The production of antibodies and vaccination technology

By: Reham Alahmadi NOV 2018
Antibody Production
The blood contains two types of white blood cell or leukocyte.

Phagocytes ingest bacteria by **endocytosis**

Lymphocytes produce **antibodies**
Antibodies

• Antibodies are **proteins** that recognise and bind to specific **antigens**

• Antigens are **foreign substances** that **stimulate** the production of antibodies

• Many of the molecules on the surface of viruses and bacteria are antigens
Antibodies are **specific** – they usually bind to only one specific antigen.
A lymphocyte can produce only one type of antibody so a huge number of different types are needed.

Each lymphocyte has some of its antibody on its surface...
The antigens of a pathogen bind to the antibodies in the surface membrane of a lymphocyte…

…This activates the lymphocyte.
The active lymphocyte divides by mitosis to produce a clone of many identical cells.

The clone of cells starts to produce large quantities of the same antibody...

...the same antibody needed to defend against the pathogen!
Most microbes have more than one antigen on their surface, so…

...they stimulate more than one type of lymphocyte…

...resulting in the production of many different antibodies.

These are called polyclonal antibodies.
Antibody Production: The Primary Response

Step 1: Antigen Presentation

Macrophages take in antigen by endocytosis

The macrophage processes the antigen and attaches it to a membrane protein called a MHC protein.

The MHC protein is moved cell surface membrane by exocytosis so that the antigen is displayed on its surface.
Step 2: Activation of Helper T-cell

Helper T-cells have receptors on their cell surface membranes which can bind to antigens presented by macrophages.

Macrophage sends a signal to activate the helper T-cell
Step 3: Activation of B-lymphocytes

B-cells have antibodies in their cell surface membranes

Antigens bind to the antibodies in the surface membranes of B-cells
An activated helper T-cell with receptors for the same antigen binds to the B-cell.

The helper T-cell sends a signal to the B-cell, activating the B-cell.
Plasma cells are activated B-cells with a very extensive network of rough endoplasmic reticulum.

Plasma cells synthesis large amounts of antibody, which they excrete by exocytosis.
The Secondary Response: Memory Cells

• If an antigen invades your body a second time, a much faster response occurs which produces much larger quantity of the required antibody.

• When activated B-cells are dividing during the primary response, some cells stop dividing and secreting antibody and become memory cells.

• Large numbers of memory cells remain in the body for a long time...
• …they are capable of producing large amounts of antibody very quickly when stimulated.
Antibody Production: Summary

- B-cell
- Helper T-cell
- Macrophage
- Memory Cell
- Plasma Cell
- Antibodies
Vaccination Technology
Vaccination

- Vaccination is a method of giving antigen to stimulate the immune response through active immunization.

- A vaccine is an immuno-biological substance designed to produce specific protection against a given disease.

- A vaccine is “antigenic” but not “pathogenic”.
Types of vaccines

- Live vaccines
- Attenuated live vaccines
- Inactivated (killed vaccines)
- Toxoids
- Polysaccharide and polypeptide (cellular fraction) vaccines
- Surface antigen (recombinant) vaccines.
Live vaccines

Live vaccines are made from live infectious agents without any amendment.

The only live vaccine is “Variola” small pox vaccine, made of live vaccinia cow-pox virus (not variola virus) which is not pathogenic but antigenic, giving cross immunity for variola.
Live attenuated (avirulent) vaccine

Virulent pathogenic organisms are treated to become attenuated and avirulent but antigenic. They have lost their capacity to induce full-blown disease but retain their immunogenicity.

Live attenuated vaccines should not be administered to persons with suppressed immune response due to:

- Leukemia and lymphoma
- Other malignancies
- Receiving corticosteroids and anti-metabolic agents
- Radiation
- Pregnancy
Organisms are killed or inactivated by heat or chemicals but remain antigenic. They are usually safe but less effective than live attenuated vaccines. The only absolute contraindication to their administration is a severe local or general reaction to a previous dose.
Toxoids

They are prepared by detoxifying the exotoxins of some bacteria rendering them antigenic but not pathogenic. Adjuvant (e.g. alum precipitation) is used to increase the potency of vaccine.

The antibodies produced in the body as a consequence of toxoid administration neutralize the toxic moiety produced during infection rather than act upon the organism itself. In general toxoids are highly efficacious and safe immunizing agents.
Polysaccharide and polypeptide (cellular fraction) vaccines

- They are prepared from extracted cellular fractions e.g. meningococcal vaccine from the polysaccharide antigen of the cell wall, the pneumococcal vaccine from the polysaccharide contained in the capsule of the organism, and hepatitis B polypeptide vaccine.

- Their efficacy and safety appear to be high.
Surface antigen (recombinant) vaccines

- It is prepared by cloning HBsAg gene in yeast cells where it is expressed. HBsAg produced is then used for vaccine preparations.

- Their efficacy and safety also appear to be high.
Types of vaccines

<table>
<thead>
<tr>
<th>Live vaccines</th>
<th>Live Attenuated vaccines</th>
<th>Killed Inactivated vaccines</th>
<th>Toxoids</th>
<th>Cellular fraction vaccines</th>
<th>Recombinant vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small pox variola vaccine</td>
<td>BCG</td>
<td>Typhoid</td>
<td>Diphtheria</td>
<td>Meningococcal polysaccharide vaccine</td>
<td>Hepatitis B vaccine</td>
</tr>
<tr>
<td></td>
<td>Typhoid oral</td>
<td>Cholera</td>
<td>Tetanus</td>
<td>Pneumococcal polysaccharide vaccine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plague</td>
<td>Pertussis</td>
<td></td>
<td>Hepatitis B polypeptide vaccine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral polio</td>
<td>Plague</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow fever</td>
<td>Rabies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measles</td>
<td>Salk polio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mumps</td>
<td>Intra-muscular influenza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubella</td>
<td>Japanise encephalitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intransal Influenza</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typhus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you

You can find me at third floor
office 86
realahmadi@ksu.edu.sa