 > 𝑞 

 

Note: Sometimes it may be necessary to express these models 

using the past values of the series 𝑦𝑡−1 , 𝑦𝑡−2, … , this means that we 

use the invertibility  formula, in which case we must put some 

conditions on the parameters 𝜃𝑖 , these conditions are called the 

invertibility conditions, we will see this conditions when discussing 

the models MA(1) and MA(2). 



In most applications that arise in economics and management, 

engineering, environmental studies, the value of  𝑞 is usually less 

than or equal 2, so we will confine ourselves to discussing these 

two models, and just mention some properties of the general 

MA(q) model. 

3.7.1 Moving Average of first order MA (1) 

We say that the process {𝑦𝑡} follow a moving average model of 

order one if it can be represented as: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1  ; 𝑡 = 0.±1.±2.…   



Where 𝜃1 represent the main parameter of the model, and {𝜀𝑡} is 

the white nose process 𝜀𝑡~𝑖𝑖𝑑  𝑁(0. 𝜎𝜀
2). 

The MA(1) model is considered as one of the important time series 

analysis models that is used in modeling inventory, quality control, 

temperature, pollution percentages, and general economic 

indicators after being affected by sudden disturbances either from 

within the system such as worker strikes, or from outside the 

system such as wars or disasters, etc.  

As mentioned earlier that the MA(1) model is always stationary, no 

matter what the value of the parameter 𝜃1 is, because: 



𝜓1 = −𝜃1 ;   𝜓𝑗 = 0.   𝑗 > 1 

The model can be written in short as: 

𝑦𝑡 = 𝜃(𝐵)𝜀𝑡  

Where 𝜃(𝐵) = 1 − 𝜃1𝐵 is a polynomial. 

The linear filter 𝜃(𝐵) is called the moving average operator, it link 

the process {𝑦𝑡} as an output with the process {𝜀𝑡} as input. 

3.7.1.1 The autocorrelation function of MA (1) 

The model is: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1   



Taking the expectation of both sides: 

𝐸(𝑦𝑡) = 𝜀𝑡 − 𝜃1𝜀𝑡−1 = 0 

  and taking the variance of both sides: 

𝑣𝑎𝑟(𝑦𝑡) = 𝛾(0) = 𝑣𝑎𝑟(𝜀𝑡 − 𝜃1𝜀𝑡−1) 

                                          =  𝑣𝑎𝑟(𝜀𝑡) + 𝜃1
2 𝑣𝑎𝑟(𝜀𝑡−1) 

                = 𝜎𝜀
2(1 + 𝜃1

2) 

and the auto-covariance at lag one is: 

𝛾(1) = 𝑐𝑜𝑣 (𝑦𝑡. 𝑦𝑡−1) = 𝑐𝑜𝑣(𝜀𝑡 − 𝜃1𝜀𝑡−1 . 𝜀𝑡−1 − 𝜃1𝜀𝑡−2) 

= −𝜃1𝑐𝑜𝑣(𝜀𝑡−1. 𝜀𝑡−1) = −𝜃1𝜎𝜀
2 

and at lag two: 

𝛾(2) = 𝑐𝑜𝑣 (𝑦𝑡. 𝑦𝑡−2) = 𝑐𝑜𝑣(𝜀𝑡 − 𝜃1𝜀𝑡−1 . 𝜀𝑡−2 − 𝜃1𝜀𝑡−3) = 0  



Similarly, one can show that:  𝛾(3) = 𝛾(4) = ⋯ = 0 

So the auto-covariance function for the MA(1) model can be 
written as: 

𝛾(𝑘) = {
𝜎𝜀
2(1 + 𝜃1

2) . 𝑘 = 0

−𝜃1𝜎𝜀
2 .  𝑘 = 1

0    . 𝑘 = 2.3. …

 

 

Note that the expectation, variance, and  auto-covariance functions 

of this model do not depend on time 𝑡, (which is expected to be, 

since moving average processes are always stationary). Now 

dividing by variance 𝛾(0), we get the autocorrelation function for 

the MA(1) model: 



𝜌(𝑘) = {

1 . 𝑘 = 0
−𝜃1

(1 + 𝜃1
2)
 .  𝑘 = 1

0 𝑘 = 2.3. …

 

Which means that autocorrelation function of MA(1) processes 

cuts-off after the first time lag, which means that observations one 

time lag apart are correlated, while at larger lags they are not 

correlated. Also, note that if the sign of 𝜃1 is negative, then 𝜌(1) is 

positive, which means that large values of the series 𝑦𝑡 tend to be 

followed by large values, and small values are followed by small 

values, in this case the process {𝑦𝑡} is more smooth than the white 



noise process , and this smoothness increases as 𝜃1 approaches -1, 

and the reverse situation occurs when 𝜃1 is positive. 

3.7.1.2 The Partial autocorrelation function of MA (1) 

From the definition of partial auto-correlation we have, 

𝜙00 = 1 . 

𝜙11 = ρ1 = −(
𝜃1

1 + 𝜃1
2) . 

Using the determinants to find the partial autocorrelation 

functions, we find:  



𝜙22 =
|
1 ρ1
ρ1 ρ2

|

|
1 ρ1
ρ1 1

|
=
|
1 ρ1
ρ1 0

|

|
1 ρ1
ρ1 1

|
=
0 − ρ1

2

1 − ρ1
2
=

−θ1
2

1 + θ1
2 + θ1

4

=
−θ1

2(1 − θ1
2)

1 − θ1
6  

(where me multiplied numerator and denominator by (1 − θ1
2)). 

For k=3 we get: 

𝜙33 =

|

1 ρ1 ρ1
ρ1 1 0
0 ρ1 0

|

|

1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

|

=
ρ1
3

1 − 2ρ1
3
=
−θ1

3(1 − θ1
2)

1 − θ1
8  



In general we can prove that 𝜙kk =
−θ1

𝑘(1−θ1
2)

1−θ1
2(𝑘+1)    for all k > 0. Thus 

the PACF for the MA(1) model takes the same form as the ACF for 

the AR models: 

i)    If 0 < 𝜃 < 1 ; then the PACF follow a damped exponential 

function. 

ii) If −1 < 𝜃 < 0 ; then the PACF follow a damped sine-wave 

function. 

 

To show the behavior of the ACF and PACF for the MA(1) model 

we take the following examples. 



 

 

 

 

1- The following figure shows the ACF and PACF for 
    𝜃1 = −0.7 : 



Lag

P
a

rt
ia

l 
A

u
to

c
o

rr
e

la
ti

o
n

2018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Partial Autocorrelation Function for C1
(with 5% significance limits for the partial autocorrelations)

 Lag

A
u

to
c
o

rr
e

la
ti

o
n

2018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Autocorrelation Function for C1
(with 5% significance limits for the autocorrelations)

 

b)  PACF for MA (1) model when 

𝜃1 = −0.7 

a) ACF for MA (1) model when 

𝜃1 = −0.7 

We note from figure (a) that the ACF cuts-off after lag 1, and from 

figure (b) that the PACF takes the form of a decaying sine-wave. 

Also, note that �̂�1 = 0.4698 and its sign is opposite to the sign of 𝜃1.  



 

 

 

 

 

2- The following figure shows the ACF and  PACF for 
     𝜃1 = 0.7 : 
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b )  PACF for MA(1) model when 

𝜃1 = 0.7 

a) ACF for MA(1) model when 

𝜃1 = 0.7 

We note from figure (a) that the ACF cuts-off after lag 1, and from 

figure (b) that the PACF takes the form of a decaying exponential 

function. Also, note that �̂�1 = −0.4698 and its sign is opposite to 

the sign of 𝜃1.  



3.7.1.3 Invertibility 

We have already mentioned the  invertibility, and explained the 

importance of writing the model in terms of the past values of the 

series 𝑦𝑡−1. 𝑦𝑡−2. …, also, we have mentioned that to be able to 

achieve this goal we have to put some conditions on the weights 𝜋𝑖 , 

the definition of MA(1) model is: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 

rewriting it as: 

𝜀𝑡 = 𝑦𝑡 + 𝜃1𝜀𝑡−1 

From which we can get: 

𝜀𝑡−1 = 𝑦𝑡−1 + 𝜃1𝜀𝑡−2 



𝜀𝑡−2 = 𝑦𝑡−2 + 𝜃1𝜀𝑡−3 

⋮ 

𝜀𝑡−𝑘 = 𝑦𝑡−𝑘 + 𝜃1𝜀𝑡−𝑘−1 

And by continue substituting in 𝜀𝑡 = 𝑦𝑡 + 𝜃1𝜀𝑡−1, we get: 

𝜀𝑡 = 𝑦𝑡 + 𝜃1𝑦𝑡−1 + 𝜃1
2𝑦𝑡−2 + 𝜃1

3𝑦𝑡−3 +⋯+ 𝜃1
𝑘𝑦𝑡−𝑘 + 𝜃1

𝑘+1𝜀𝑡−𝑘−1 

If we continue substitute for large number of times, i.e. letting 𝑘 →

∞, then last term (𝜃1
𝑘+1𝜀𝑡−𝑘−1) will not diminish to zero unless we 

put the condition that |𝜃| < 1, whereas, if |𝜃| > 1 then it will not 

diminish to zero, and as a consequence the observations in the 

MA(1) model will be affected by all observations in the history of 

the series. 



 

3.7. 1.4 importance of Invertibility 

Invertibility is a special characteristic concerned with the models 

and is completely independent in terms of concept and importance 

from stationarity. Some points about its importance are: 

1. Invertibility ensures that the value 𝑦𝑡 is affected after a 

specific period of time by the nearby observations more than 

being affected by observations very distant apart, in fact we see 

this effect decreases in an exponential manner. 



2. Invertibility ensures the existence of a single model 

corresponding to a specific auto-correlation function.  We have 

found for MA (1) model that: 

𝜌1 =
−𝜃1

(1 + 𝜃1
2)

 

   Cross Multiplication and rearranging terms, we get: 

𝜃1
2𝜌1 + 𝜃1 + 𝜌1 = 0 

or,  

𝜃1
2 +

𝜃1
𝜌1
+ 1 = 0 



it is a quadratic function in 𝜃1 , which has two roots their 

multiplication equal 1, and thus if 𝜃1
∗is one root, then the 

second will be 
1

𝜃1
∗ , this means that there are two MA(1) models 

having two different values for 𝜃1 but have the same auto-

correlation function! 

3. Invertibility makes it possible sometimes to use MA(q) with 

a small order as an alternative for a model that uses a large 

number of previous observation: 

𝑦𝑡 = 𝜀𝑡 + 𝜃1𝑦𝑡−1 + 𝜃1
2𝑦𝑡−2 + 𝜃1

3𝑦𝑡−3 +⋯ 

 



Example: 

   If  {𝑦𝑡} is a MA(1) process with 𝜃1 = 0.5, what is the auto-

correlation function for this process, then show that there exist 

another value for 𝜃1 satisfy this auto-correlation function. Which 

value satisfy the invertibility condition? 

Solution: 

𝜌1 = −(
𝜃1

1 + 𝜃1
2)  ;  𝜌𝑘 = 0 . 𝑘 > 1 

So if 𝜃1 = 0.5, then: 

𝜌1 = −(
0.5

1 + (0.5)2
) = −0.4 



Now, if we used the other root that satisfy this equation, which is 

1

𝜃1
=

1

0.5
= 2, then: 

𝜌1 = −(

1
0.5

1 + (
1
0.5
)
2) = −0.4 

This means that 𝜃1
∗ =

1

0.5
 gives the same value for 𝜌1  as the value 

𝜃1 = 0.5, so we have two MA(1) models having the same auto-

correlation function: 

𝜌𝑘 = {
−0.4   . 𝑘 = 1
0     . 𝑘 = 2.3. …

 



The first model MA(1) with parameter 0.5, the other with 

parameter 2, of course the first one satisfies the invertibility 

condition (|𝜃| < 1).  

 

3.7.2 Moving Average of second order  MA (2) 

We say that the process {𝑦𝑡} follow a moving average model of 

order two if it can be represented as: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2  ; 𝑡 = 0.±1.±2.…   

Where 𝜃1, 𝜃2  represent the main parameters of the model, and 

{𝜀𝑡} is the white nose process 𝜀𝑡~𝑖𝑖𝑑  𝑁(0. 𝜎𝜀
2). 



The MA(2) model is similar to the MA(1) model, but it has more 

ability in modeling a more complicated situations,  as it is  used in 

modeling important economic indicators after being affected by 

sudden disturbances when effects of such disturbances extend to 

two time lags.  

Also, the MA(2) model is always stationary, no matter what the 

value of the parameter 𝜃1, 𝜃2  are, since: 

𝜓1 = −𝜃1 ; 𝜓2 = −𝜃2  ;  𝜓𝑗 = 0 .   𝑗 > 2 

The model can be written in short as: 

𝑦𝑡 = 𝜃(𝐵)𝜀𝑡  



Where 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 is a polynomial in the operator B. 

3.7.2.1 The autocorrelation function of MA (2) 

The model is: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2  

Taking the expectation of both sides: 

𝐸(𝑦𝑡) = 𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2 = 0 

  and taking the variance of both sides: 

𝑣𝑎𝑟(𝑦𝑡) = 𝛾(0) = 𝑣𝑎𝑟(𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2) 

                               =  𝑣𝑎𝑟(𝜀𝑡) + 𝜃1
2 𝑣𝑎𝑟(𝜀𝑡−1) + 𝜃2

2 𝑣𝑎𝑟(𝜀𝑡−2) 

                                                              = 𝜎𝜀
2(1 + 𝜃1

2 + 𝜃2
2) 

and the auto-covariance at lag one is: 



 𝛾(1) = 𝑐𝑜𝑣 (𝑦𝑡. 𝑦𝑡−1) 

     = 𝑐𝑜𝑣(𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2 .  𝜀𝑡−1 − 𝜃1𝜀𝑡−2  − 𝜃2𝜀𝑡−3) 

                                        = −𝜃1𝜎𝜀
2 + 𝜃1𝜃2𝜎𝜀

2 

                                       = −𝜎𝜀
2𝜃1(1 − 𝜃2) 

and at lag two: 

      𝛾(2) = 𝑐𝑜𝑣 (𝑦𝑡 . 𝑦𝑡−2)  

                = 𝑐𝑜𝑣(𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2 .  𝜀𝑡−2 − 𝜃1𝜀𝑡−3  − 𝜃2𝜀𝑡−4) 

                                        = −𝜃2𝜎𝜀
2 

Similarly, one can show that:  𝛾(3) = 𝛾(4) = ⋯ = 0 

So the auto-covariance function for the MA(2) model can be 
written as: 



𝛾(𝑘) =

{
 

 
𝜎𝜀
2(1 + 𝜃1

2 + 𝜃2
2).  𝑘 = 0 

−𝜎𝜀
2𝜃1(1 − 𝜃2).             𝑘 = 1

−𝜃2𝜎𝜀
2.                            𝑘 = 2

0.                              𝑘 = 3.4. …

 

 

Note that the expectation, variance, and  auto-covariance functions 

of this model do not depend on time 𝑡, (which is expected to be, 

since moving average processes are always stationary). Now 

dividing by variance 𝛾(0), we get the autocorrelation function for 

the MA(2) model: 



𝜌(𝑘) =

{
 
 

 
 

 
−𝜃1(1 − 𝜃2)

(1 + 𝜃1
2 + 𝜃2

2)
.             𝑘 = 1

−𝜃2

(1 + 𝜃1
2 + 𝜃2

2)
.            𝑘 = 2

0.                              𝑘 = 3.4. …

 

Which means that autocorrelation function of MA(2) processes 

cuts-off after the two time lags, thus we say that MA(2) models 

have a memory size of 2. 

3.7.2.2 The Partial autocorrelation function of MA (2) 



We will not derive the mathematical form of this function due to 

the mathematical complications, however, we will just mention the 

properties and form of this function: 

1- If the roots of the quadratic function 𝜃(𝐵) = 1 − 𝜃1𝐵 −

𝜃2𝐵
2 = 0 are real, then the PACF will be in form of a decaying 

exponential function. 

2- If the roots of the quadratic function 𝜃(𝐵) = 1 − 𝜃1𝐵 −

𝜃2𝐵
2 = 0 are complex, then the PACF will be in form of a 

decaying sine-wave function. 



To show the behavior of the ACF and PACF for the MA(2) model 

we take the following examples for some values of 𝜃1 and 𝜃2: 

1. The following figure shows the ACF and PACF for 
 𝜃1 = 0.7 , 𝜃2 = −0.1   : 
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We note from figure (a) that the ACF cuts-off after lag 2, and from 

figure (b) that the PACF takes the form of a decaying exponential 

form.  

2) The following figure shows the ACF and  PACF for 

 𝜃1 = 1 . 𝜃2 = −0.7 : 
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b )  PACF for MA(2) model when 

𝜃1 = 1 . 𝜃2 = −0.7 

a) ACF for MA(2) model when 

𝜃1 = 1 . 𝜃2 = −0.7 

We note from figure (a) that the ACF cuts-off after lag 2, and from 

figure (b) that the PACF takes the form of a decaying sine-wave 

function.  

3.7.2.3 Invertibility 

We will not derive invertibility conditions for the MA(2) model, 

however we will just mention these conditions: 

• −1 < 𝜃2  < 1 

•    𝜃1 + 𝜃2 < 1 



•    𝜃2 − 𝜃1 < 1 

Which as we can see are very similar to the stationarity conditions 

of the AR(2) model. 

Example: If the model that best fits the process {𝑦𝑡} is 

 𝑦𝑡 = 𝜀𝑡 + 0.8𝜀𝑡−1 − 0.15𝜀𝑡−2, where {𝜀𝑡} is the white noise process, 

does this model satisfy the invertibility conditions?  

 Solution:     

From the model equation, we see that the model parameters are 𝜃1 =

−0.8  .   𝜃2 = 0.15 .  Now applying the invertibility conditions:   

(i) |𝜃2| = |0.15| < 1 



(ii) 𝜃1 + 𝜃2 = −0.8 + 0.15 = −0.65 < 1 

(iii) 𝜃2 − 𝜃1 = 0.15 − (−0.65) = 0.95 < 1 

Therefore, all invertibility conditions are satisfied, and the process 

is invertible. 

3.7.3 Moving Average of order  𝒒  

This model can be written on the form: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞  ; 𝑡 = 0.±1.±2.… 

Where 𝜀𝑡~𝑊𝑁(0 . 𝜎
2), and the constants 𝜃1. 𝜃2. … 𝜃𝑞 are the model 

parameters. These models are always stationary. The models MA 

(𝑞) can be invertible or non-invertible depending on the  constants 



𝜃𝑖 , but generally it can be shown that this process is invertible if 

the roots of the equation: 

𝜃(𝐵) = (1−𝜃1𝐵−𝜃2𝐵
2 −⋯−𝜃𝑞𝐵

𝑞) = 0 

all lie outside the unit circle. 

And for autocorrelation function for the MA (𝑞) models, it can be 

shown to have the following form: 

𝜌𝑘 = {

−𝜃𝑘 + 𝜃1𝜃𝑘+1 +⋯++𝜃𝑞−𝑘𝜃𝑞

(1 + 𝜃1
2 +⋯+ 𝜃𝑞

2)
; 𝑘 = 1.2.… . 𝑞

0 ; 𝑘 > 𝑞

 

We will not derive this mathematical equation, however we will 

show the pattern it can take, which is very similar to the MA(1), and 



MA(2) case. The ACF cuts-off after 𝑞 time lags, this indicate that 

these processes have a memory of size 𝑞, also we can prove that 

there are 2𝑞 models with different parameters that have the same 

ACF , however, only one of them satisfy the invertibility condition. 

As for the partial auto-correlation function it has the same pattern 

as MA(2) model, i.e. : 

1- If the roots of the quadratic function 𝜃(𝐵) = 1 − 𝜃1𝐵 −

𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞 = 0 are real, then the PACF will be in form 

of a decaying exponential function. 

 



2- If the roots of the quadratic function 𝜃(𝐵) = 1 − 𝜃1𝐵 −

𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞 = 0 are complex, then the PACF will be in 

form of a decaying sine-wave function. 

 

 

3.8 Autoregressive- Moving Average Processes 

We say that {𝑦𝑡} follow an Autoregressive-Moving average process of 

order (𝑝, 𝑞), in short ARMA(𝑝, 𝑞) model, if it has the following 

form: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 +⋯+𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡−𝜃1𝜀𝑡−1 −⋯−𝜃𝑞𝜀𝑡−𝑞 



  Where 𝜀𝑡~𝑊𝑁(0 . 𝜎
2), and the constants 𝜙1. 𝜙2. …𝜙𝑝 and 

  𝜃1. 𝜃2. … 𝜃𝑞  are the model parameters. We can express this 

process in the form: 

                                    𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝜀𝑡                               (1)    

Or,  

(1−𝜙1𝐵−𝜙2𝐵
2 −⋯−𝜙𝑝𝐵

𝑝)𝑦𝑡 = (1−𝜃1𝐵−𝜃2𝐵
2 −⋯−𝜃𝑞𝐵

𝑞)𝜀𝑡 

Where: 

𝜙(𝐵) : the auto-regressive operator, a polynomial in powers of B. 

𝜃(𝐵) : the moving average operator, a polynomial in powers of B. 



Now, notice from (1) that: 

𝑦𝑡 =
𝜃(𝐵)

𝜙(𝐵)
𝜀𝑡  

Which is in the form of the general linear process: 

                                                𝑦𝑡 = ψ(𝐵)𝜀𝑡                         (2) 

That is 𝑦𝑡 can be written as an infinite moving average process, and in 

this case we require the roots of the characteristic equation 𝜙(𝐵) = 0, 

to lie outside the unit circle as a stationarity condition for this model. 

Note also, that (1) can be put alternatively in the form: 



𝜀𝑡 =
𝜙(𝐵)

𝜃(𝐵)
 𝑦𝑡 

Which is in the form of the invertibility formula: 

𝜀𝑡 = Π(𝐵) 𝑦𝑡                 (3) 

That is 𝜀𝑡 can be written as an infinite auto-regressive process, and in 

this case we require the roots of the characteristic equation 𝜃(𝐵)=0, to 

lie outside the unit circle as an invertibility condition for this model. 

By noting both (2) and (3) we see that: 

Π(𝐵) = ψ−1(𝐵) 

or,   

Π(𝐵)ψ(𝐵) = 1 



The weights 𝜓𝑗 and 𝜋𝑗 can be found by equating the coefficients of 𝐵𝑗 

in both sides of equations (2) and (3), we will see this for the model 

ARMA(1,1). 

 

3.8.1 ARMA (1,1) model 

We say that {𝑦𝑡} is an ARMA(1,1) process if it can be represented as: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 

  Where 𝜀𝑡~𝑊𝑁(0. 𝜎
2), and the constants 𝜙1. 𝜃1 are the model 

parameters. 

This model can be put in the form: 

𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝜀𝑡                         



or,  
(1−𝜙1𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

The ARMA(1,1) process is stationary if |ϕ1| < 1, in this case it can 

be expressed as an infinite moving average process, as follow: 

𝑦𝑡 = ψ(𝐵)𝜀𝑡 

where,  

ψ(𝐵) =
(1−𝜃1𝐵)

(1−𝜙1𝐵)
 

⟹ (1−𝜙1𝐵)ψ(𝐵) = (1−𝜃1𝐵) 

and thus, 

(1−𝜙1𝐵)(1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯) = (1−𝜃1𝐵) 



equating the coefficients of 𝐵𝑗 in both sides, we have; 

𝐵1: 𝜓1 − 𝜙1 = −𝜃1       ⟹ 𝜓1 = 𝜙1−𝜃1  

𝐵2: 𝜓2 − 𝜙1𝜓1 = 0      ⟹ 𝜓2 = 𝜙1𝜓1 = 𝜙1(𝜙1−𝜃1)  

𝐵3: 𝜓3 − 𝜙1𝜓2 = 0       ⟹ 𝜓3 = 𝜙1𝜓2 = 𝜙1
2𝜓1 = 𝜙1

2(𝜙1−𝜃1)  

Thus it is possible to get the general expression for the  𝜓𝑗  

weights for the ARMA(1,1) process as: 

𝜓𝑗 = 𝜙1𝜓𝑗−1 = 𝜙1
𝑗−1 (𝜙1−𝜃1).   𝑗 > 0 

The ARMA(1,1) process is invertible if |θ1| < 1, in this case it can be 

expressed as an infinite auto-regressive process, as follow: 

𝜀𝑡 = Π(𝐵)𝑦𝑡 

where,  



Π(𝐵) =
 (1−𝜙1𝐵)

(1−𝜃1𝐵)
 

⟹ (1−𝜃1𝐵)Π(𝐵) = (1−𝜙1𝐵) 

and thus, 

(1−𝜃1𝐵)(1 + 𝜋1𝐵 + 𝜋2𝐵
2 +⋯) =  (1−𝜙1𝐵)  

equating the coefficients of 𝐵𝑗 in both sides, we get: 

𝜋1 = 𝜙1−𝜃1  

𝜋2 = 𝜃1𝜋1 = (𝜙1−𝜃1)  

𝜋3 = 𝜃1
2𝜋2 = 𝜃1

2(𝜙1−𝜃1) 

⋮ 

  



Thus it is possible to get the general expression for the  𝜋𝑗 weights 

for the ARMA(1,1) process as: 

𝜋𝑗 = 𝜙1𝜋𝑗−1 = 𝜃1
𝑗−1 (𝜙1−𝜃1).   𝑗 > 0 

It is clear from the expression of 𝜓𝑗 and 𝜋𝑗 weights that ARMA(1,1) 

models can be used as an appropriate approximations for either MA(∞) 

or AR(∞), but with merit of having a limited number of parameters 

(just 2!) (parsimonious law), thus mixed models are generally used 

instead of the moving average or the autoregressive models with 

large orders.  

 



3.8.1.1 autocorrelation function for ARMA (1,1) model 

 
The model function is: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 

Taking expectation on both sides, we find: 

𝐸(𝑦𝑡) = 𝜙1𝐸(𝑦𝑡−1) + 0 

therefore: 

𝐸(𝑦𝑡) = 0 

 

 
Taking variance of both sides: 

𝑣𝑎𝑟(𝑦𝑡) = 𝛾(0) = 𝜙1
2𝛾(0) + 𝜎𝜀

2 + 𝜃1
2 𝜎𝜀

2 − 2𝜙1𝜃1𝜎𝜀
2 

hence: 



𝛾(0) =
𝜎𝜀
2(1 + 𝜃1

2 − 2𝜙1𝜃1)

1 − 𝜙1
2  

and the auto-covariance at lag one is: 

                        𝛾(1) = 𝑐𝑜𝑣 (𝑦𝑡. 𝑦𝑡−1) 

                                  = 𝑐𝑜𝑣(𝜙1𝑦𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 .  𝑦𝑡−1   ) 

                                   = 𝜙1𝛾(0) − 𝜃1𝜎𝜀
2 

Substituting the value of 𝛾(0), we get: 

𝛾(1) =
𝜎𝜀
2(𝜙1 − 𝜃1)(1 − 𝜙1𝜃1)

1 − 𝜙1
2  

and at lag two: 

                                    𝛾(2) = 𝑐𝑜𝑣 (𝑦𝑡. 𝑦𝑡−2) 

                                        = 𝑐𝑜𝑣(𝜙1𝑦𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 .  𝑦𝑡−2) 



                                           = 𝜙1𝛾(1) 

Generally, we can show that: 

𝛾(𝑘) = 𝜙1𝛾(𝑘 − 1)   ; 𝑘 = 2.3. … 

So the auto-correlation coefficient at lag one is: 

𝜌(1) =
𝛾(1)

𝛾(0)
=
(𝜙1 − 𝜃1)(1 − 𝜙1𝜃1)

(1 + 𝜃1
2 − 2𝜙1𝜃1)

 

and the auto-correlation coefficient at lag 𝑘 is: 

𝜌(𝑘) =
𝛾(𝑘)

𝛾(0)
= 𝜙1𝜌(𝑘 − 1)   ; 𝑘 = 2.3.… 

or,  

𝜌(𝑘) = 𝜙1
𝑘−1𝜌(1)   ; 𝑘 = 2.3. … 



𝜌(𝑘) = {

 
(𝜙1 − 𝜃1)(1 − 𝜙1𝜃1)

(1 + 𝜃1
2 − 2𝜙1𝜃1)

.             𝑘 = 1

𝜙1
𝑘−1𝜌(1).                           𝑘 = 2.3. . .

 

So, it is clearly noted that for the ARMA(1,1)  process, the ACF 

exhibits an exponential decay starting from 𝜌1 not from 𝜌0, as is the 

case in the AR(1) process. Also, note that value of 𝜌1 depends on 

both parameters 𝜙1, 𝜃1, and its sign depends on the quantity (𝜙1 −

𝜃1),  if 𝜙1 > 𝜃1 then ρ1 > 0, and vice versa. After lag 1, the function 



will start to decay in exponential manner if 𝜙1  > 0 , or in a 

decaying sine-wave format if 𝜙1  < 0.  

Thus, we notice the resemblance of the ACF shape of ARMA(1,1) 

model to that of  the AR(1) model, the only difference is that decay 

starts after 𝜌1 not after 𝜌0. 

Example: 

If  𝑦𝑡 = 0.5𝑦𝑡−1 + 𝜀𝑡 + 0.9𝜀𝑡−1 , find the autocorrelation function 

and plot it, show the difference between this function and the 

AR(1) with same parameter. 



Solution: 

We have 𝜙1 = 0.5, 𝜃1 = −0.9, so using the formula of the ACF of 

the ARMA(1,1) model, 

𝜌(𝑘) = {

 
(𝜙1 − 𝜃1)(1 − 𝜙1𝜃1)

(1 + 𝜃1
2 − 2𝜙1𝜃1)

,             𝑘 = 1

𝜙1
𝑘−1𝜌(1),                           𝑘 = 2.3. . .

 

 we get: 

𝜌(1) =
(0.5 + 0.9)(1 + 0.45)

1 + 0.92 − 2(0.5)(0.91)
= 0.75 

𝜌(2) = 𝜙1
2−1𝜌(1) = (0.5)(0.75) = 0.375 

𝜌(3) = 𝜙1
3−1𝜌(1) = (0.52)(0.75) = 0.1875 



𝜌(4) = 𝜙1
4−1𝜌(1) = (0.53)(0.75) = 0.09375 

𝜌(5) = 𝜙1
5−1𝜌(1) = (0.54)(0.75) = 0.046875 

Whereas, for the AR(1) model with parameter 𝜙1 = 0.5, and using 

the ACF: 

𝜌(𝑘) = 𝜙1
𝑘𝜌(0) = 𝜙1

𝑘   ; 𝑘 = 1.2.3. … 

We get: 

  𝜌(1) = 0.5  .    𝜌(2) = 0.25  .  𝜌(3) = 0.125  .  𝜌(4) = 0.0625  
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(b) ACF for AR(1) model when 

𝜙1 = 0.5 

(a) ACF for ARMA(1,1) model      

          when 𝜙1 = 0.5. 𝜃1 = −0.9 

So we notice the resemblance of both function, but in ARMA(1,1), 

the exponential decay starts from 𝜌(2), whereas in AR(1) the decay 

starts from 𝜌(1). 

 



 3.8.1.2 partial autocorrelation function model ARMA (1,1) 

 
We can deduce the PACF for the ARMA(1,1) model by applying the 

definition of partial autocorrelation that we have previously 

addressed,  

 

𝜙00 = 1 . 

𝜙11 = 𝜌1 =
(1−𝜙1𝜃1)(𝜙1−𝜃1)

1−2𝜙1𝜃1+𝜃1
2  .    

𝜙22 =
|
1 𝜌1
𝜌1 𝜌2

|

|
1 𝜌1
𝜌1 1

|
=
𝜌2 − 𝜌1

2

1 − 𝜌1
 



 

𝜙33 =
𝜌3 − 𝜙21𝜌2 − 𝜙22𝜌1
1 − 𝜙21𝜌1 − 𝜙22𝜌2

.  𝜙21 = 𝜙11 − 𝜙22𝜙11 

The PACF for ARMA(1,1) either decay in an exponential manner, 

or in a sine-wave manner, exactly as the case of MA(1), except 

that it starts after the initial value 𝜙11 = 𝜌1.  

 

3.9 Integrated Autoregressive-Moving averages processes  

 
Most of the actual time series that arise in practical applications in 

many areas of knowledge are not stationary in the mean, and thus, 



we must use the difference transformation to make it 

stationary. Let us assume that 𝑑 is the minimum order of the 

differences that must be taken to render 

the series stationary.  Models that describe these processes are 

symbolized as ARIMA(𝑝, 𝑑, 𝑞) , so that to distinguish them from the 

stationary ARMA(𝑝, 𝑞) models. 

Thus, we say that a process {𝑦𝑡} is an ARIMA(𝑝, 𝑑, 𝑞) process if it 

is possible to express it in the form: 

𝜙(𝐵)𝛻𝑑𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 

Where, 



𝜙(𝐵) = (1−𝜙1𝐵−𝜙2𝐵
2 −⋯−𝜙𝑝𝐵

𝑝). 

𝜃(𝐵) = (1−𝜃1𝐵−𝜃2𝐵
2 −⋯−𝜃𝑞𝐵

𝑞). 

𝛻𝑑 = (1 − 𝐵)𝑑 

i.e. 

 𝑦𝑡~𝐴𝑅𝐼𝑀𝐴(𝑝. 𝑑. 𝑞) 

Usually the transformed series 𝛻𝑑𝑦𝑡 is denoted as 𝑧𝑡, i.e. is expressed 

as: 

𝜙(𝐵) 𝑧𝑡 = 𝜃(𝐵)𝜀𝑡 

 

Where  𝑧𝑡~𝐴𝑅𝑀𝐴(𝑝, 𝑞) which is a stationary process. 

 

 



Example: 

               Express the ARIMA(1,1,1) in its final form. 

 

Solution: 

              The ARIMA(1.1.1) model has the form: 

                                   (1−𝜙1𝐵)(1 − 𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

Now putting 𝑧𝑡 = (1 − 𝐵)𝑦𝑡, we get the model: 

(1−𝜙1𝐵)𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡 

 i.e. 

𝑧𝑡 = 𝜙1𝑧𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 

Substituting for 𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1, we get: 

𝑦𝑡 − 𝑦𝑡−1 = 𝜙1(𝑦𝑡−1 − 𝑦𝑡−2) + 𝜀𝑡−𝜃1𝜀𝑡−1 



or, 

𝑦𝑡 = (1 + 𝜙1)𝑦𝑡−1 − 𝜙1𝑦𝑡−2 + 𝜀𝑡−𝜃1𝜀𝑡−1 

Which is the final form for the ARIMA(1.1.1) model. 

Note that 𝑦𝑡 in the previous format looks like an ARMA(2,1), which is 

true, however with these parameter values it is not stationary, and that 

after differencing {𝑧𝑡} we have turned it into a stationary ARMA(1,1) 

process. 

  



Chapter 4: Parameter Estimation  

We will assume that the order of the model ARMA(p,q) have been 

determined, i.e., we have determined the values of p and q.  

Hence, we need to estimate the values of the parameters 𝜎𝑎
2 , 𝝓, and 

𝜽. In what follow, we will discuss some methods for doing so. 

 

4.1 Method of Moments  

This method is considered the simplest among estimation methods, 

where, as we know, the sample moments are equated to the 

corresponding theoretical moments, and solving the resulting 

equations, one can get the required estimates. 



4.1.1 Autoregressive Models  

AR (1) model:  

As we have shown before, 𝜌1 = 𝜙1, and we estimate 𝜌1by the sample 

autocorrelation coefficient 𝑟1, thus the method of moments estimate 

for 𝜙1 is: 

�̂�1 = 𝑟1 

  

 

 AR (2) model :  

Since there are two parameters to be estimated, namely, 𝜙1  and 𝜙2, 

thus we need two equations for the estimation process, in this regard 



we can use the Yule-Walker (recall that the Yul-Walker equations 

have the form: 

𝜌𝐾 = 𝜙1𝜌𝐾−1 + 𝜙2𝜌𝐾−2 +⋯+ 𝜙𝑃𝜌𝐾−𝑃 

 so if there are two parameters, we need the following two equations: 

𝜌1 = 𝜙1 + 𝜙2𝜌1 

𝜌2 = 𝜙1𝜌1 + 𝜙2 

Now replace 𝜌1 by 𝑟1, and 𝜌2 by 𝑟2 , and solving these equations we 

get: 

�̂�1 =
𝑟1(1 − 𝑟2)

1 − 𝑟1
2  



 

�̂�2 =
𝑟2 − 𝑟1

2

1 − 𝑟1
2  

AR (p) model:  

In this case we need to solve the following system of Yule-

Walker equations: 

𝑟1 = 𝜙1 + 𝑟1𝜙2 +⋯+ 𝑟𝑝−1𝜙𝑝 

𝑟2 = 𝑟1𝜙1 + 𝜙2 +⋯+ 𝑟𝑝−2𝜙𝑝 

⋮ 

𝑟𝑝 = 𝑟𝑝−1𝜙1 + 𝑟𝑝−2𝜙2 +⋯+ 𝜙𝑝 



which will require some more effort, but maybe mathematical 

software can be used for this purpose. 

 

 

4.1.2 The Moving Average models  

Method of moments for these models is not as easy as we have seen 

for AR models, it might be even impossible for models with large 

orders, let us consider the MA (1) model: 

As we have shown earlier that: 



𝜌1 = −
𝜃

1 + 𝜃2
 

so replacing 𝜌1  by 𝑟1, we get: 

𝑟1 = −
𝜃

1 + 𝜃2
 

From which, we will get a quadratic equation in 𝜃: 

𝑟1𝜃
2 + 𝜃 + 𝑟1 = 0 

In case |𝑟1| < 0.5, then the real roots of the equation are: 

𝜃 =
−1 ± √1 − 4𝑟1

2

2𝑟1
 



One solution satisfy the invertibility condition |𝜃| < 1 , it is possible 

to check that this solution is: 

𝜃 =
−1 + √1 − 4𝑟1

2

2𝑟1
 

For higher order MA models, the solutions will be more 

complicated. 

 

4.1.3 Estimating the white noise variance 𝝈𝒂
𝟐 

For any stationary ARMA (p, q) model, 𝛾0 = 𝑉𝑎𝑟(𝑦𝑡) is 

estimated using the sample variance of the time series 𝑦𝑡: 



𝑆2 =
∑ (𝑦𝑡 − �̅�)

2𝑛
𝑖=1

𝑛 − 1
 

and then we use the relationship between 𝜎𝜀
2 and the parameters 

𝜃 or 𝜙 to get �̂�𝜀
2  for any model we want, for example: 

4.1.3.1 AR (p) model 

We use the following relationship that we have already obtained when 

discussing the AR(p) model:  

𝛾0 = 𝜙1𝛾1 + 𝜙2𝛾2 +⋯+ 𝜙𝑝𝛾𝑝 + 𝜎𝜀
2                  (∗) 



The relationship 𝜌𝑘 =
𝛾𝑘

𝛾0
⇒ 𝛾𝑘 = 𝛾0𝜌𝑘 , enable us to write (*) in 

the form: 

𝛾0 = 𝜙1𝛾0𝜌1 + 𝜙2𝛾0𝜌2 +⋯+ 𝜙𝑝𝛾0𝜌𝑝 + 𝜎𝜀
2 

form which we have: 

𝛾0 − 𝜙1𝛾0𝜌1 − 𝜙2𝛾0𝜌2 −⋯− 𝜙𝑝𝛾0𝜌𝑝 = 𝜎𝜀
2 

or: 

𝜎𝜀
2 = (1 − 𝜙1𝜌1 − 𝜙2𝜌2 −⋯− 𝜙𝑝𝜌𝑝)𝛾0 

and thereby, estimate of the white noise variance is: 

�̂�𝜀
2 = (1 − �̂�1𝑟1 − �̂�2𝑟2 −⋯− �̂�𝑝𝑟𝑝)𝑆

2  



For example, for AR (1) model, we have one parameter estimated as 

�̂�1 = 𝑟1, thus the estimate of 𝜎𝜀
2 is: 

�̂�𝜀
2 = (1 − 𝑟1

2)𝑆2  

And one can estimate 𝜎𝜀
2 for any AR model, for example , for AR(2) 

model , the equation is 

�̂�𝜀
2 = (1 − �̂�1𝑟1 − �̂�2𝑟2)𝑆

2 

and replace the parameter estimates �̂�1and  �̂�2 in terms of 𝑟1 and 𝑟2. 

 

 

 

4.1.3.2 MA (q) models 



We use the following relationship that we have already obtained when 

discussing the MA(q) model, which connects between 𝜎𝜀
2 and the 

parameters 𝜃1, 𝜃2, … , 𝜃𝑞 : 

𝛾0 = 𝜎𝜀
2 (1 + 𝜃1

2 +⋯+ 𝜃𝑞
2) ⟹ 𝜎𝜀

2 =
𝛾0

(1 + 𝜃1
2 +⋯+ 𝜃𝑞

2)
 

Estimating 𝛾0 by the sample variance 𝑆2, we get the  following 

estimate of 𝜎𝜀
2 : 

�̂�𝜀
2 =

𝑆2

(1 + 𝜃1
2 + 𝜃2

2 +⋯+ 𝜃𝑞
2)

 

For example, for MA (1) model:   



�̂�𝜀
2 =

𝑆2

(1+�̂�1
2)

   where  𝜃 =
−1+√1−4𝑟1

2

2𝑟1
 

For the mixed model ARMA (1,1), it can be shown that the equation 

for estimating the white noise variance is given the following 

relationship: 

�̂�𝜀
2 =

(1 − �̂�1
2) 

(1 + 𝜃1
2 − 2𝜃1�̂�1)

𝑆2  

Example: Suppose that we have observed a time series 𝑌𝑡 of size 



 𝑛 = 121, and we have decided that AR (2) model is suitable for 

modelling 𝑌𝑡 , also, we have estimated the sample autocorrelation 

coefficients 𝑟1 = 0.936  and 𝑟2 = 0.802. The series mean 

 𝜇 = 5.1069, and 𝛾0 = 𝑉𝑎𝑟(𝑦𝑡) = 𝑆
2 = 1.99487. Hence, using the 

following relations: 

�̂�1 =
𝑟1(1−𝑟2)

1−𝑟1
2 , and �̂�2 =

𝑟2−𝑟1
2

1−𝑟1
2 , we can get the parameter estimates as 

follows: 

�̂�1 =
0.936(1 − 0.802)

1 − 0.9362
= 1.50 

and, 



�̂�2 =
0.802 − 0.9362

1 − 0.9362
= −0.598 

and the estimate of the white noise variance is:                                                               

                             �̂�𝜀
2 = [1 − �̂�1𝑟1 − �̂�2𝑟2]𝑆

2 

�̂�𝜀
2 = [1 − 1.50 × 0.936 − (−0.598)0.802]1.99487 = 0.388 

  So we may write the estimated model of this time series in the form: 

𝑦𝑡 − 5.1069 = 1.5(𝑦𝑡−1 − 5.1069) + 0.598(𝑦𝑡−2 − 5.1069) + 𝜀𝑡 

 where 𝜀𝑡~𝑊𝑁(0 . 0.388). 

Note that the model can be written in an equivalent form as follow: 



𝑦𝑡 = −5.6074 + 1.5𝑦𝑡−1 + 0.598𝑦𝑡−2 + 𝜀𝑡 

 

 

4.2 Least Squares method 

4.2.1 AR (1) model: 

The model takes the form: 

𝑦𝑡 − 𝜇 = 𝜙(𝑦𝑡−1 − 𝜇) + 𝜀𝑡 

The idea of least squares is to minimize the sum of squared errors: 

𝜀𝑡 = (𝑦𝑡 − 𝜇) − 𝜙(𝑦𝑡−1 − 𝜇) 



That is, to minimize the term: 

𝑆(𝜙. 𝜇) =∑𝜀𝑡
2

𝑛

𝑡=2

=∑[(𝑦𝑡 − 𝜇) − 𝜙(𝑦𝑡−1 − 𝜇)]
2

𝑛

𝑡=2

 

Thus, we find estimates of the parameters 𝜙 and 𝜇 by finding the 

corresponding values that minimize the term 𝑆(𝜙. 𝜇), so: 

𝜕𝑆

𝜕𝜇
=∑2[(𝑦𝑡 − 𝜇) − 𝜙(𝑦𝑡−1 − 𝜇)](−1 + 𝜙) = 0

𝑛

𝑡=2

 

And solving for 𝜇, we find: 

�̂� =
∑ 𝑦𝑡 −
𝑛
𝑡=2 𝜙∑ 𝑦𝑡−1

𝑛
𝑡=2

(𝑛 − 1)(1 − 𝜙)
 



Note that for large 𝑛,  

∑
𝑦𝑡

𝑛 − 1
≈∑

𝑦𝑡−1
𝑛 − 1

≈ �̅�

𝑛

𝑡=2

𝑛

𝑡=2

 

Thus whatever the value of 𝜙,then: 

�̂� ≈
�̅� − 𝜙�̅�

1 − 𝜙
=
�̅�(1 − 𝜙)

1 − 𝜙
= �̅� 

So we notice that the least squares method estimate  𝜇 approximately 

as �̅�, in case of large sample sizes. 

Now, to estimate 𝜙, we differentiate  𝑆(𝜙. �̅�) with respect to 𝜙 and 

equate it to zero,  



𝑆(𝜙, 𝜇) =∑[(𝑦𝑡 − 𝜇) − 𝜙(𝑦𝑡−1 − 𝜇)]
2

𝑛

𝑡=2

 

 

𝜕𝑆(𝜙. �̅�)

𝜕𝜙
= −∑2[(𝑦𝑡 − �̅�) − 𝜙(𝑦𝑡−1 − �̅�)](𝑦𝑡−1 − �̅�) = 0

𝑛

𝑡=2

 

From which we get: 

�̂� =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−1 − �̅�)
𝑛
𝑡=2

∑ (𝑦𝑡−1 − �̅�)
2𝑛

𝑡=2

 

Note that in the denominator, we have one missing term, namely 

(𝑦𝑛 − �̅�)
2, which will make �̂� exactly equal 𝑟1, but for large sample 



sizes the effect of this missing term will be negligible, and hence the 

method of moments and least squares method produce approximately 

equal estimates for �̂� for large sample sizes. 

4.2.2  MA(1) model 

This model takes the form:      

𝑦𝑡 = 𝜀𝑡 − 𝜃𝜀𝑡−1 

We can rewrite the model in the form: 

𝜀𝑡 = 𝑦𝑡 + 𝜃𝜀𝑡−1 

and conditioning that 𝜀0 = 0, we find: 

𝜀1 = 𝑦1 



𝜀2 = 𝑦2 + 𝜃𝜀1 = 𝑦2 + 𝜃𝑦1 

𝜀3 = 𝑦3 + 𝜃𝜀2 = 𝑦3 + 𝜃𝑦2 + 𝜃
2𝑦1 

⋮ 

𝜀𝑛 = 𝑦𝑛 + 𝜃𝑦𝑛−1 +⋯+ 𝜃
𝑛−1𝑦1 

Now the value of 𝜃 is estimated by minimizing the sum of squares: 

𝑆(𝜃) =∑𝜀𝑡
2 =∑(𝑦𝑛 + 𝜃𝑦𝑛−1 +⋯+ 𝜃

𝑛−1𝑦1)
2

𝑛

𝑡=1

𝑛

𝑡=1

 

Which is a non-linear equation in 𝜃, thus cannot be solved immediately, 

but we can use any numerical optimization method to solve it 



(for example , by the Gauss- Newton method). The same method 

is used in the case of higher order moving average models. 

  



Chapter 5:  Forecasting 

 

5 .1 Introduction 

The problem of forecasting is summarized in how to employ the model that 

passes all diagnostic tests together with the observed time series at hand to 

predict future values that did not occur yet, i.e. the values 𝑦𝑡+1. 𝑦𝑡+2. … .  In 

other words, we want to use the current and previous observations to predict 

the observation that will occur after 𝑙 periods of time, i.e. 𝑦𝑡+𝑙  . 𝑙 = 1.2. …. 

We usually denote 𝑙 as forecast horizon or, lead time. 



Complete statistical inference for the variable 𝑦𝑡+𝑙 requires knowledge 

of its conditional density function, that is, its density function given that 

history of the time series is known up to time 𝑡. This is called the predictive 

distribution. Usually, we look for one suitable value to represent the center 

of this distribution in order to use it as a point estimate of the variable 𝑦𝑡+𝑙, 

in addition we construct a predictive interval around this point. 

The best value representing the center of the predictive distribution is 

the (average) or the expected value of the conditional distribution of 

the variable 𝑦𝑡+𝑙 given that the history of the series 𝑦1. 𝑦2. … . 𝑦𝑡 is known. 

This conditional expectation is considered the best point estimate of this 

variable, because it fulfils an important characteristic which is the minimum 



mean square errors, meaning that if the model for 𝑦𝑡 is correct, then there is 

no other forecast produce a smaller mean squared errors. 

A quick review of some of the properties of the conditional expectation: 

If X and Y are random variables having joint density function 𝑓(𝑥. 𝑦), 

and marginal functions 𝑓(𝑥) and 𝑓(𝑦) respectively, then the conditional 

density function for 𝑌 given 𝑋 = 𝑥 is: 

𝑓(𝑌|𝑋 = 𝑥) =
𝑓(𝑥. 𝑦)

𝑓(𝑥)
 

The conditional expectation for 𝑌 given 𝑋 = 𝑥 is: 



𝐸(𝑌|𝑋 = 𝑥) = ∫ 𝑦 𝑓(𝑌|𝑋 = 𝑥)

∞

−∞

 𝑑𝑦 

Note that this is the mean of the conditional distribution, therefore all the 

characteristics of the mean function applies, for example: 

a) 𝐸(𝑎𝑌 + 𝑏𝑍|𝑋 = 𝑥) = 𝑎𝐸(𝑌|𝑋 = 𝑥) + 𝑏𝐸(𝑍|𝑋 = 𝑥) 

b) 𝐸(ℎ(𝑌)|𝑋 = 𝑥) = ∫  ℎ(𝑦)𝑓(𝑌|𝑋 = 𝑥)
∞

−∞
 𝑑𝑦 

Also, the mean of the conditional distribution, has the following properties: 

1) 𝐸(ℎ(𝑋)|𝑋 = 𝑥) = ℎ(𝑥) 

       Which means that knowing that 𝑋 = 𝑥, i.e. it takes a fixed value, then 

ℎ(𝑥) is considered  a constant function. 



2)   𝐸(𝐸(𝑌|𝑋)) = 𝐸(𝑌) ,  and if Y and X are independent then,  𝐸(𝑌|𝑋) =

𝐸(𝑌). 

  



 

5.2 Forecasting functions for ARMA models  

As we have already mentioned, one of the objectives of time-series analysis 

is to build mathematical models and use them in forecasting future values 

of the time series. 

Let us consider the series {𝑌𝑡} and suppose that we can write it in the form 

of  ARMA (p, q)  

model or the general linear model form: 

𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 

Which can be written as: 



𝑦𝑡 =
𝜃(𝐵)

𝜙(𝐵)
𝜀𝑡 

                                        = 𝜓(𝐵)𝜀𝑡 

Also, suppose that we have observed the series up to time 𝑡, i.e. that we have 

the observations 𝑦𝑡. 𝑦𝑡−1. …. , let’s denote it as �̃� = (𝑦𝑡. 𝑦𝑡−1. … ) , we will 

discuss how to use the available  observations up to time 𝑡 to predict the 

future value of the series at time 𝑡 + 1, i.e.  𝑦𝑡+1. We denote this predictor 

at time 𝑡 and for one step in the future as 𝑦𝑡(1), and in general for 𝑙 steps in 

the future as 𝑦𝑡(𝑙), where 𝑡 is called the time origin, and 𝑙 is called the lead 

time. 

5.3 Minimum Mean Square Error Forecast 



We will denote this as �̂�𝑡(𝑙), and it is given by: 

�̂�𝑡(𝑙) = 𝐸(𝑦𝑡+𝑙|𝑦𝑡 . 𝑦𝑡−1. … )                                (∗) 

In other words, it is the conditional expectation of the studied 

phenomenon at time 𝑡 + 𝑙, provided that the values of 

the phenomenon until the time 𝑡 are known. We will discuss below 

how to get the forecasts for some ARMA models. 

5.4 AR (1) Model 

As we know the general form of the 

 AR(1)  model is: 

𝑦𝑡 − 𝜇 = 𝜙(𝑦𝑡−1 − 𝜇) + 𝜀𝑡 



If we want to predict one step in the future, we replace 𝑡 with 𝑡 + 1: 

𝑦𝑡+1 − 𝜇 = 𝜙(𝑦𝑡 − 𝜇) + 𝜀𝑡+1 

Applying the definition of minimum mean square error forecast by 

taking the conditional expectation of both sides: 

�̂�𝑡(1) − 𝜇 = 𝐸[(𝑦𝑡+1 − 𝜇)|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1]  

we get: 

�̂�𝑡(1) − 𝜇 = 𝜙[𝐸(𝑦𝑡|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1) − 𝜇] + 𝐸(𝜀𝑡+1|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1) 

using property number (1) of the conditional expectation we get: 

𝐸(𝑦𝑡|𝑦𝑡 . 𝑦𝑡−1. … . 𝑦1) = 𝑦𝑡 



and since 𝜀𝑡+1 is independent  from 𝑦𝑡. 𝑦𝑡−1. … . 𝑦1, we get from 

property (2): 

𝐸(𝜀𝑡+1|𝑦𝑡 . 𝑦𝑡−1. … . 𝑦1) = 𝐸(𝜀𝑡+1) = 0 

thus,  

�̂�𝑡(1) = 𝜇 + 𝜙(𝑦𝑡 − 𝜇)  

In the same way, we can find the forecast for any value 𝑙, where we 

replace 𝑡 with 𝑡 + 𝑙 as follows: 

𝑦𝑡+𝑙 − 𝜇 = 𝜙(𝑦𝑡+𝑙−1 − 𝜇) + 𝜀𝑡+𝑙 

Thus �̂�𝑡(𝑙) is given by the conditional expectation: 



�̂�𝑡(𝑙) = 𝜇 + 𝜙[𝐸(𝑦𝑡+𝑙−1|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1) − 𝜇]

+ 𝐸(𝜀𝑡+𝑙|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1) 

                                  

�̂�𝑡(𝑙) = 𝜇 + 𝜙[�̂�𝑡(𝑙 − 1) − 𝜇].    𝑙 ≥ 1  

Note that the previous equation provide forecasts for lead time 𝑙 

in terms of previous forecasts �̂�𝑡(𝑙 − 1).  Also we can use this 

equation to find a prediction of any value 𝑙, in terms of the original 

values : 

𝑙 = 1:   �̂�𝑡(1) = 𝜇 + 𝜙(𝑦𝑡 − 𝜇)         

𝑙 = 2:   �̂�𝑡(2) = 𝜇 + 𝜙[�̂�𝑡(1) − 𝜇]  



= 𝜇 + 𝜙2(𝑦𝑡 − 𝜇)                           

𝑙 = 3:   �̂�𝑡(3) = 𝜇 + 𝜙[�̂�𝑡(2) − 𝜇] = 𝜇 + 𝜙[𝜇 + 𝜙
2(𝑦𝑡 − 𝜇) − 𝜇]     

= 𝜇 + 𝜙3(𝑦𝑡 − 𝜇) 

 In general, 

�̂�𝑡(𝑙) = 𝜇 + 𝜙
𝑙(𝑦𝑡 − 𝜇),    𝑙 ≥ 1  

                                       

Example: Suppose that we have the following 

 AR (1) model: 

𝑦𝑡 = 10 + 0.7(𝑦𝑡−1 − 10) + 𝜀𝑡 



  and that the current value of the series is equal to 10.6, then one-time 

period ahead forecast is given as: 

     

�̂�𝑡(1) = 10 + 𝜙
1(𝑦𝑡 − 10), 

            = 10 + 0.7 × (10.6 − 10) = 10.42 

 

and for two-time periods ahead, the forecast is: 

�̂�𝑡(2) = 10 + 𝜙
2(𝑦𝑡 − 10), 

                         = 10 + 0.72(10.6 − 10) = 10.294 



of course, it was possible to get the forecasts in terms of previous 

forecasts �̂�𝑡(. ): 

�̂�𝑡(1) = 10.42 

�̂�𝑡(2) = 10 + 0.7[�̂�𝑡(1) − 10] 

          = 10 + 0.7[10.42 − 10] = 10.294 

Remark: We can evaluate the error of one-step ahead forecast for the 

AR(1) model, as follow: 

𝑒𝑡(1) = 𝑦𝑡+1 − �̂�𝑡(1) 

= 𝜇 + 𝜙(𝑦𝑡 − 𝜇) + 𝜀𝑡+1 − [𝜇 + 𝜙(𝑦𝑡 − 𝜇)] = 𝜀𝑡+1 



 The white noise process {𝜀𝑡} can now be reinterpreted as a sequence 

of one-step ahead forecast errors. We shall see that this is true for all 

ARMA models.  

Also,  the equation implies that 𝑒𝑡(1) is independent of the process 

history 𝑦𝑡, 𝑦𝑡−1, … up to time 𝑡. If this were not so, the dependence 

could be exploited to improve our forecast. 

                   

 

          

5.5 MA(1) Model  



As we know the general form of the model is: 

𝑦𝑡 = 𝜇 + 𝜀𝑡 − 𝜃𝜀𝑡−1 

If we want to predict one step in the future, we replace 𝑡 with 𝑡 + 1: 

𝑦𝑡+1 = 𝜇 + 𝜀𝑡+1 − 𝜃𝜀𝑡 

Applying the definition of minimum mean square error forecast by 

taking the conditional expectation of both sides: 

�̂�𝑡(1) = 𝜇 + 𝐸(𝜀𝑡+1|𝑦𝑡 . 𝑦𝑡−1. … . 𝑦1) − 𝜃𝐸(𝜀𝑡|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1)   

But: 

 

𝐸(𝜀𝑡+1|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1) = 0 



𝐸(𝜀𝑡|𝑦𝑡 . 𝑦𝑡−1. … . 𝑦1) = 𝜀𝑡 

so the one-step ahead forecast is: 

�̂�𝑡(1) = 𝜇 − 𝜃𝜀𝑡  

and the forecast error is: 

𝑒𝑡(1) = 𝑦𝑡+1 − �̂�𝑡(1) 

   = (𝜇 + 𝜀𝑡+1 − 𝜃𝜀𝑡) − (𝜇 − 𝜃𝜀𝑡) =      𝜀𝑡+1                                         

which is the same result we obtained for the process AR (1). 

To forecast future values in the process MA (1) for values 𝑙 > 1: 

                



�̂�𝑡(𝑙) = 𝜇 + 𝐸(𝜀𝑡+𝑙|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1) − 𝜃𝐸(𝜀𝑡+𝑙−1|𝑦𝑡 . 𝑦𝑡−1. … . 𝑦1) 

               = 𝜇 + 𝐸(𝜀𝑡+𝑙) − 𝜃𝐸(𝜀𝑡+𝑙−1) 

               = 𝜇 + 0 − (𝜃)0 = 𝜇 . 𝑙 > 1 

 

 In other words, in the process MA (1) if we want to predict for 

a period greater than one , the best prediction this process provide us 

is the mean of the series. 

 

5.6 Some results for the general ARMA (p, q) process 



The relationship that gives the forecasts of this model are as follows: 

�̂�𝑡(𝑙) = 𝜇 + 𝜙1[�̂�𝑡(𝑙 − 1) − 𝜇] + 𝜙2[�̂�𝑡(𝑙 − 2) − 𝜇] + ⋯

+ 𝜙𝑝[�̂�𝑡(𝑙 − 𝑝) − 𝜇] −    𝜃1𝐸(𝜀𝑡+𝑙−1|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1)

− ⋯−𝜃𝑞𝐸(𝜀𝑡+𝑙−𝑞|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1) 

 

Where: 

𝐸(𝜀𝑡+𝑗|𝑦𝑡. 𝑦𝑡−1. … . 𝑦1) = {
0          . 𝑗 ≥ 1
𝜀𝑡+𝑗       . 𝑗 ≤ 0

} 

For example, for ARMA (1,1): 

The model has the form, 



𝑦𝑡 = 𝜇 + 𝜙(𝑦𝑡−1 − 𝜇) + 𝜀𝑡 − 𝜃𝜀𝑡−1 

and forecasts are given by the relation: 

 

�̂�𝑡(1) = 𝜇 + 𝜙(𝑦𝑡 − 𝜇) − 𝜃𝜀𝑡 .           (1) 

�̂�𝑡(2) = 𝜇 + 𝜙[�̂�𝑡(1) − 𝜇].                    (2) 

 

and in general: 

�̂�𝑡(𝑙) = 𝜇 + 𝜙[�̂�𝑡(𝑙 − 1) − 𝜇].    𝑙 ≥ 2           (3) 

also we can use the relations (1) to (3) to find forecasts in terms of 

the original values of the series as follow: 



�̂�𝑡(𝑙) = 𝜇 + 𝜙
𝑙(𝑦𝑡 − 𝜇) − 𝜙

𝑙−1𝜃𝜀𝑡 .    𝑙 ≥ 1  

In the same way that has been used previously, we can find 

the forecasting error for the one-step ahead forecast 𝑙 = 1 of the 

ARMA(1,1) model  as follows: 

                             

𝑒𝑡(1) = 𝑦𝑡+1 − �̂�𝑡(1) 

           = 𝜙(𝑦𝑡 − 𝜇) + 𝜀𝑡+1 − 𝜃𝜀𝑡 − [𝜙(𝑦𝑡 − 𝜇) − 𝜃𝜀𝑡] = 𝜀𝑡+1 

 

which is the same result that have already been obtained for 

the other models. 



The forecast error for any lead time could be written as (we will not 

prove this): 

𝑒𝑡(𝑙) =  ∑𝜓𝑗𝜀𝑡+𝑙−𝑗

𝑙−1

𝑗=0

 

And therefore any ARMA model we have: 

𝐸[𝑒𝑡(𝑙)] =∑𝜓𝑗  𝐸(𝜀𝑡+𝑙−𝑗) = 0,    𝑙 ≥ 1

𝑙−1

𝑗=0

 

This means that the average forecast error is equal to zero, i.e. they are 

unbiased. The forecast error variance is: 



𝑉𝑎𝑟[𝑒𝑡(𝑙)] = 𝜎𝜀
2∑𝜓𝑗

2 ,     ≥ 1

𝑙−1

𝑗=0

 

From which we note that the forecast error variance increases as lead 

time increase. 

5.7 Confidence intervals for forecasts 

If we assume that the terms of the white noise process follow the 

normal distribution, then it is also possible to show that the forecast 

error 𝑒𝑡(𝑙) will also follow the normal distribution, then a 

(1 − 𝛼)100% for the future value 𝑦𝑡+𝑙 is given as, 



�̂�𝑡(𝑙) ± 𝑧1−𝛼
2
√𝑣𝑎𝑟(𝑒𝑡(𝑙)) 

 

5.8 Forecast update for ARMA (p, q) models  

Suppose for instance that we study a monthly time series, and that we 

have observed the series until month number 6, and we have 

forecasted the values of the series for months: 7,8, and 9, that is we 

have lead time  𝑙 = 3. Assume that later we got the actual value of the 

series for the month 7. Then we can use this new value to modify our 

forecast for the months 8 and 9, this procedure is called forecast 

update. 



In general, we have the observations 𝑦1, 𝑦2, … , 𝑦𝑡, let the time origin 

is 𝑡, and lead time 𝑙, our forecast for (𝑙 + 1) steps ahead is denoted 

�̂�𝑡(𝑙 + 1), and when the observation at time 𝑡 + 1 become available, 

i.e. observation 𝑦𝑡+1, then we want to update our original value to be 

�̂�𝑡+1(𝑙). The equation for getting this update is: 

�̂�𝑡+1(𝑙) = �̂�𝑡(𝑙 + 1) + 𝜓𝑙[𝑦𝑡+1 − �̂�𝑡(1)] 

 

Example: 

Suppose that the model which was applied to a time series is the AR 

(2), and the time origin was 𝑡 = 121, that is we have the observed 



time series 𝑦1. 𝑦2. … . 𝑦121 , and that we have the following 𝜓  values, 

𝜓1 = 1.563 and 𝜓2 = 1.46 and that we got the following forecasts 

from the model: 

�̂�121(1) = 5.81027, �̂�121(2) = 5.48419,  

�̂�121(3) = 5.3215   

 

Suppose now that we have obtained the actual value for time 𝑡 = 122, 

which is 𝑦122 = 5.9, then our update for the forecast at time 𝑡 = 123 

(i.e. 𝑙 = 1) becomes: 

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 + 𝜓1[𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 ] 



�̂�122(1) = �̂�121(2) + 𝜓1[𝑦122 − �̂�121(1)] 

= 5.48419 + 1.563[5.9 − 5.81027] 

                   = 5.62444 

Also, our update for the forecast at time 𝑡 = 124 (i.e. 𝑙 = 2) becomes: 

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 + 𝜓2[𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 ] 

�̂�122(2) = �̂�121(3) + 𝜓2[𝑦122 − �̂�121(1)] 

= 5.3215 + 1.46[5.9 − 5.81027] 

= 5.4525 

 

  



Chapter 6:  Box-Jenkins Methodology 

The methodology developed by the scientists Box and Jenkins in their 

important book: 

" Time Series Analysis, Forecasting and Control (1976) ", consist of 

several steps: 

1- identification 

2- estimation 

3- diagnosis 

4- forecasting 

We have already discussed briefly the estimation step (chapter 4), and 

forecasting step (chapter 5), in the following sections we will look 



at identification and diagnosis steps with application to some data sets 

to be able to understand this methodology well. 

6.1 identification 

The first stage of the analysis of time series is to identify the initial 

model appropriate to the observed time series data. The meaning of 

identification is to choose the rank of the three parameters (𝑝. 𝑑. 𝑞), 

where 𝑑 represent the order of differencing needed to make the series 

stationary, 𝑝 represent number of past observations that should be 

included in the initial model, i.e. the autoregressive order. Whereas, 𝑞 

represent number of white noise terms to be included in the initial 

model, i.e. the moving average order. 



Application of Box and Jenkins methodology requires in addition to 

the theoretical foundations, skill and experience and some amount of 

personal judgment of the researcher. Here are some important points 

regarding the application of this methodology: 

a)  In this stage selection of the  initial adequate 𝐴𝑅𝐼𝑀𝐴(𝑝. 𝑑. 𝑞) 

model  for the time series is governed by theoretical and scientific 

foundations, and the skill of the researcher and his ability to judge 

how the data characteristics is compatible with the characteristics 

of the random process that may have produced this data set. 



b)  The selected model in the initial stage is not final and may be 

modified or improved, or even to reach to a completely different 

model in the advanced stages of study and analysis. 

c) In this stage, the researcher might arrive to different appropriate 

models, he has to carry these models with him for further stages of 

analysis hoping that at the end he will keep the best model capable 

of representing the characteristics of the time series data set he is 

analyzing. 

6.1.1 Determine the rank of differences (d) 



We mentioned earlier that most of the time series data that arise in 

the various application fields might show signs of non-stationarity 

either in the mean, the variance or in both. 

 

In fact, non-stationarity may occur in several ways. We have earlier 

mentioned that judging the stationarity of certain time series by 

examining the roots of the characteristic equation ϕ(B) = 0 . If the 

roots of this equation lie outside the unit circle, it means that the series 

is stationarity, in which case the autocorrelation function decrease 

rapidly with increasing time lags. However, if a root is located on 

the unit circle, it means that the process or the series is not stationarity 



but homogeneous. This kind of non-stationarity is the characteristic of 

most of the actual time series that arise in practical applications. It can 

be converted to a stationary series using the mathematical 

transformations we have seen before. 

Now, how to determine appropriate value of 𝑑  in order to convert non-

stationarity series in the mean to a stationary one? In fact, the first thing 

to check before determining the value of 𝑑 is to check the stationarity 

of the series variance, by checking the time scatter plot of the  original 

series 𝑦𝑡. If the variance is not stable, it must be made stationary 

by taking logarithms of the original series. Usually logarithms succeed 

in stabilizing the variance, but in some cases we may need to use 



another transformation such as square root or cubic root or any other 

transformation. After that, to determine the value 𝑑 we follow the 

following steps: 

• Plotting time curve of the original series 𝑦𝑡, and the sample 

autocorrelation function (SACF) 𝑟𝑘 (the correlogram). If the time curve 

does not show obvious signs of existence of trend, and 𝑟𝑘 decrease 

rapidly to zero as time lag increase, then the series is considered 

stationary and we do not need to take any differences, i.e. let 𝑑 = 0, and 

move on to deciding the values of  𝑝 and 𝑞. 



• If the time curve shows lack of stationary in the mean and 

the SACF decay slowly with increasing time lag, then we must take 

the first differences of the time series, and then again plot the time 

curve, and the correlogram for the series of first differences, 𝑧𝑡. If  

both shows no sign of non-stationarity, then we let 𝑑 = 1, and move 

on to deciding the values of  𝑝 and 𝑞. 

• If the time curve of the series 𝑧𝑡 still shows lack of stationary in 

the mean, and the SACF decay slowly with increasing time lag, then 

we must take the second differences of the time series, and study the 

transformed series in the same manner as above. 



• Usually small values for 𝑑, like 𝑑 = 0,1,2 are enough to make 

the time series stationary in most practical applications. Also, 

you should pay attention to the seriousness of taking unnecessary 

differences, although taking differences of a stationary series also 

produces stationary series, however, this process of over differencing 

leads to: 

(1) a model that contains unnecessary additional parameters, 

(2) a more complicated auto-correlation pattern, 

(3)  increases the variance of the series. 

Example: 



 consider the following series: 

𝑦𝑡 = 𝜀𝑡 

 Where {𝜀𝑡} is the white noise process. Discuss the stationarity of 

the series, and then take the first differences of the series, and again 

discuss the stationarity and the variance of the differenced series. 

solution:  

As we note the original series 𝑦𝑡 is exactly the white noise process, 

which, as we know, is stationary, and have no parameters, and has auto-

correlation function equal to zero for all time lags 𝑘 > 0. 

 Now let's take the first differences transformation of the process 𝑦𝑡: 



𝑧𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝜀𝑡 − 𝜀𝑡−1 

Thus we see that the resulting model is the moving average model 

of order one, with parameter θ = 1, which , of course does not fulfil 

the invertibility condition , but it is stationary, because all 

the moving average models are stationary. Thus by this 

transformation we have complicated the model (from the simple 

white noise model to non invertable MA(1) model).  The variance 

of the original model is: 

𝑣𝑎𝑟(𝑦𝑡) = 𝑣𝑎𝑟(𝜀𝑡) = 𝜎𝜀
2 

and the autocorrelation function is: 



𝜌𝑘 = 0.   𝑘 ≥ 1 

Now the variance of the transformed model is: 

𝑣𝑎𝑟(𝑧𝑡) = 𝑣𝑎𝑟(𝜀𝑡) + 𝑣𝑎𝑟(𝜀𝑡−1) = 2𝜎𝜀
2 

This means that the transformation has made the variance increase 

to double the original variance. 

The autocorrelation function is: 

𝜌𝑘 = {
−𝜃

1 + 𝜃2
. 𝑘 = 1

0 . 𝑘 > 1

 



so we note that the degree of complexity of the correlation function 

has increased after transformation. 

 

 

 

6.1.2 determine the order of the moving average and 

autoregressive models 

After determining the necessary differences to render the series 

stationarity (and before that determining the need to take 

a logarithmic, or a square-root or other transformations to 

stabilize the variance), one must determine the order of the 

autoregressive and the moving average parts of the 



model. The autocorrelation function and the partial 

autocorrelation function are the most effective tools in 

distinguishing between 𝐴𝑅(𝑝), 𝑀𝐴(𝑞) or 𝐴𝑅𝑀𝐴(𝑝, 𝑞) models and 

determining the order of each of them.  We here recall the  

theoretical forms of these functions for the 𝐴𝑅(𝑝), 𝑀𝐴(𝑞) or 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) models: 

 

Model 𝜌𝑘 𝜙𝑘𝑘 

𝐴𝑅(1) 
Approach zero 

exponentially or 
in a sinusoidal 

manner 

Cut off 
completely after 
the first time lag 

𝐴𝑅(2) Approach zero 
exponentially or 

Cut off 
completely after 



in a sinusoidal 
manner 

the second time 
lag 

𝐴𝑅(𝑝) 
Approach zero 

exponentially or 
in a sinusoidal 

manner 

Cut off 
completely after 

time lag 𝑝 

𝑀𝐴(1) 
Cut off completely 
after the first time 

lag 

Approach zero 
exponentially or 
in a sinusoidal 

manner 

𝑀𝐴(2) 
Cut off completely 

after the second 
time lag 

Approach zero 

exponentially or in 

a sinusoidal 

manner 

𝑀𝐴(𝑞) Cut off completely 
after a time lag 𝑞 

Approach zero 

exponentially or in 

a sinusoidal 

manner 



𝐴𝑅𝑀𝐴(𝑝. 𝑞) 

Gradually 
approaching zero 
after (𝑞 − 𝑝) lags 
exponentially or 
in a sinusoidal 

manner 

Gradually 
approaching zero 
after (𝑝 − 𝑞) lags 
exponentially or 
in a sinusoidal 

manner 

 

The characteristics of the autocorrelation and the partial 

autocorrelation functions mentioned in the table above are the 

theoretical characteristics of the stochastic process, but, as we 

know, there exist differences between the theoretical 

characteristics of the stochastic process that generated the 

observed time series (what is called in the field of statistics as 

population), and the properties of the observed time series (what 



is called the sample) because of the sampling errors.  Anyway, if the 

length of the series (sample size) is large, then we expect that the 

sample autocorrelation function 𝑟𝑘 will reflect approximately the 

characteristic of the theoretical autocorrelation function 𝜌𝑘, the 

same is true for 𝑟𝑘𝑘 and 𝜙𝑘𝑘 . 

To explain this, let’s consider that sampling is from a MA(2) 

process, where in this process the autocorrelation function 𝜌𝑘 is 

characterized by complete cut off after time lag 2, as in figure (a) 

below, however, the sample that might result from such processes 

might not produce an estimated autocorrelation function 𝑟𝑘 that 

cut off exactly after time lag 2, see figure (b), 
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a) sample autocorrelation function 𝑟𝑘 for 

MA(2) model 

b) theoretical autocorrelation function 𝜌𝑘 for 

MA(2) model 

 

This means that the sample generated from MA(2) process might 

produce an estimated autocorrelation function with two large 

values at time lags one and two, together with small 

autocorrelations (but do not exactly equal zero) at other time lags, 



but, we might consider them equal to zero. So, how do we formally 

test that these coefficients do not significantly differ from zero? To 

answer this question, we recall the results deduced by Bartlet 

(1940) where it was shown that one can use the test statistic  

𝑧 =
𝑟𝑘

𝑆𝐸(𝑟𝑘)
 to test that the function 𝜌𝑘 cuts off after a certain number 

of lags, 𝑞, for instance. We can infer this statistically by testing the 

significance of the coefficients of 𝜌𝑘 after lag 𝑞. The initial 

impression we got from figure (b) is that the theoretical 

autocorrelation function might take the form in figure (a), in this 

case, to ascertain this first impression is to test the hypothesis: 



𝐻0: 𝜌3 = 0   vs   𝐻1: 𝜌3 ≠ 0 

 If 𝐻0 is accepted, then we have to test, 

𝐻0: 𝜌4 = 0   vs   𝐻1: 𝜌4 ≠ 0 

If 𝐻0 is accepted, then we have to test 𝜌5, and so forth. 

Usually, the results of the tests are clear by simply comparing 𝑟𝑘 

with double the standard error without the need to calculate the 

test statistic 𝑧, where we reject 𝐻0: 𝜌𝑘 = 0 if: 

|𝑟𝑘| > 2𝑆𝐸(𝑟𝑘).     𝑘 = 𝑞 + 1. 𝑞 + 2.… 

 



With respect to the partial autocorrelation function, how can we 

test the significance of its coefficients, i.e., how to decide on the 

order of the AR(p) model? To answer this question we refer to the 

results deduced by Anderson and Quenelle, where one can use the 

statistic 𝑧 =
𝑟𝑘𝑘

𝑆𝐸(𝑟𝑘𝑘)
=

𝑟𝑘𝑘

1 √𝑛⁄
= 𝑟𝑘𝑘√𝑛  which follow approximately 

the standard normal distribution to test the cut off point for the 

function 𝜙𝑘𝑘 after any time lag. So, to infer statistically about the 

significance of the coefficients of 𝜙𝑘𝑘 after time lag 𝑝 + 1, we have 

the following hypothesis: 

𝐻0: 𝜙𝑘𝑘 = 0    vs    𝐻1: 𝜙𝑘𝑘 ≠ 0   ; 𝑘 = 𝑝 + 1. 𝑝 + 2.… 



If these coefficients do not differ significantly from zero, then we 

can accept the hypothesis that the theoretical function 𝜙𝑘𝑘 cut off 

after time lag 𝑝, and hence we choose the right order of the AR(p) 

model. 

With regard to mixed ARMA(p,q) models, in fact the situation is 

more complicated to identify their order than  the  pure AR (p) or 

pure MA (q) models, but we just mention here that both the 

autocorrelation and partial autocorrelation functions decay 

exponentially or in the form of sine wave functions. 

 



 

Example: 

 The following data illustrate the autocorrelation and partial 

autocorrelation functions for a time series with length 100 

observations. Specify initial model suitable for the series: 

10 9 8 7 6 5 4 3 2 1 𝑘 

0.052 -0.09 0.1 0.1 -0.09 0.092 0.11 0.08 -0.073 0.405 𝑟𝑘 

0.03 -0.05 0.03 0.01 -0.02 0.09 -0.11 0.24 0.32 0.405 𝑟𝑘𝑘 

 

Solution:  

The autocorrelation function 𝑟𝑘 seems to cut off after the first time 

lag, thus, we first conduct a test for the significance of 𝜌1 assuming 



that the stochastic process generated the data is  purely  random , 

that is a white noise process, i.e. 𝑞 = 0, thus for all time lags 𝑘, we 

have, 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
=  √

1

100
= 0.1.  𝑘 > 0 

So, to test the hypothesis: 

𝐻0: 𝜌1 = 0   vs   𝐻1: 𝜌1 ≠ 0 

We use the test statistic: 

𝑧 =
𝑟1

𝑆𝐸(𝑟1)
≈
0.405

0.1
≅ 4.05 > 2 



Hence, we reject 𝐻0, and deduce that 𝜌1 is significantly different 

from zero, and that the stochastic process generated the series 

cannot be a pure random process. The question now arises; can we 

assume that all other autocorrelation coefficients do not differ 

significantly from zero? To answer this question, we have to 

calculate the standard error of the process assuming the process is 

MA (1), i.e. 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 (1 + 2 𝑟1

2).    𝑘 > 1 



≅ √
1

100
 [1 + 2 (0.405)2] = 0.115 

 ℎ𝑒𝑛𝑐𝑒,                      2𝑆𝐸(𝑟𝑘) ≅ 2(0.115) = 0.23  ; 𝑘 > 1 

By inspecting all estimated autocorrelation coefficients in the table, 

we see that |𝑟𝑘| < 0.23 for all values k=2,3,… , we see that 

autocorrelation function cuts off after the first time lag which 

indicate that the MA(1) model is a tentative possible model for the 

series. 

Example:  



The following data illustrate the autocorrelation and partial 

autocorrelation functions for a time series with length 92 

observations. Specify initial model suitable for the series: 

9 8 7 6 5 4 3 2 1 𝑘 

0.01 0.02 0.01 -0.01 0.09 0.19 0.29 0.42 0.66 𝑟𝑘 

0.01 0.01 0.02 -0.03 -0.01 0.02 0.01 0.39 0.66 𝑟𝑘𝑘  

 

Solution:  

The partial autocorrelation function 𝑟𝑘𝑘 seems to cut off after 

the second time lag, thus, we first conduct a test for the significance 



of 𝜙22 assuming that the stochastic process generated the data is  

AR(1), thus we have, 

𝑆𝐸(𝑟𝑘𝑘) ≅  √
1

𝑛
=  √

1

92
= 0.104   

So, to test the hypothesis: 

𝐻0: 𝜙22 = 0   vs   𝐻1: 𝜙22 ≠ 0 

We use the test statistic: 

|𝑧| =
𝑟22

𝑆𝐸(𝑟22)
≈
0.39

0.104
≅ 3.7 > 2 



Hence, we reject 𝐻0, and deduce that 𝜙22 is significantly different 

from zero, and that the stochastic process generated the series 

cannot be AR(1) process, hence we assume it is AR(2), thus the 

standard error for all time lags 𝑘 > 2 is: 

𝑆𝐸(𝑟𝑘𝑘) ≅  √
1

𝑛
=  √

1

92
= 0.104   ; 𝑘 > 2   

2𝑆𝐸(𝑟𝑘𝑘) ≅  0.208   ; 𝑘 > 2   

By inspecting all estimated partial autocorrelation coefficients in 

the table, we see that  |𝑟𝑘𝑘| < 0.208 for all values k=2, 3…, thus 

there is evidence that it cuts off after the second time lag. Hence, 



the AR (2) model seems a tentative possible model for the series, 

especially that the autocorrelation function seems to decay 

exponentially.  

Example:  

The following data illustrate the autocorrelation and partial 

autocorrelation functions for a monthly time series of length was 

400 months representing the number of car accidents occurred in 

a city: 

9 8 7 6 5 4 3 2 1 𝑘 

0.01 0.02 0.03 0.06 0.10 0.15 0.28 0.45 0.85 𝑟𝑘 

0.05 0.10 0.11 0.20 0.30 0.40 0.45 0.61 0.85 𝑟𝑘𝑘  



Specify initial model suitable for the series, if the series length was 

400 months. 

Solution:  

Obviously, both autocorrelation and partial autocorrelation 

functions do not seem to cut off after short time lags, which might 

indicate that mixed model is suitable for modelling the data. Note 

also that 𝑟𝑘 start decay from 𝑟1 not from 𝑟0 which might indicate 

that ARMA(1,1) model might be suitable to model the data, what 

support this choice is that behavior of 𝑟𝑘𝑘 seems similar to MA(1) 

behavior. 

 



6.3 Diagnostics 

Time Series model identified in the first stage depends on an 

important theoretical hypothesis of the stochastic process that 

generated the data set, and on the general form of the model and 

the random shocks 𝜀𝑡 . This means that parameter estimates and its 

statistical properties and inferences have no meaning unless these 

assumptions are fulfilled, or at least cannot be rejected for the 

available data set. Thus, investigating the appropriateness of these 

assumptions is a corner stone of studying and analyzing time 

series. Such investigation is called model diagnostics, which can be 

seen as a balance between theoretical assumptions the model is 



based on and the practical output of the estimation stage. 

Diagnostics is the third stage of Box-Jenkins methodology, after 

initial identification of the tentative model and estimation of its 

parameters, then comes the third stage of making sure that 

estimated model comply with theoretical assumptions, or that at 

least do not show a clear deviation from these assumptions. This 

stage is the most serious and important stage of the analysis, as it 

can assure us that the model is adequate and thus can be used for 

forecasting, or it might show that the model has to be modified 

according to these diagnostics. In general, model diagnostics 



depend on conducting several checks and tests, the most important 

are: 

 

1- stationarity analysis 

2- invertibility analysis 

3- residual analysis 

4- fitting a lower model 

5- fitting a higher model 

6.3.1 Stationarity Analysis 



We have mentioned before that the conditions for stationarity 

requires that the roots of the characteristic equation 𝜙(𝐵) = 0 

must all be outside unity circle. Therefore, in the estimation stage, 

if the absolute value of each root is outside the unit circle then this 

indicates that the process generated the observed series 

is stationary, but if the absolute value of one root is close to 1, this 

indicate the need to take additional differences, adjusting 

the initial model Consequently. 

Example: 

Assume that the identified and estimated model for an observed 

time series is ARIMA (1,0,1), that is, it has the form: 



(1−𝜙1𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

If the parameter 𝜙1 does not differ significantly from 1 , then the 

model can be re - written in the form: 

(1 − 𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

or, 

𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡 

Where, 

𝑧𝑡 = (1 − 𝐵)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

This process is stationary, which means that the model  



ARIMA (0,1,1) or IMA (1,1) may be better than ARIMA(1,0,1) to 

model the time series. 

 

 

Example:  

After initial estimation of the model ARIMA (2,0,1) for time series 

data 𝑦𝑡, it was found that one of the roots of the characteristic 

equation 𝜙(𝐵) = 0 is near to 1. Suggest a better model for the data 

than the initial model.                                                                                

 



solution: 

The original model is  (1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑦𝑡  = (1−𝜃1𝐵)𝜀𝑡 , and 

since one of the roots of  1 − 𝜙1𝐵 − 𝜙2𝐵
2 = 0  is near to 1, then the 

original model could be written as: 

(1 − 𝐵)(1 − 𝜙1𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

Which means that the series is not stationary, thus; 

(1 − 𝜙1𝐵)𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡  

is a stationary process, this means that the model ARIMA(1,1,1) 

might be a better model than the original ARIMA (2,0,1) model. 

  



 

6.3.2 invertibility analysis 

We have mentioned the importance of invertibility condition for 

time series models, and thus it is very important to examine the 

estimates of the moving average parameters to check that the 

invertibility conditions are satisfied. These conditions are that the 

roots of the equation 𝜃(𝐵) = 0 should all be outside the unit circle. 

However, if one root was near to one, then this might indicate we 

have taken extra unnecessary differences. 

 

Example:  



Assume that the identified and estimated model is 

ARIMA(1,1,1), i.e. has the form: 

(1−𝜙1𝐵)𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡 

where, 

  

                                                    𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = (1 − 𝐵)𝑦𝑡                                           (1) 

assuming  that the value of the parameter 𝜃1 does not differ 

significantly from 1, this means: 

(1−𝜙1𝐵)𝑧𝑡 = (1 − 𝐵)𝜀𝑡 

or, 



                                                    (1−𝜙1𝐵)(1 − 𝐵)
−1𝑧𝑡 = 𝜀𝑡                                              (2) 

Substituting from (1) into (2): 

(1−𝜙1𝐵)𝑦𝑡 = 𝜀𝑡  

Which means that the model ARIMA(1,0,0) may be better than the 

original model ARIMA(1,1,1) in modeling the time series. 

Example: 

After initial estimate of the model ARIMA (1,1,2) for the time 

series data, it was found that one of the roots of the equation 

𝜙(𝐵) = 0 is near to 1. Propose an alternative model that might be 

a better fit to the data than the original model. 



Solution: 

The original model is    (1−𝜙1𝐵)(1 − 𝐵)𝑦𝑡  = (1 − 𝜃1𝐵 − 𝜃2𝐵
2)  𝜀𝑡                   

                                                     

As one of the roots of the equation 1 − 𝜃1𝐵 − 𝜃2𝐵
2 = 0 is near to 

1, then the model could be written as : 

(1−𝜙1𝐵)(1 − 𝐵)𝑦𝑡 = (1 − 𝐵)(1−𝜃1𝐵)𝜀𝑡 

or, 

(1 − 𝜙1𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

which means that the model ARIMA(1,0,1) might be better in 

fitting the data than the original ARIMA(1,1,2) model. 



6.3.3 Residual analysis 

If the model that was chosen in the first phase truly represents the 

characteristics of  the random process that generated the time 

series at hand, then the residuals resulting from the estimation 

phase should fulfill the theoretical assumptions postulated for the 

random shocks 𝜀𝑡 , or at least, these residuals do not show serious 

deviations from these assumptions, the most serious one being “𝜀𝑡 

are not correlated”. 

If we assume that 𝜀1̂. 𝜀2̂. … . 𝜀�̂� represent the residuals after fitting 

the initial model to the available time series observations, and this 

model was a good fit for the data, then the model residuals should 



not show any patterns or regular movements that can be predicted, 

in other words, the residuals should reflect the main characteristics 

of the variables 𝜀𝑡 , which are: 

1- random variables 

2- with zero mean 

3- and a constant variance 

4- and follow the normal distribution 

5- and are uncorrelated 

For checking these assumptions, we have to  plot the residuals as a 

time series, check the autocorrelation function for the residuals 𝜀�̂� , 

plot the histogram for the residuals, conduct some non-parametric 



tests for checking the randomness and normality of the residuals 

and that their mean is not significantly different from zero, use the 

modified Box-Pierce statistic. We will go through these steps in 

some detail in the following sections. 

6.3.3.1 Plotting the residuals 

The first and most important step in the residual analysis is to plot 

the residuals graphically, where the horizontal axis represents time 

and vertical axis represents residuals 𝜀�̂�. This is a vital and 

irreplaceable step, as it can reveal the principal features of the 

residuals such as the trend, the variance, and outliers if they exist, 

in such a way even the statistical tests might not be able to reveal. 



If the initial model was adequate, then this means that it can 

accommodate all the patterns and the regular movements in the 

time series data, leaving residuals free of any pattern, thus the 

residual plot should show them oscillating with a constant variance 

around the vertical line passing through zero. Also, this plot should 

be looking random and free of any information that can be used in 

forecasting the time series. 



time 

 

  6.3.3.2 Randomness of the residuals 

The randomness of the residuals is tested by Runs test around zero, 

which is one of the non-parametric tests, the command to perform 

the test in MINITAB is: 

MTB > RUNS  0 Ck 



where the column Ck that contains the estimated residuals. 

6.3.3.3 Test that the residuals mean is equal to zero 

The hypothesis that we test here is: 

𝐻0: 𝐸(𝜀𝑡) = 0    𝑣𝑠   𝐻1: 𝐸(𝜀𝑡) ≠ 0         

which is a two-tailed test and we use  the test statistic  𝑢 =
 �̂�𝑡̅̅̅̅

𝑠𝑒( �̂�𝑡̅̅̅̅ )
 , 

which has the standard normal distribution. So, at significance level 

𝛼 = 0.05, we consider 𝐸(𝜀𝑡) = 0, if |𝑢| < 1.96  (assuming the 

sample size is at least 30, which is satisfied in most time series 

data). The command to perform the test in MINITAB is: 

MTB > OneZ Ck ; 



SUBC>   Test 0  

 

 

6.3.3.4 Constant variance 

As mentioned in previous sections, plotting the residuals reveals 

important issues, including whether the residual variance is 

constant or not. If the variance is constant, the plot will 

approximately reveal this point. If we observe increasing or 

decreasing variance in the residual plot, then we must return to 



the original series and use some transformation to try to stabilize 

the variance, and analyze the data again. 

 

 

6.3.3.5 Autocorrelation function of residuals 

If the errors 𝜀𝑡 are purely random variables, then the estimated 

residuals 𝜀�̂�  must reflect this fact, thus the autocorrelation function 

must be free of any spikes, that is, all the autocorrelation 

coefficients ought to be small in order to accept that the 

corresponding theoretical coefficients are not significantly 



different from zero. We check every autocorrelation coefficient 

separately, thus we have to check the sampling distribution of 

these coefficients. Anderson (1942) have shown that if the model 

was appropriate, then the autocorrelation coefficients for large and 

medium sample sizes are uncorrelated and follow normal 

distribution with standard deviation 𝑛−
1
2⁄ . Hence, the 

autocorrelation coefficient of the residuals at a certain lag that fall 

outside the interval ±2 √𝑛⁄  support that the corresponding 

theoretical coefficient is significantly different from zero.  



In spite of the simplicity of conducting this test, however the 

approximate variance 
1

𝑛
   is greater than the actual variance for the 

autocorrelation coefficients at small lags. Thus, if the 

autocorrelation function is free of any spikes, then this is an 

important indication that 𝜀𝑡 represent purely random variables, 

however it is not sufficient, as some autocorrelation coefficients at 

small lags might be inside the interval  ±2 √𝑛⁄  but actually the 

corresponding theoretical coefficient is significantly different from 

zero if compared to the true standard deviation which is less than 

1 √𝑛⁄  . This means that it is not sufficient to plot the autocorrelation 

coefficient with the interval limits ±2 √𝑛⁄  to conclude that 𝜀𝑡 are 



random, but we have to conduct further checks and tests to assure 

that these variables are random.    

  In fact, the results and outcomes of the estimation stage and 

calculation of the autocorrelation function for the residuals 

remains particularly important, even if these results do not 

support that the model is appropriate because the spikes noted in 

the autocorrelation function might be used to adjust the initial 

model. For example, if the autocorrelation function of the residuals 

shows a spike at the first time lag, this may be an evidence for the 

need to add a moving average parameter to the initial 

model especially if the partial autocorrelation function of 



the residuals behaves in an exponential function shape.  Suppose 

for example that the initial model we have chosen for the series 𝑦𝑡  

is an MA (1) which has the form: 

𝑦𝑡 = 𝜀𝑡−𝜃1𝜀𝑡−1 = (1−𝜃1𝐵)𝜀𝑡 

If we assume that examination of the autocorrelation function of 

the residuals show that the errors are not random, but follows 

the MA (1) model as well, then, 

𝜀𝑡 = 𝑎𝑡 − 𝑐𝑎𝑡−1 = (1 − 𝑐𝐵)𝑎𝑡  

where {𝑎𝑡} is a white noise process. Substituting for 𝜀𝑡 we get: 

𝑦𝑡 = (1−𝜃1𝐵)(1 − 𝑐𝐵)𝑎𝑡 



       = 𝑎𝑡 − 𝜃1
∗𝑎𝑡−1 − 𝜃2

∗𝑎𝑡−2 

where, 

𝜃1
∗ = (𝜃1 + 𝑐)    ; 𝜃2

∗ = −𝑐𝜃1  

This means that {𝑦𝑡} follow MA(2) and not MA(1), in which case we 

have to go back and fit an MA(2) for the time series, estimate its 

parameters and perform diagnostic checks again to make sure 

it fits the data well. 

On the other hand, if the autocorrelation function of 

the residuals decreases exponentially, or gradually approaching 

zero interchanging in sign, then the original initial model 



 MA(1) may need the inclusion of an autoregressive 

parameter, especially if the partial autocorrelation function of the 

residuals completely cut off after the first time lag. In this case, 

the initial model is modified to the ARMA (1,1) model, fitting it to 

the time series, estimate its parameters and perform diagnostic 

checks again to make sure it fits the data well. 

 

6.3.3.6 Modified Box and Pierce statistic 

Checking every coefficient of the autocorrelation function of the 

residuals is an important indication of the appropriateness of the 



model assumptions, the most important assumption is the 

randomness of the 𝜀𝑡 variables. But, it is not sufficient to just 

perform this diagnostic for two reasons. First – which we have 

mentioned above- that there exist some difficulties at small time 

lags that lead mistakenly to consider a theoretical autocorrelation 

coefficient at a small time lag not significantly different from zero, 

when in fact it differs significantly from zero if we used the true 

variance instead of the approximate variance 
1

𝑛
. The second reason 

is that some spikes might exist especially at large time lags, but the 

model is still considered appropriate, since the randomness of the 

variables 𝜀𝑡 does not prevent existence of some large coefficients in 



the sample (because the estimated residuals 𝜀�̂� are considered as a 

sample from the process {𝜀𝑡}), upon which we may accept that the 

corresponding theoretical coefficients are different from zero.  

 For these reasons it is necessary to examine the appropriateness 

of the model using a different philosophy.  Instead of checking 

every autocorrelation coefficient 𝑟�̂�𝑡(𝑗) separately, it is possible to 

check that a group of coefficients all together are equal to zero. 

Suppose that we denote the first 𝑘 terms of the residual 

autocorrelation coefficients as 𝑟�̂�𝑡(1), 𝑟�̂�𝑡(2), … , 𝑟�̂�𝑡(𝑘) resulting 

from fitting ARMA(p,q) model to the series 𝑦𝑡, Box and Pierce 



(1970) proposed a test such that if the fitted model is appropriate 

then the statistic: 

𝑄 = 𝑛 ∑𝑟�̂�𝑡
2 (𝑗)

𝑘

𝑗=1

 

has, for large sample sizes, a 𝜒2 distribution with (𝑘 − 𝑝 − 𝑞) 

degrees of freedom. Thus if some coefficients are not sufficiently 

close to zero, then 𝑄 tends to be large. In general, we do not reject 

the randomness of the autocorrelation coefficients –or 

equivalently- the appropriateness of the model if calculated value 

of 𝑄 is less than the tabulated 𝜒𝛼
2  where, 



𝑃[𝜒(𝑘−𝑝−𝑞)
2 > 𝜒𝛼

2] = 𝛼 

𝛼 is the significance level. The value of 𝑘 is subjective and is chosen 

by the analyst, the power of the test decrease as 𝑘 increase. The 

statistic 𝑄 works well if the sample size is large or moderately large, 

however for small sample sizes it’s power decrease.  For small 

sample sizes the approximation of 𝑄 by the 𝜒2 distribution is not 

good, for this reason Ljung-Box introduced a modified statistic in 

the form: 

𝑄∗ = 𝑛(𝑛 + 2) ∑
𝑟�̂�𝑡
2 (𝑗)

(𝑛 − 𝑗)

𝑘

𝑗=1

 



which has a better approximation to the 𝜒2 distribution with 

(𝑘 − 𝑝 − 𝑞) degrees of freedom. 

 

Example:  

The following table shows the first 12 autocorrelation coefficients 

for the residuals resulting from the fitting ARMA (1,1) model for a 

time series of length 100 observations. 

12 11 10 9 8 7 6 5 4 3 2 1 𝑘 

-0.1 0.08 0.1 0.3 -0.05 0.02 -0.03 0.01 -0.1 -0.3 0.04 0.03 𝑟�̂�𝑡(𝑘) 

 

1- Test the significance of each theoretical correlation coefficient   



     (i.e. that it is different from zero at each time lag). 

2- Test the appropriateness of the model using Box-Pierce  

      statistic. 

3- Test the appropriateness of the model using modified Ljung- 
     Box statistic. 

Solution: 

1-We first calculate the standard error 
1

√𝑛
=

1

√100
= 0.1, and hence 

the approximate 95% confidence limits are ±
2

√𝑛
= ±0.2 , then 

comparing each correlation coefficient with this  interval, we see 

that 𝜌𝜀(3) and 𝜌𝜀(9) are both significantly different from zero at 

significance level 5%. 



 

2- Box-Pierce statistic: 

𝑄 = 𝑛 ∑𝑟�̂�𝑡
2 (𝑗)

𝑘

𝑗=1

= 100[(0.03)2 + (0.04)2 +⋯+ (−0.01)2] = 22.28 

and since the tabulated value is 𝜒0.05 .10
2 = 18.3, that is 𝑄 > 𝜒𝛼

2 , then 

we say that there is some doubt about the appropriateness of the 

model. 

3- Modified Ljung-Box statistic: 

𝑄∗ = 𝑛(𝑛 + 2)∑
𝑟�̂�𝑡
2 (𝑗)

(𝑛 − 𝑗)

𝑘

𝑗=1

 



= 100(102) [
(0.03)2

99
+
(0.04)2

98
+⋯+

(−0.01)2

88
] = 24.33 

and since the tabulated value is 𝜒0.05 .10
2 = 18.3, that is 𝑄∗ > 𝜒𝛼

2 , 

then we say that there is some doubt about the appropriateness of 

the model. 

 

 

 

Example:  

The following table shows the first 10 autocorrelation coefficients 

for the residuals resulting from the fitting ARMA (0,2,1) model for 

a time series of length 123 observations. 



10 9 8 7 6 5 4 3 2 1 𝑘 

0.1 0.03 0.04 0.02 0.01 0.10 -0.10 -0.01 0.02 0.01 𝑟�̂�𝑡(𝑘) 

 

Test the appropriateness of the model using Box-Pierce statistic. 

Solution: 

Since the model used a difference of order 2, then we lose two 

observations from the series, hence the effective number of 

observations is: 

𝑛∗ = 123 − 2 = 121 

Hence, 

𝑄 = 121[(0.01)2 + (0.02)2 +⋯+ (−0.1)2] = 4.0656 



the tabulated value is 𝜒0.05,9
2 = 16.9. Because 𝑄 < 𝜒𝛼

2  , we deduce 

that there is no non-random pattern in the first 10 autocorrelations  

of the residuals, and hence the model is appropriate for the 

observed time series. 

  

6.3.5 Fitting the lower order model 

 We have mentioned previously that the identification stage 

depends partially on personal judgment of the researcher, as 

testing the cut off points of both the autocorrelation and partial 

autocorrelation functions depend on the used significance level, 



where large significance levels are used for small time lags, and 

small significance levels for larger time lags. Sometimes the model 

might contain a parameter of large order, then simplification of the 

model, i.e. fitting the next lower model is achieved by dropping the 

largest order parameter from the model. 

Thus, it is necessary to perform some additional checks apart from 

the residual analysis and the estimation stage outcomes. We must 

study whether the lager order parameter is significantly different 

from zero by comparing this parameter estimate with double its 

standard error. If it is less than double of the standard error, then 

it is preferred to omit this parameter from the model. But before 



omitting the parameter one must investigate the correlation of the 

parameter estimate with all other parameter estimates. If we 

notice existence of strong correlation, then this is a good indication 

that the model can be further simplified, and thus fitting a lower 

order model is justified. It is important to subject the reduced 

model for all diagnostic tests and checks to make sure the other 

parameters could compensate for the effect of dropping the higher 

order parameter.  

 

6.3.6 Fitting the higher order model 



We can also answer the following question: Can the model 

efficiency be improved by adding an extra parameter? for example 

if the original model we have found suitable for the data is an 

MA(1) then, one can add an extra moving average parameter to this 

model, and hence fit an MA(2) model to the data, and study the 

improvement in the diagnostic checks of the model, also study the 

significance of the added parameter 𝜃2, and the correlation 

between 𝜃2 and 𝜃1. If it is found that the added parameter 𝜃2 is not 

significant , or that the correlation between 𝜃2 and 𝜃1 is large, then 

we have to drop the added parameter 𝜃2, and just keep the original 

model MA(1), and vice versa. 



Of course, one could have added an autoregressive parameter 𝜙1 

to the original model, i.e. fit the model ARMA(1,1) to the data and 

study the efficiency of adding the parameter 𝜙1 in the same 

manner. 

What we want to emphasize here, is that testing of omitting or 

adding some parameters depend to a high extent on the experience 

of the researcher and his personal judgment, that’s why we say that 

the identification and diagnostic checks are the most important 

stages in the modern time series analysis, and are the vital steps in 

getting trustable forecasts. 



6.4 Practical example of time series analysis 

The following time series represent a count of the number 

homicide cases recorded in Australia during 1915-1993, it 

represents the rate number of yearly homicide for every 100000. 

Analyze these data, write a full report about your findings, use the 

proposed model to forecast rate of homicide cases for the next five 

years. 

  



6.4.1 General form of a data analysis report 

Introduction: 

We have a time series data that represent rate number of yearly 

homicide for every 100000 recorded in Australia during 1915-

1993. Since the data are recorded serially over the years, then we 

would expect them to be correlated over time. Thus we can study 

the autocorrelation structure of the data to see how it behave, and 

based on this structure we can develop a mathematical model that 

can describe how the rate number of homicide develop over time 

in Australia, we will also use this developed model to forecast the 



rate of homicide in the next five years, and construct a 95% 

confidence limits for these forecast. 

 

Data description: 

Figure (1) shows rate number of yearly homicide for every 

100000 recorded in Australia during 1915-1993: 
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                 Figure (1): rate number of yearly homicide for every 100000 recorded in Australia during 1915-1993 

 

 From figure (1) we notice that the data seems to be stationary in 

the mean as we do not notice any long term increase or decrease in 



the series, the series oscillate around the mean (the value 0.5149). 

We also, do not notice any seasonal pattern in the data, or any 

outliers. 

a)The autocorrelation function of the data: 

Figure (2) shows the autocorrelation function of the data: 
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Figure (2): autocorrelation function of rate number of yearly homicide 

for every 100000 recorded in Australia during 1915-1993 

 



We notice that the autocorrelation function takes the form of an 

exponential decay function, this is a common feature of the 

autoregressive models. 

b) Figure (3) shows the partial autocorrelation function of the 

data: 
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 Figure (3): Partial autocorrelation function of rate number of yearly homicide  

       for every 100000 recorded in Australia during 1915-1993 

 

We notice that in the Partial autocorrelation function two 

values at time lags 𝑘 = 1.2 seems to differ significantly from 

zero, also we can imagine that the function takes the form of an 



exponential decay function. Thus, from the structure of the 

estimated autocorrelation and partial autocorrelation 

functions of the data we can propose that the models AR(1), 

AR(2), or ARMA(1,1) are potential models to describe the 

evolution of the rate number of yearly homicide for every 

100000 recorded in Australia during 1915-1993.  

Fitting proposed models: 

(i) Autoregressive model of order one AR(1): 

We obtained the following results when fitted the AR(1) model: 

Type      Coef    SE Coef    T      P 

AR   1    0.4385   0.1024   4.28  0.000 



Constant  0.28923  0.01126  25.68 0.000 

Mean      0.51514  0.02006 

 

 

Number of observations:  79 

Residuals:    SS =  0.771706 (backforecasts excluded) 

              MS =  0.010022  DF = 77 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   30.8   37.8   50.1   73.7 

DF             10     22     34     46 

P-Value      0.001  0.019  0.037  0.006 

 

As we note from the table, the parameter estimates are 

significant (i.e. they differ significantly from zero), thus have to 

be kept in the model.  Looking at the p_value for the estimated 



model parameter �̂�1 = 0.4385, which we use to test the 

hypothesis 𝐻0: 𝜙1 = 0 vs 𝐻1: 𝜙1 ≠ 0, since the p_value equal to 

0 (less than 5% or 1% whatever we used), then we reject 𝐻0 

and conclude that that 𝜙1 should be kept in the model. Now 

looking at the result of Ljung-Box statistic, which is used to test 

the hypothesis: 

𝐻0: 𝜌1 = ⋯ = 𝜌𝐾 = 0     vs     𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 ≠ 0 

This hypothesis test that residuals of the fitted model up to time 

lag k are uncorrelated, hence in case we accept 𝐻0  we will 

deduce that the model is suitable to the data. But from the table 



above, we note that all p_values for any k are less than 5%, 

hence we reject 𝐻0 and deduce that the model is not 

appropriate for modelling all the autocorrelation structure in 

the data. We can also plot the autocorrelation and partial 

autocorrelation functions of the residuals to check this point; 
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                        Figure (4): autocorrelation and partial autocorrelation functions of the residuals of AR(1) model 

 

As we note from figure (4), the autocorrelation function shows 

that some autocorrelation in the residuals at lags k=2,4 still 

exists, which means that the model couldn’t model them 

properly. The same comment for the partial autocorrelation 

function, as it seems that some autocorrelation structure is still 

not accounted for by the AR(1) model, hence we move to the 

next proposed model.  

 

(ii) Autoregressive model of order two AR(2): 

We obtained the following results when fitted the AR(2) model: 



  



Final Estimates of Parameters 

 

Type       Coef  SE Coef      T      P 

AR   1    0.2937   0.1083   2.71  0.008 

AR   2    0.3312   0.1087   3.05  0.003 

Constant  0.19334  0.01071 18.06  0.000 

Mean      0.51535  0.02854 

 

Number of observations:  79 

Residuals:    SS =  0.688118 (backforecasts excluded) 

              MS =  0.009054  DF = 76 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   11.6   22.5   32.7   51.1 

DF              9     21     33     45 

P-Value     0.234  0.371  0.484  0.245 
 

As we note from the above table, all parameters included in the 

model are significantly different from zero and hence have to be 



retained in the model. Also, the p_values for testing the hypothesis 

𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝐾 = 0 are not significant for all values of k, 

hence we accept 𝐻0 and deduce that the model is tentatively 

appropriate for the data. Plotting the autocorrelation and partial 

autocorrelation function for the residuals of the AR(2) model, we 

get: 

Lag

A
u

to
c
o

rr
e

la
ti

o
n

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Autocorrelation Function for RESI2
(with 5% significance limits for the autocorrelations)

      
Lag

P
a

rt
ia

l 
A

u
to

c
o

rr
e

la
ti

o
n

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Partial Autocorrelation Function for RESI2
(with 5% significance limits for the partial autocorrelations)

 



Figure (5): autocorrelation and partial autocorrelation functions of the residuals of AR(2) model 

As we note from figure (5), the residuals of the AR(2) model are 

much better from those of AR(1) as they do not show any 

unexplained autocorrelation structure in the residuals. 

Now, we have to perform the diagnostic checks to verify whether the 

model residuals fulfill the assumptions of the white noise process 𝜀𝑡 , 

where as  we know, 𝜀�̂� are actually estimates for the terms of the 

white noise process. The following figure shows results of diagnostic 

checks of the model residuals: 
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Figure (6): Diagnostic plots for the residuals of AR(2) model 

 

 

a) Residuals follow the normal distribution: 



Checking figure (6), we note that the probability plot shows 

percentiles of the residuals that agree to a high extent with those of 

the normal distribution, also the figure shows the result of applying 

a non-parametric test for goodness of fit, the Anderson-Darling test 

for the hypothesis: 

𝐻0: 𝑟𝑒𝑠𝑖𝑑𝑢𝑙𝑎𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑙𝑙𝑜𝑤 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

The P_value of the test is 0.780, which means the acceptance of 𝐻0. 

Also, note that the histogram of the data resembles to a good extent 

the normal histogram. 

b) Variance of the residuals is constant: 



The plot at the top right hand side of figure (6), shows residuals 

against the estimated fitted values, which indicate that the variance 

is constant and does not change with time.  

 

 

c) Mean of the residuals is zero: 

We can conduct a t-test for testing the hypothesis that residuals 

mean is zero, the MINITAB output provide us with the following 

output: 

One-Sample T: RESI3  
 



Test of mu = 0 vs not = 0 

 

 

Var   N   Mean     StDev   SE Mean          95% CI            T      P 

RESI3 79 0.0006  0.093924  0.010567  (-0.020460, 0.021615)  0.05  0.957 

    

Since the P_value of the test is 0.957, which means the acceptance of 

the zero mean hypothesis of the residuals. 

d) Randomness of the residuals: 

Using the Runs test, which is a non-parametric test for testing the 

hypothesis that the residuals are random versus that they are not 

random, the MINITAB provide us with the following results: 

Runs test for RESI3 

 

Runs above and below K = 0 



 

The observed number of runs = 40 

The expected number of runs = 40.4937 

39 observations above K, 40 below 

P-value = 0.911 

Since the P_value of the test is 0.911, which means that we  accept 

the hypothesis of the residuals randomness. 

e) Residuals are uncorrelated: 

We have already mentioned the result of the Ljung-Box test, which 

in fact is a test for the uncorrelation of the residuals, and we have 

accepted this hypothesis. 

• Stationarity analysis: 

The estimated values of the model parameters are: 



 �̂�1 = 0.2937.   �̂�2 =  0.3312, and applying the stationarity 

conditions for this model: 

(i) |𝝓𝟐| < 𝟏 ⟹ | 𝟎. 𝟑𝟑𝟏𝟐| < 𝟏   

(ii) 𝝓𝟏 +𝝓𝟐 < 𝟏⟹ 𝟎.𝟐𝟗𝟑𝟕 +  𝟎. 𝟑𝟑𝟏𝟐 = 𝟎. 𝟔𝟐𝟒𝟗 < 𝟏 

(iii) 𝝓𝟐 −𝝓𝟏 < 𝟏⟹  𝟎. 𝟑𝟑𝟏𝟐 − 𝟎. 𝟐𝟗𝟑𝟕 = 𝟎. 𝟎𝟑𝟕𝟓 < 𝟏 

So the estimated parameters of the model satisfy the stationarity 

condition. 

Hence, we note that the AR(2) model has passed all diagnostic 

checks, and thus we conclude that it is suitable to model rate number 

of homicide cases in Australia during 1915-1993, and the form of the 

model is: 



𝑌𝑡 = 0.19334 + 0.2937 𝑌𝑡−1 + 0.3312 𝑌𝑡−2 + 𝜀𝑡  

Where, 𝑌𝑡 is rate number of homicide cases at year 𝑡, and the 

variance of the white noise process 𝜀𝑡 is estimated as 

 MS =  0.009054. 

 

(iii)  As previously mentioned, ARMA(1,1) model was a tentative 

model for our data, thus we are going to fit it and see how good it is 

for modelling the rate number of homicide cases in Australia. 

The results of applying this model to the data in MINITAB is shown 

in the following table: 



 

 

Final Estimates of Parameters 

 

Type          Coef   SE Coef      T      P 

AR   1      0.9384    0.0603  15.56  0.000 

MA   1      0.6959    0.1234   5.64  0.000 

Constant    0.0317    0.00319  9.94  0.000 

Mean        0.51579   0.05191 

 

 

Number of observations:  79 

Residuals:    SS =  0.649709 (backforecasts excluded) 

              MS =  0.008549  DF = 76 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   10.0   17.9   26.5   42.1 

DF              9     21     33     45 

P-Value     0.348  0.654  0.782  0.594 



 

As we note from the above table, all parameters included in the 

model are significantly different from zero and hence have to be 

retained in the model, as all P_values of the parameters 𝜃1, 𝜙1 and 

the constant δ are all equal to zero.  Also, the result of the Ljung-

Box test  indicate that the model is adequate for the data since all 

the p_values are larger than α = 0.05. In addition, the parameter 

estimates fulfill the stationarity and invertibility conditions. 

 

Model diagnostics: 



The following figure shows results of diagnostic checks of the 

model residuals: 
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Figure (8): Diagnostic plots for the residuals of ARMA(1,1) model 



From figure (8), it is evident that the residuals follow the normal 

distribution , and that their variance is constant and do not change 

with time. The rest of the diagnostic checks are as follow: 

(a) Mean of the residuals is zero: 

We can conduct a t-test for testing the hypothesis that residuals mean 

is zero, the MINITAB output provide us with the following output: 

One-Sample T: RESI1  
 
Test of mu = 0 vs not = 0 

Var  N   Mean     StDev     SE Mean        95% CI          T      P 

RES  79 0.001949  0.091246  0.010266 (-0.01848, 0.02238)  0.19  0.850 

    

Since the P_value of the test is 0.850, which means the acceptance of 

the zero mean hypothesis of the residuals. 



(b) Randomness of the residuals: 

Using the Runs test, which is a non-parametric test for testing the 

hypothesis that the residuals are random versus that they are not 

random, the MINITAB provide us with the following results: 

Runs Test: RESI1  
 
Runs test for RESI1 

 

Runs above and below K = 0 

 

The observed number of runs = 38 

The expected number of runs = 40.3418 

42 observations above K, 37 below 

P-value = 0.594 

Since the P_value of the test is 0.594 which means that we  accept the 

hypothesis of the residuals randomness. 

(c) Residuals are uncorrelated: 



We have already mentioned the result of the Ljung-Box test, which in 

fact is a test for the uncorrelation of the residuals, and we have accepted 

this hypothesis. Plotting the ACF and PACF for the residuals, we get: 
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Figure (9): autocorrelation and partial autocorrelation functions of the residuals of ARMA(1,1) model 

 

As we note, the ARMA(1,1) succeeded in modelling all the 

autocorrelation structure in the data. 



  

 Figure (10): autocorrelation and partial autocorrelation functions of the first differences of the residuals of 

ARMA(1,1) Model 

 

Hence, we note that the ARMA(1,1) model has passed all diagnostic 

checks, and thus we conclude that it is suitable to model rate number 

of homicide cases in Australia during 1915-1993, and the form of the 

model is: 

𝑌𝑡 = 0.031771 + 0.9384 𝑌𝑡−1 + 𝜀𝑡 − 0.6959 𝜀𝑡−1  

Where, 𝑌𝑡 is rate number of homicide cases at year 𝑡, and the variance 

of the white noise process 𝜀𝑡 is estimated as MS =  0.008549. 

 



Since we have proposed two models that can successfully model the 

correlation structure available in the data, hence we have to use some 

comparison criteria to choose the best model of the two, from these 

criteria are: 

a) Akaike information criterion (AIC): 

This criterion is defined as:    𝐴𝐼𝐶(𝑚) = 𝑛 ln(�̂�𝜀
2) + 2𝑚 

b) Bayesian information criterion (BIC): 

 This criterion is defined as:  𝐵𝐼𝐶(𝑚) = 𝑛 ln(�̂�𝜀
2) + 2𝑚 ln (𝑛)    

 

Where,   𝑚 : number of estimated parameters 



               𝑛: Is the number of available observations (if any 

differences are taken, then it is the total number of observations after 

the difference). 

              �̂�𝜀
2 : is the estimated variance of the model residuals (or the 

estimated variance of the white noise process) 

Now, we summarize the results in the following table: 

Model 
     𝑛 𝑚 �̂�𝜀

2 AIC BIC 

AR(2) 79 2 0.009054 -367.659 -354.1816 

ARMA(1,1) 79 2 0.008549 -372.193 -358.7155 

 

 



Since the model to be selected is the one with the lowest value of the 

comparison criterion, thus we see from the table that both criterion 

select the ARMA(1,1) to model the homicide rate in Australia. 

Using the model to forecast the homicide rate in Australia for the next 

five years: 

The following figure shows the forecast the homicide rate in Australia 

for the next five years: 
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Figure (11): forecast the homicide rate in Australia for the next five years using the ARMA(1,1) Model 

The following table shows these forecasts, together with a 95% C.I.: 

Table (1): Forecasting homicide rate for every 100000 capita in Australia  

for five years using    ARMA(1,1) model 

Upper 

limit 
Forecast 

Lower 

limit 
Year 



0.728877 0.547620 0.366362 1994 

0.732170 0.545659 0.359149 1995 

0.734836 0.543819 0.352802 1996 

0.736991 0.542093 0.347194 1997 

0.738726 0.540472 0.342218 1998 

                          *Base year (1993) where homicide rate for every 100000 capita is 0.53395 

As we note from these results, that we expect the homicide rate to 

increase in 1994 to 0.547620 for every 100000 capita, then the rate 

will start to decline in an average yearly rate of 0.30 %. 

 

 

  



Chapter seven: Seasonal Models 

 

As we have seen in the previous chapters, the stochastic time series 

models could successfully model the correlation structure in the 

data. However, in case the data show a seasonal behavior, then the 

model should incorporate a component that reflect such 

seasonality. 

 

7.1 Autoregressive seasonal models 

Assume for example that we have a quarterly time series, then we 

say that it follows a seasonal autoregressive model of order one if 

we can express the current value of the series 𝑦𝑡 as a linear function 



of the value of the series at the same season in the previous year 

𝑦𝑡−𝑠 (here we assume 𝑆 = 4) plus a random variable term 𝜀𝑡 , that 

is: 

𝑦𝑡 = Φ1𝑦𝑡−𝑠 + 𝜀𝑡 

 

Where Φ1 represent the seasonal autoregressive parameter, this 

model is denoted as SAR(1). 

In the same manner, we can add seasonal autoregressive 

parameters to this model to get SAR(P), which can be expressed as: 

(1 − Φ1𝐵
𝑠 −Φ2𝐵

2𝑠 −⋯−Φ𝑝𝐵
𝑃𝑠)𝑦𝑡 = 𝜀𝑡 

or,  



𝑦𝑡 = Φ1𝑦𝑡−𝑠 +Φ2𝑦𝑡−2𝑠 +⋯+Φ𝑃𝑦𝑡−𝑃𝑠 + 𝜀𝑡 

It can be proven that the autocorrelation function for the seasonal 

autoregressive model is very much similar to the ACF of the usual 

autoregressive model, except that the autocorrelation coefficients 

appear at multiples of S, i.e. at the multiples of the seasonal period. 

For example, for the SAR(1) model, with a positive parameter 𝛷1, 

and seasonal period length 𝑠 = 4, then the autocorrelation 

coefficients will appear at multiples of the number 4, and will 

gradually decline to zero, see figure (7.1). 
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Figure (7.1): autocorrelation function for SAR(1), s=4 

If we have SAR(1) model with seasonal period S=12, then the 

autocorrelation coefficients will appear at multiples of the number 12 

(i.e. at 12, 24, 36, 48, …) . 

 



7.2 Moving average seasonal models 

we say that a stationary time series follows a seasonal moving average 

model of order one if we can express the current value of the series 𝑦𝑡 

as a linear function of the value of the random shock that occurred at 

current time 𝜀𝑡 and the one occurred at the same season in the previous 

year 𝜀𝑡−𝑠 that is: 

𝑦𝑡 = 𝜀𝑡 − Θ1𝜀𝑡−𝑠 

It could also be written as: 

𝑦𝑡 = (1 − Θ1𝐵
𝑠)𝜀𝑡 

Where Θ1 represent the seasonal moving average parameter, this model 

is denoted as SMA(1). In the same manner, we can add seasonal moving 



average parameters to this model to get SMA(Q), which can be 

expressed as: 

𝑦𝑡 = (1 − Θ1𝐵
𝑠 − Θ2𝐵

2𝑠 −⋯− Θ𝑄𝐵
𝑄𝑠)𝜀𝑡 

or,  

𝑦𝑡 = 𝜀𝑡 − Θ1𝜀𝑡−𝑠 − Θ2𝜀𝑡−2𝑠 −⋯− Θ𝑄𝜀𝑡−𝑄𝑠 

It can be proven that the autocorrelation function for the seasonal 

moving average model is very much similar the ACF of the usual 

moving average model, except that the autocorrelation coefficients 

appear at multiples of S, i.e. at the multiples of the seasonal period. For 

example, for the SMA(1) model, then there is only one non-zero 

autocorrelation value that occur at a time lag that is equal to seasonal 



period, , see figure (7.2). For SMA(Q) models the number of non-

negative autocorrelation coefficients will appear at multiples of S. 
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Figure (7.2): autocorrelation function for SMA(1) 

 

7.3 Autoregressive Moving average seasonal models 



It is possible to combine both the autoregressive and models in one 

group, such models are expressed as: 

Φ(𝐵𝑠)𝑦𝑡 =  Θ(𝐵
𝑠)𝜀𝑡 

Where,  

Φ(𝐵𝑠) = (1 − Φ1𝐵
𝑠 −Φ2𝐵

2𝑠 −⋯−Φ𝑝𝐵
𝑃𝑠) 

Θ(𝐵𝑠) = (1 − Θ1𝐵
𝑠 − Θ2𝐵

2𝑠 −⋯− Θ𝑞𝐵
𝑄𝑠) 



And the symbol used to denote such models is SARMA(P,Q).  In case 

the series was not stationary, then it is possible to apply the differences 

operator to the series as follows: 

Φ(𝐵𝑠)  ∇𝑆
𝐷 𝑦𝑡 =  Θ(𝐵

𝑠)𝜀𝑡 

 

Where  ∇𝑆
𝐷 represent the seasonal differences at the seasonal period 𝑆, 

in this case we have the model SARIMA(P,D,Q), where,  

P: the order of the seasonal autoregressive model  

Q: the order of the seasonal moving average model  



D: number of seasonal differences to render the series to be stationary 

at seasonal periods S. 

It is possible as well to get a general form of the Box-Jenkins models 

that incorporate both normal and seasonal terms, and it is sometimes 

called “General multiplicative Box-Jenkins models”: 

ϕ(𝐵)Φ(𝐵𝑠) ∇𝑑  ∇𝑆
𝐷 𝑦𝑡 = 𝜃(𝐵) Θ(𝐵

𝑠)𝜀𝑡 

it is abbreviated as,  

SARIMA(p, d, q)(P, D, Q)s  

Example: 

Write the mathematical formula for the model SARIMA(0,0,1)(0,0,1)4. 

Solution: 



We have the following values for the order indexes, q=1 ،Q=1 ،S=4, 

thus the model form is: 

𝑦𝑡 = (1 − 𝜃1𝐵) (1 − Θ1𝐵
4) 𝜀𝑡 

⇒ 𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − Θ1𝜀𝑡−4 + 𝜃1Θ1𝜀𝑡−5 
 

7.3.1 some characteristics of the general multiplicative models 

There are in fact very few general characteristics for the ACF and PACF 

functions that could be used to identify the multiplicative seasonal 

models. Table (7.1) shows some basic characteristics for ACF and 

PACF for some multiplicative seasonal models, which are used to try 



to see if a specific multiplicative seasonal could be used to model the 

data. 

 

Model 𝜌𝑘 𝜙𝑘𝑘 

SARIMA(p,0,0)(P,0,0) 

≡  SAR(p, P) 

Approach 
zero 

gradually 

Cut off 
completely 

after the 
time lag 

p+sP 

SARIMA(0,0,q)(0,0,Q) 

≡  SMA(q, Q) 

Cut off 
completely 

after the 
time lag 

q+sQ 

Approach 
zero 

gradually 



SARIMA(p,0,q)(P,0,Q) 
Approach 

zero 
gradually 

Approach 
zero 

gradually 
 

7.4 Example: 

Data in table (7.2) represent amount of monthly produced electrical 

energy in the United States during the period of Jan. 1985 –Dec. 2014. 

Study this set of data, try to get a suitable mathematical model able to 

model it. Use your chosen model to forecast the amount of monthly 



produced electrical energy for the year 2015. The actual monthly 

production for 2015 is shown below: 

 

Amount of produced electricity Month 

399.96 1 

400.26 2 

401.52 3 

403.26 4 

403.94 5 

402.80 6 

401.30 7 

398.93 8 

397.63 9 



398.29 10 

400.16 11 

401.85 12 

 

  



 

 

Table (7.2): amount of monthly produced electrical energy in the United States during the period 

of Jan. 1985 –Dec. 2014 

Month/year 
1 2 3 4 5 6 7 8 9 10 11 12 

1985 345.25 346.06 347.66 348.2 348.92 348.4 346.65 344.85 343.2 343.08 344.4 345.82 

1986 346.54 347.13 348.05 349.77 350.53 349.9 348.11 346.09 345.01 344.47 345.86 347.15 

1987 348.38 348.7 349.72 351.32 352.14 351.61 349.9 347.84 346.52 346.65 347.96 349.18 

1988 350.38 351.68 352.24 353.66 354.18 353.68 352.58 350.66 349.03 349.08 350.15 351.44 

1989 352.89 353.24 353.8 355.59 355.89 355.3 353.98 351.53 350.02 350.29 351.44 352.84 

1990 353.79 354.88 355.65 356.28 357.29 356.32 354.88 352.89 351.28 351.59 353.05 354.27 

1991 354.87 355.68 357.06 358.51 359.09 358.1 356.12 353.89 352.3 352.32 353.79 355.07 

1992 356.17 356.93 357.82 359 359.55 359.32 356.85 354.91 352.93 353.31 354.27 355.53 

1993 356.86 357.27 358.36 359.27 360.19 359.52 357.42 355.46 354.1 354.12 355.4 356.84 

1994 358.22 358.98 359.91 361.32 361.68 360.8 359.39 357.42 355.63 356.09 357.56 358.87 

1995 359.87 360.79 361.77 363.23 363.77 363.22 361.7 359.11 358.11 357.97 359.4 360.61 

1996 362.04 363.17 364.17 364.51 365.16 364.93 363.53 361.38 359.6 359.54 360.84 362.18 

1997 363.04 364.09 364.47 366.25 366.69 365.59 364.34 362.2 360.31 360.71 362.45 364.33 

1998 365.18 365.98 367.13 368.61 369.49 368.95 367.74 365.79 364.01 364.35 365.52 367.08 



1999 368.12 368.98 369.6 370.96 370.77 370.33 369.28 366.86 364.94 365.35 366.68 368.04 

2000 369.25 369.5 370.56 371.82 371.51 371.71 369.84 368.2 366.91 366.99 368.33 369.67 

2001 370.52 371.49 372.53 373.37 373.82 373.18 371.57 369.63 368.16 368.42 369.69 371.18 

2002 372.45 373.14 373.94 375 375.65 375.5 374 371.83 370.66 370.51 372.2 373.71 

2003 374.87 375.62 376.48 377.74 378.5 378.18 376.72 374.31 373.2 373.1 374.64 375.93 

2004 377 377.87 378.73 380.41 380.63 379.56 377.61 376.15 374.11 374.44 375.93 377.45 

2005 378.47 379.76 381.14 382.2 382.47 382.2 380.78 378.73 376.66 376.98 378.29 379.92 

2006 381.35 382.16 382.66 384.73 384.98 384.09 382.38 380.45 378.92 379.16 380.18 381.79 

2007 382.93 383.81 384.56 386.4 386.58 386.05 384.49 382 380.9 381.14 382.42 383.89 

2008 385.44 385.73 385.97 387.16 388.5 387.88 386.43 384.15 383.09 382.99 384.13 385.56 

2009 386.94 387.42 388.77 389.44 390.19 389.45 387.78 385.92 384.79 384.39 386 387.31 

2010 388.5 389.94 391.09 392.52 393.04 392.15 390.22 388.26 386.83 387.2 388.65 389.73 

2011 391.24 391.82 392.49 393.34 394.21 393.72 392.42 390.19 389.04 388.96 390.24 391.83 

2012 393.12 393.6 394.45 396.18 396.78 395.82 394.3 392.41 391.06 391.01 392.81 394.28 

2013 395.54 396.8 397.31 398.35 399.76 398.58 397.2 395.15 393.51 393.66 395.11 396.81 

2014 397.81 397.93 399.62 401.34 401.88 401.2 399.04 397.1 395.35 395.95 397.27 398.84 

 

Solution: 



We start the analysis by plotting the time series for the amount of 

monthly produced electrical energy. Figure (7.3) shows this time series, 

it is evident that there is an upward trend in the total produced 

electricity. Also, we note the clear seasonal component, beside that we 

do not notice any change in variation of production over the years, so 

we do not need to use any transformation to stabilize the data variance. 
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Figure 7.3: Monthly produced electrical energy in USA during1985 –2014 

 

Surely, we will need to apply the differences operator to make the series 

stationary in the mean, also it is possible that we might need to take a 



seasonal difference of order 12 if the series is not stationary at the 

seasonal periods, this will be apparent when we plot the autocorrelation 

and partial autocorrelation functions. 

Identification: 

As mentioned above we need to take the ordinary differences of order 

1, i.e. 𝑧𝑡 = ∇𝑦𝑡. We got the following ACF and PACF functions for 𝑧𝑡: 
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Figure 7.4: Autocorrelation and partial autocorrelation functions for the series 𝑧𝑡 = ∇𝑦𝑡 

Inspection of the estimated functions, we note that the autocorrelation 

function decay very slowly to zero, also that the first partial 

autocorrelation coefficient (0.83) is very large, this indicate that we 

might need to apply a second difference to the series. Also, we notice 



that PACF coefficients at the seasonal periods (12, 24, 36,...) decay 

slowly, which again would indicate the need to take a seasonal 

difference at period s=12. 

Figure (7.4) nominate an initial model SARIMA(2,1,0)(0,0,1)12 , also 

following the notes in the previous paragraph, we applied a second 

difference to the data, i.e. 𝑤𝑡 = ∇
2𝑦𝑡, and obtained the following ACF 

and PACF: 
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Figure 7.5: Autocorrelation and partial autocorrelation functions for the series 𝑤𝑡 = ∇2𝑦𝑡 

 

Inspection of the estimated functions in fig. (7.5), we note that the 

autocorrelation function cuts off after the first time lag, besides that, the 

partial autocorrelation function decay in an exponential format, this is 
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an indication that the data might follow a moving average of order one 

pattern. Also, that PACF coefficients at the seasonal periods (12, 24, 

36,...) decay exponentially, and there exist a single significant value at 

the seasonal period s=12, which again would indicate that the data 

might follow a seasonal moving average of order one pattern . Thus 

Figure (7.5) nominate the model SARIMA(0,2,1)(0,0,1)12 . 

 

Fitting the tentative models: 

i) The model SARIMA(2,1,0)(1,0,0)12 



Fitting the model with MINITAB, we got the following output: 

Type        Coef  SE Coef     T      P 

AR   1   -0.3175   0.0385   -8.25  0.000 

AR   2   -0.1331   0.0384   -3.46  0.001 

SAR  12   0.9807   0.0096  102.04  0.000 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 672, after 

differencing 671 

Residuals:    SS =  103.064 (backforecasts excluded) 

              MS =  0.154  DF = 668 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square  172.2  183.6  194.0  202.7 

DF              9     21     33     45 

P-Value     0.000  0.000  0.000  0.000 
 



As we can see from the output, all the model parameters are 

significantly different from zero, hence have to be retained in the 

model. However, when looking at the result of the Ljnug-Box statistic, 

that is used to test the hypothesis: 

𝐻0: 𝜌1 = ⋯ = 𝜌𝐾 = 0 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑑𝑜 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜 

This hypothesis tests the assertion that residuals of the model up to time 

lag k are uncorrelated, hence, upon accepting 𝐻0 we will deduce that 



the model is suitable to that data. However, from the output above we 

notice that the P_values for the  Ljung-Box test are all equal to zero, 

thus we reject 𝐻0, and deduce that the model SARIMA(0,2,1)(1,0,0)12 

could not capture all the autocorrelation structure of the data and thus 

it is unsuitable to model the data. We can also, plot the ACF and the 

PACF for the residuals of this model to check this point: 
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Figure 7.6: Autocorrelation and partial autocorrelation functions for the residuals of the model 

SARIMA(0,2,1)(1,0,0)12 

We notice figure (7.6) that there is still some autocorrelation between 

the residuals of the model at time lag S=12 not explained by the model, 

also the PACF at time lags k=12, 24, 36 decay in an exponential 



fashion. Hence, we search for another model that can model the data 

better. 

ii) The model SARIMA(0,2,1)(0,0,1)12  : 

Fitting this model using MINITAB, we got the following: 

 

Type      Coef     SE Coef     T      P 

MA   1    0.0142   0.0415    0.34  0.733 

SMA  12  -0.5200   0.0364  -14.29  0.000 

 

 

Differencing: 2 regular differences 

Number of observations:  Original series 672, after 

differencing 670 

Residuals:    SS =  386.630 (backforecasts excluded) 



              MS =  0.579  DF = 668 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24      36      48 

Chi-Square  322.0  850.2  1207.7  1616.3 

DF             10     22      34      46 

P-Value     0.000  0.000   0.000   0.000 
 

We see notice that the moving average parameter in the non-seasonal 

part does not significantly differ from zero, thus it has to be removed 

from the model, also, we notice that all the P_values of the Ljung-Box 

test indicate that the model is not adequate in modelling the data, this 

means that it could not model the correlation structure of the data. We, 



can also plot the ACF and the PACF for the model residuals to check 

upon this point: 
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Figure 7.7: Autocorrelation and partial autocorrelation functions for the residuals of the model 

SARIMA(0,2,1)(0,0,1)12 



We notice from figure (7.7), the ACF of the residuals, there are still 

some high values of the autocorrelation coefficients at lags 

s=12,24,36,… . The same could be realized from the PACF at seasonal 

and non-seasonal lags. So, we deduce that the model could not model 

the correlation structure in the data properly. Hence, we search for 

another model that can model the data better. 

The pattern revealed at Figure (7.7) indicate that we should take a 

seasonal difference to the data. So, we propose the model 



SARIMA(0,1,1)(0,1,1)12. Notice that we have removed the regular 

difference of order 2, this is because taking many (unnecessary) 

differences might distort the autocorrelation structure of the data, and 

when we decided to take a seasonal difference, this might relieve us 

from taking the second regular difference, we will study this model and 

see if it can convince us in modelling the data properly. 

iii) The model SARIMA(0,1,1)(0,1,1)12  : 

Fitting this model using MINITAB, we got the following: 



 

Final Estimates of Parameters 

 

Type     Coef     SE Coef   T      P 

MA   1   0.3726   0.0366  10.18  0.000 

SMA  12  0.8929   0.0176  50.66  0.000 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 672, after 

differencing 659 

Residuals:    SS =  56.8926 (backforecasts excluded) 

              MS =  0.0866  DF = 657 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   11.4   24.3   36.4   50.0 

DF             10     22     34     46 



P-Value     0.329  0.333  0.359  0.317 
 

As we can see from the output, all the model parameters are 

significantly different from zero, hence have to be retained in the 

model. Also, the Ljnug-Box statistic, shows that all the P_values are 

greater than 𝛼 = 0.05 , hence we accept the hypothesis 𝐻0: 𝜌1 = ⋯ =

𝜌𝐾 = 0, and deduce that the model is suitable for the data, since it could 

model all the observed autocorrelation structure in the data. Inspecting 

the ACF and PACF for the residuals of the model: 
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Figure 7.8: Autocorrelation and partial autocorrelation functions for the residuals of the model 

SARIMA(0,1,1)(0,1,1)12 

 

Which indeed indicate that the model is adequate, and that it could 

model all the autocorrelation in the data. The residuals of the model 

show that it is an estimate of a white noise process, since all 



autocorrelation and partial autocorrelation coefficients do not 

significantly differ from zero, (which is a property of the white noise 

process). 

 

Diagnostics:          

  Now, we have to perform diagnostic tests to see how these model 

residuals fulfill the conditions of the white noise process 𝜀𝑡, because the 

model residuals 𝜀�̂� are actually estimates of the white noise terms𝜀𝑡. 



The following figure shows results of diagnostic checks of the model 

residuals: 
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Figure (7.9): Diagnostic plots for the residuals of SARIMA(0,1,1)(0,1,1)12model 

 

a) Residuals follow the normal distribution 

From figure (7.9), the normal probability plot, shows that the 

percentiles lie on a straight line, which indicate that the residual 

percentiles agrees to a large extent with those of the normal distribution. 

The figure also show the result of  a nonparametric goodness of fit test 

with the normal distribution, it is the Anderson-Darling (AD) test for 

testing the hypothesis: 



𝐻0:residuals follow the normal distribution 

The P_value is 0.183, which indicate that we accept 𝐻0, also note that 

the histogram of the residuals takes a shape very similar to the normal 

distribution. 

b) Variance of the residuals is constant: 

The plot at the top right side of the figure indicate that the variance of 

the residuals does not change over time. 

 



c) Mean of the residuals is zero: 

We can conduct a t-test for testing the hypothesis that residuals mean is 

zero, the MINITAB output provide us with the following output: 

One-Sample T: RESI  
 
Test of mu = 0 vs not = 0 

 

 

Var  N   Mean StDev    SE Mean       95% CI           T      P 

RESI 659 0.024 0.2931  0.0114  (0.001375, 0.046210)  2.08  0.038 

    

Since the P_value of the test is 0.038, thus we reject the zero mean 

hypothesis of the residuals, also note that the 95% CI for the residual 

mean does not contain zero, thus we conclude that we have to make 



amendments to the model. Let us include a constant term δ to the model, 

Doing so, we obtained the following output: 

Final Estimates of Parameters 

 

Type           Coef    SE Coef      T      P 

MA   1       0.3958     0.0500   7.91  0.000 

SMA  12      0.9448     0.0291  32.46  0.000 

Constant  0.0025838  0.0009135   2.83  0.005 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 348, after differencing 335 

Residuals:    SS =  27.2551 (backforecasts excluded) 

              MS =  0.0821  DF = 332 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    8.0   22.8   28.6   37.9 

DF              9     21     33     45 



P-Value     0.536  0.355  0.688  0.764 

 

From the above output, we notice that all the results indicate that the 

model is appropriate, and that constant parameter δ should also be 

retained in the model. Now, let us perform again the test that residuals 

mean is zero: 

 

One-Sample T: RESI1  

 

Test of mu = 0 vs not = 0 

 

 

Var   N     Mean    StDev  SE Mean       95% CI       T    P 

RES  659  -0.0048  0.2857  0.0156  (-0.0356, 0.0258)-0.31 0.755 



Since the P_value is 0.755, so we accept the hypothesis of zero mean for the residuals. 

a) Randomness of the residuals: 

Using the Runs test, which is a non-parametric test for testing the 

hypothesis that the residuals are random versus that they are not 

random, the MINITAB provide us with the following results: 

  



Runs Test: RESI1  

 
Runs test for RESI1 

 

Runs above and below K = 0 

 

The observed number of runs = 174 

The expected number of runs = 168.487 

166 observations above K, 169 below 

P-value = 0.546 

Since the P_value of the test is 0.546 which means that we  accept the 

hypothesis of the residuals randomness. 

1- Residuals are uncorrelated: 

We have already mentioned the result of the Ljung-Box test, which in 

fact is a test for the uncorrelation of the residuals, and we have accepted 

this hypothesis.  



2- Stationarity analysis: 

Since the model contains only moving average terms, then it is 

stationary. 

3- Invertibility analysis: 

The estimated parameters are 𝜃1 = 0.3958  .   Θ̂1 = 0.9448  , thus we 

see that the invertibility conditions are satisfied:  

|�̂�1| < 1 ⟹ |0.3958| < 1  , |Θ̂1| < 1 ⟹ |0.9448 | < 1 

 



Thus the model SARIMA(0,1,1)(0,1,1)12 has passed all diagnostics 

tests, hence, it is suitable to model generated electricity amounts in 

USA during Jan. 1985 till Dec. 2014, and it has the form: 

𝑦𝑡 = 0.00227 + 𝑦𝑡−1 + 𝜀𝑡 − 0.3823𝜀𝑡−1 − 0.9058𝜀𝑡−12 + 0.3463𝜀𝑡−13  

 

Where 𝑦𝑡 represent generated electricity amounts in month 𝑡, and the white 

noise estimated variance is MS =  0.0858. 

• Using the model to forecast the generated electricity amount for 

the next 12 months: 

The following figure shows the forecasts for the 2015 together with 

the observed actual values: 
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Figure (7.11): Forecast for the generated electricity amount for the year 2015 using SARIMA(0,1,1)(0,1,1)12 Model 

 

The following table also shows these forecasts together with 95% 

confidence limits: 

 

 

 

 



 

 

Table (7.2): Forecast for the generated electricity amount for the year 2015 using 

SARIMA(0,1,1)(0,1,1)12 Model 

Month 
Lower 

limit 

Actual 

value 
Forecast 

Upper 

limit 

1 397.369 397.81 397.931 398.493 
2 398.094 397.93 398.750 399.406 

3 398.913 399.62 399.652 400.391 
4 400.168 401.34 400.981 401.794 
5 400.734 401.88 401.615 402.496 
6 400.046 401.20 400.991 401.935 

7 398.450 399.04 399.454 400.457 
8 396.368 397.10 397.427 398.487 
9 394.878 395.35 395.991 397.103 

10 394.952 395.95 396.115 397.277 
11 396.331 397.27 397.542 398.753 
12 397.750 398.84 399.008 400.266 

                                                     



As we can see from table (7.2), the proposed model could produce 

forecasts that are very near to the actual values of the production 

amounts, also it was able to model seasonality in the data with high 

accuracy. Also, notice that the confidence limits contain the actual 

values, except the production amount for February, as the actual value 

lies outside the limits, but bearing in mind that this is a 95% C.I., then 

one would expect about 5% of the values to be outside the confidence 

limits, and hence this does not down grade the postulated model. Also, 



note that these limits are very narrow, indicating that the model is very 

highly reliable.       

 

 

 

 

 


