The neuromuscular system & exercise

Dr./Rehab Gwada
Objectives

- Identify the major components of CNS
- Outline motor neuron and its types
- Discuss Proprioceptors specific to muscles
- Differentiate among different types of Ms.
- Contrast slow and fast twitch Ms. Fibers
- Outline Ms. Fiber type distribution pattern among diverse groups of athletes.
- Explain how exercise training modifies Ms. Fibers and fiber types.
Nervous System

Central Nervous System (CNS)
- Brain (including retinas)
- Spinal cord
- Integrative/control centers

Peripheral Nervous System (PNS)
- Cranial nerves III–XII
- Spinal nerves

Afferent Division (sensory)
- Somatic and visceral neurons
- Conducts impulses from receptors to CNS

Efferent Division (motor)
- Motor neurons
- Conducts impulses from the CNS to effectors

Autonomic Nervous System
- Involuntary
- Conducts impulses from the CNS to cardiac muscle, smooth muscles, and glands

Somatic Nervous System
- Voluntary
- Conducts impulses from the CNS to skeletal muscles

Sympathetic
Parasympathetic
<table>
<thead>
<tr>
<th>End organ</th>
<th>Sympathetic effects</th>
<th>Parasympathetic effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal muscle</td>
<td>Increase blood flow</td>
<td>Decrease blood flow</td>
</tr>
<tr>
<td>Ventilation</td>
<td>Increase</td>
<td>Decrease</td>
</tr>
<tr>
<td>Sweat glands</td>
<td>Increase perspiration</td>
<td>No effect</td>
</tr>
<tr>
<td>Heart</td>
<td>Increase force and contraction rate</td>
<td>Decrease force and contraction rate</td>
</tr>
<tr>
<td>GI tract motility</td>
<td>Decrease</td>
<td>Increase</td>
</tr>
<tr>
<td>Eyes</td>
<td>Dilate pupils</td>
<td>Constrict pupils</td>
</tr>
<tr>
<td>Secretion of digestive juices</td>
<td>Decrease</td>
<td>Increase</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>Increase mean pressure</td>
<td>Decrease mean pressure</td>
</tr>
<tr>
<td>Airways</td>
<td>Increase diameter</td>
<td>Decrease diameter</td>
</tr>
</tbody>
</table>
Motor neurons

- stimulate muscle fibers to contract
- Motor neurons have a threadlike axon that extends from the brain or spinal cord to a group of muscle fibers to innervate them.
- The axon transmit the impulse in one direction only
- Form a neuromuscular junction (= myoneural junction)
Control of Muscle Tension
Motor neurons

• Three are 3 motor neuron types

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Fast fatigability units</th>
<th>fast fatigue resistance units</th>
<th>slow units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axon</td>
<td>Large axon</td>
<td>Moderate axon</td>
<td>Smell axons</td>
</tr>
<tr>
<td>Force production</td>
<td>High</td>
<td>Moderate</td>
<td>Low force</td>
</tr>
<tr>
<td>Contraction speed</td>
<td>Fast</td>
<td>Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Fatigue resistance</td>
<td>Low</td>
<td>moderate</td>
<td>High</td>
</tr>
<tr>
<td>Motor unit MS. Fiber</td>
<td>Fast glycolytic</td>
<td>Fast oxidative glycolytic</td>
<td>Slow oxidative.</td>
</tr>
</tbody>
</table>
Motor neurons

- Light ex. Predominantly recruited slow twitch units followed by activations of fast twitch motor units when force output requirements increase.
Proprioception

- Proprioceptors - internal receptors located in skin, joints, muscles, & tendons which provide feedback relative to:
 - tension, length, & contraction state of muscle.
 - position of body & limbs.
 - movements of joints.
Proprioception

- **Proprioceptors specific to muscles**
 - **Muscles spindles**
 - concentrated primarily in muscle belly between the fibers & run parallel with muscle fibers
 - Provide mechanosensory information about change in muscle fiber length & stretch.
 - It responds to Ms. Stretch through reflex action by initiated a strong MS. Action.
 - **Golgi tendon organs (GTO)**
 - found serially in the tendon close to muscle tendon junction
 - sensitive to both muscle tension & active contraction
 - Much less sensitive to stretch than muscle spindles
 - require a greater stretch to be activated
The main components of stretch reflex (Monosynaptic):

1. Muscle spindle that respond to rapid muscle stretch.
2. Afferent Impulse is sent to the spinal cord.
3. Spinal cord activates motor neurons of agonist muscle (contacts) while inhibiting the antagonist muscle.

Major function of a muscle spindle:
This provides an important regulatory control function for total body movement & posture. Postural MS. Required continual subconscious activity to adjust to pull in gravity in upright posture.
Monosynaptic Reflex

- Ex. Knee jerk or patella tendon reflex
Golgi Tendon Organ

- **Golgi tendon organ**
- Tension in tendons & GTO increases as muscle contract, which activates GTO
 1. GTO stretch threshold is reached
 2. Impulse is sent to CNS
 3. CNS causes muscle to relax
 4. facilitates activation of antagonists as a protective mechanism

Major function:
GTO protects muscle or its connective tissues from injury by sudden excessive contraction or stretch by causing its muscle to relax. So it inhibits undue strain.
MUSCULAR SYSTEM

Muscle Function:
- Producing movement
- Stabilizing joints
- Maintaining posture
- Moving substances within the body
- Producing heat—muscle contraction generates 85% of the body’s heat
Characteristics of Muscle Tissue

- **Excitability**: receive and respond to stimuli
- **Contractility**: ability to shorten and thicken
- **Extensibility**: ability to stretch
- **Elasticity**: ability to return to its original shape after contraction or extension
Types of Muscle

<table>
<thead>
<tr>
<th></th>
<th>Skeletal Muscle</th>
<th>Smooth Muscle</th>
<th>Cardiac Muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Attached to bone</td>
<td>On hollow organs, glands and blood vessels</td>
<td>Heart</td>
</tr>
<tr>
<td>Function</td>
<td>Move the whole body</td>
<td>Compression of tubes & ducts</td>
<td>Heart contraction to propel blood</td>
</tr>
<tr>
<td>Nucleus</td>
<td>Multiple, peripheral</td>
<td>Single, central</td>
<td>Central & single</td>
</tr>
<tr>
<td>Control</td>
<td>voluntary</td>
<td>involuntary</td>
<td>involuntary</td>
</tr>
<tr>
<td>Striations</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Cell Shape</td>
<td>Cylindrical</td>
<td>Spindle-shaped</td>
<td>Branched</td>
</tr>
</tbody>
</table>
Muscle Tissue Types

(a) Skeletal muscle

(b) Smooth muscle

(c) Cardiac muscle
Skeletal muscle anatomy

• Epimysium
 sheath enveloping entire Ms.

• Perimysium
 Binds Ms. Fibers together

• Endomysium
 Sheath of C.T. surrounding MS. Fibers
Each muscle - has thousands of muscle fibers in a bundle running from origin to insertion bound together by connective tissue through which run blood vessels and nerves.

Each muscle fiber - contains many nuclei, sarcoplasmic reticulum, many thick and thin myofibrils running lengthwise the entire length of the fiber, and many mitochondria for energy.
Sarcomere - The basic functional unit of the muscle fiber consists of thick and thin filaments between two Z disks.

Thick filaments - with myosin (protein) molecules

Thin filaments - with actin (protein) molecules plus smaller amounts of troponin and tropomysin.

Striations - of dark A bands and light I bands.

A bands - are bisected by the H zone with the M line.

I bands - are bisected by the Z disk or line.
Sliding-Filament Model

- **Thick filaments** - myosin molecules contain the **myosin head**, which has binding sites on the actin molecules of the thin filaments and ATP.
- **Activating the muscle fiber** causes the sarcolemma release of **Ca2+ ions**
- **causing a change in the troponin-troponyosin complex**, which exposes the binding sites on actin
- the myosin heads bind to actin molecules as the thin actin filaments slides along the myosin.
- **Linkages** break and reform (using ATP energy) further along the thick filaments.

https://www.youtube.com/watch?v=0kFmbrrJq4w
Muscle Contraction

- **As the muscle contracts** - the width of the I bands and H zones decrease causing the Z disks to come closer together, but there is no change in the width of the A band because the thick filaments do not move.

- **As the muscle relaxes or stretches** - the width of the I bands separate as the thin filaments move apart but the thick filaments still do not move.
Types of Skeletal Muscle Fibers

- Muscle fibers are classified into two main types:
 - 1) Slow-twitch (Slow oxidative fibers)
 - 2) Fast-twitch
 - a) Fast oxidative-glycolytic fibers (FOG)
 - b) Fast glycolytic fibers (FG)
Types of Skeletal Muscle Fibers & suitable activity

- **Slow Oxidative Fibers (SO fibers)**
 - Smallest in diameter
 - Least powerful type of muscle fibers
 - Appear dark red (more myoglobin)
 - Generate ATP mainly by aerobic cellular respiration
 - Have a slow speed of contraction
 - Very resistant to fatigue
 - Capable of prolonged, sustained contractions for many hours
 - Adapted for maintaining posture and for aerobic, endurance-type activities such as running a marathon
Types of Skeletal Muscle Fibers & suitable activity

- **Fast Glycolytic Fibers (FG fibers)**
 - Largest in diameter
 - Generate the most powerful contractions
 - Have low myoglobin content
 - Relatively few blood capillaries
 - Few mitochondria
 - Appear white in color
 - Generate ATP mainly by glycolysis
 - Fibers contract strongly and quickly
 - Fatigue quickly

Adapted for intense anaerobic movements of short duration
 - **Weight lifting**.
Types of Skeletal Muscle Fibers

& suitable activity

• Fast Oxidative–Glycolytic Fibers (FOG fibers)
 – Intermediate in diameter between the other two types of fibers
 – Contain large amounts of myoglobin and many blood capillaries
 – Have a dark red appearance
 – Generate considerable ATP by aerobic cellular respiration
 – Generate some ATP by anaerobic glycolysis
 – Moderately high resistance to fatigue
 – Speed of contraction faster than SO

Contribute to activities such as walking and sprinting
Types of Skeletal Muscle Fibers

![Transverse section of three types of skeletal muscle fibers](LM_440x)

<table>
<thead>
<tr>
<th>STRUCTURAL CHARACTERISTIC</th>
<th>SLOW OXIDATIVE (SO) FIBERS</th>
<th>FAST OXIDATIVE–GLYCOLYTIC (FOG) FIBERS</th>
<th>FAST GLYCOLYTIC (FG) FIBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myoglobin content</td>
<td>Large amount.</td>
<td>Large amount.</td>
<td>Small amount.</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>Many.</td>
<td>Many.</td>
<td>Few.</td>
</tr>
<tr>
<td>Capillaries</td>
<td>Many.</td>
<td>Many.</td>
<td>Few.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNCTIONAL CHARACTERISTIC</th>
<th>SLOW OXIDATIVE (SO) FIBERS</th>
<th>FAST OXIDATIVE–GLYCOLYTIC (FOG) FIBERS</th>
<th>FAST GLYCOLYTIC (FG) FIBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity for generating ATP</td>
<td>High capacity, by aerobic (oxygen-requiring) cellular respiration.</td>
<td>Intermediate capacity, by both aerobic (oxygen-requiring) cellular respiration and anaerobic (do not require oxygen) cellular respiration (glycolysis).</td>
<td>Low capacity, by anaerobic cellular respiration (glycolysis).</td>
</tr>
<tr>
<td>Fatigue resistance</td>
<td>High.</td>
<td>Intermediate.</td>
<td>Low.</td>
</tr>
<tr>
<td>Creatine kinase</td>
<td>Lowest amount.</td>
<td>Intermediate amount.</td>
<td>Highest amount.</td>
</tr>
<tr>
<td>Order of recruitment</td>
<td>First.</td>
<td>Second.</td>
<td>Third.</td>
</tr>
<tr>
<td>Location where fibers are abundant</td>
<td>Postural muscles such as those of the neck.</td>
<td>Lower limb muscles.</td>
<td>Upper limb muscles.</td>
</tr>
<tr>
<td>Primary functions of fibers</td>
<td>Maintaining posture and aerobic endurance activities.</td>
<td>Walking, sprinting.</td>
<td>Rapid, intense movements of short duration</td>
</tr>
</tbody>
</table>
Distribution and Recruitment of Different Types of Fibers

- Most muscles are a mixture of all types of muscle fibers
- Proportions vary, depending on the action of the muscle, the person’s training regimen, and genetic factors

- Postural muscles of the neck, back, and legs have a high proportion of SO fibers
- Muscles of the shoulders and arms have a high proportion of FG fibers
- Leg muscles have large numbers of both SO and FOG fibers
Exercise and Skeletal Muscle Tissue

- Ratios of fast glycolytic and slow oxidative fibers are genetically determined

 - Individuals with a higher proportion of FG fibers
 • Excel in intense activity (weight lifting, sprinting)

 - Individuals with higher percentages of SO fibers
 • Excel in endurance activities (long-distance running)
Exercise and Skeletal Muscle Tissue

• Various types of exercises can induce changes in muscle fibers. As specific ex. Training improve the metabolic capacity of each fiber type.

 – Aerobic exercise possess the greatest % of slow twitch fibers. e.g. distance runners & cross-country skiers.
 • Endurance exercises do not increase muscle mass

 – Exercises that require short bursts of strength possess an increase in fast twitch muscle fibers.

Muscle enlargement (hypertrophy) due to increased synthesis of thick and thin filaments (size and number of contractile proteins).
 e.g. Sprint athletes.

- Equal fiber type distribution exists for throwers, jumpers.
Thanks