
The Influence of Organizational Structure on Software
Quality: An Empirical Case Study

Nachiappan Nagappan

Microsoft Research
Redmond, WA, USA

nachin@microsoft.com

Brendan Murphy
Microsoft Research

Cambridge, UK

bmurphy@microsoft.com

Victor R. Basili
University of Maryland
College Park, MD, USA

basili@cs.umd.edu

ABSTRACT
Often software systems are developed by organizations consisting
of many teams of individuals working together. Brooks states in
the Mythical Man Month book that product quality is strongly
affected by organization structure. Unfortunately there has been
little empirical evidence to date to substantiate this assertion. In
this paper we present a metric scheme to quantify organizational
complexity, in relation to the product development process to
identify if the metrics impact failure-proneness. In our case study,
the organizational metrics when applied to data from Windows
Vista were statistically significant predictors of failure-proneness.
The precision and recall measures for identifying failure-prone
binaries, using the organizational metrics, was significantly higher
than using traditional metrics like churn, complexity, coverage,
dependencies, and pre-release bug measures that have been used
to date to predict failure-proneness. Our results provide empirical
evidence that the organizational metrics are related to, and are
effective predictors of failure-proneness.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Software Metrics – complexity

measures, performance measures, process metrics, product

metrics.

General Terms
Measurement, Reliability, Human Factors.

Keywords
Organizational structure, Failures, Code churn, Developers,
Software mining, Empirical studies.

1. INTRODUCTION
Software engineering is a complex engineering activity. It
involves interactions between people, processes, and tools to
develop a complete product. In practice, commercial software
development is performed by teams consisting of a number of
individuals ranging from the tens to the thousands. Often these
people work via an organizational structure reporting to a manager
or set of managers.

The intersection of people [9], processes [29] and organization
[33] and the area of identifying problem prone components early
in the development process using software metrics (e.g. [12, 23,
27, 30]) has been studied extensively in recent years. Early
indicators of software quality are beneficial for software engineers
and managers in determining the reliability of the system,
estimating and prioritizing work items, focusing on areas that
require more testing, inspections and in general identifying
“problem-spots” to manage for unanticipated situations. Often
such estimates are obtained from measures like code churn, code
complexity, code coverage, code dependencies, etc. But these
studies often ignore one of the most influential factors in software
development, specifically “people and organizational structure”.
This interesting fact serves as our main motivation to understand
the intersection between organizational structure and software
quality: How does organizational complexity influence quality?

Can we identify measures of the organizational structure? How

well do they do at predicting quality, e.g., do they do a better job

of identifying problem components than earlier used metrics?

Conway’s Law states that “organizations that design systems are
constrained to produce systems which are copies of the
communication structures of these organizations.” [8]. Similarly,
Fred Brooks argues in the Mythical Man Month [6] that the
product quality is strongly affected by org structure. With the
advent of global software development where teams are
distributed across the world the impact of organization structure
on Conway’s law [14] and its implications on quality is
significant. To the best of our knowledge there has been little or
no empirical evidence regarding the relationship/association
between organizational structure and direct measures of software
quality like failures.

In this paper we investigate this relationship between
organizational structure and software quality by proposing a set of
eight measures that quantify organizational complexity. These
eight measures provide a balanced view of organizational
complexity from the code viewpoint. For the organizational
metrics, we try to capture issues such as organizational distance of
the developers; the number of developers working on a
component; the amount of multi-tasking developers are doing
across organizations; and the amount of change to a component
within the context of that organization etc. from a quantifiable
perspective. Using these measures we empirically evaluate the
efficacy of the organizational metrics to identify failure-prone
binaries in Windows Vista.

The organization of the rest of the paper is as follows. Section 2
describes the related work focusing on prior work on
organizational structure and predicting defects/failures. Section 3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.

521

highlights our contribution and Section 4 describes the
organizational metric suite. Section 5 presents our case study and
the results of our investigation on the relationship between
organizational metrics and quality. Section 6 discusses the threats
to validity and section 7 the conclusions and future work.

2. RELATED WORK
Our discussion of related work falls into one of the following two
categories: Organizational research from the software perspective
and predicting faults/failures.

2.1 Software Organizational Studies
From the historical perspective, Fred Brooks in his classic book
The Mythical Man Month [6] provides an analogy in the chapter
on Why did the (mythical) Tower of Babel Fail? The observation
being that, the people had (1) a clear mission; (2) manpower; (3)
(raw) materials; (4) time and (5) technology. The project failed
because of – communication, and its consequent organization [6].
Brooks further states that in software systems: schedule disasters,
functional misfits and system bugs arise from a lack of
communication between different teams. Quoting Brooks[6] “The

purpose of organization is to reduce the amount of communication

and coordination necessary; hence organization is a radical

attack on the communication problems…”. In 1968 Conway [8]
also observed from his study (organizations produce designs
which are copies of the communication structures of these
organizations) that the flexibility of an organization is important
to effective design [8]. He further went on to say that ways must
be found to reward design managers for keeping their
organizations lean and flexible indicating the importance of
organization on design quality [8]. In a similar vein, Parnas [32]
also indicated that a software module is “a responsibility
assignment rather than a subprogram” indicating the importance
of organizational structure in the software industry.

We summarize here recent work from the perspective of
organizational structure towards communication and coordination.
Herbsleb and Grinter [13] look at Conway’s law from the
perspective of global software development. Their paper explores
global software development from a team organizational context
based on teams working in Germany and UK. They provide
recommendations based on their empirical case study for the
associated problems geographically distributed organizations face
with respect to communication barriers and coordination
mechanisms. They observed the primary barriers to team
coordination were lack of unplanned contact; knowing the right
person to contact about specific issues; cost of initiating the
contact; effective communication and lack of trust. Further
Herbsleb and Mockus [15] formulate and evaluate an empirical
theory (of coordination) towards understanding engineering
decisions from the viewpoint of coordination within software
projects. This paper is one of the closest in scale, size and
motivation to our study, though our study focuses on predicting
quality using the organization metrics (with the underlying
relationship between organizational structure and coordination).
Also Mockus et al. [22] investigate how different individuals
across geographical boundaries contribute towards open source
projects (Apache and Mozilla). Perry et al. [33] discuss and
motivate the need to consider the larger development picture,
which encompasses organizational and social as well as
technological factors. They discuss quantitatively measuring
people factors and report on the result of two experiments, one

which is a self-reported diary of developer activities and the
second an observational study of developer activities. These two
experiments also were used to asses the efficacy of each technique
towards quantifying people factors.

2.2 Software Metrics and Faults/Failures
In this section we summarize some of the related work regarding
metrics and faults/failures. Relevant studies on Microsoft systems
are also presented providing context and for comparison to our
current work. We organize our work based on the type of metrics
that have been studied for fault/failures prediction.

Code Churn: Graves et al. [12] predict fault incidences using
software change history based on a weighted time damp model
using the sum of contributions from all changes to a module,
where large and/or recent changes contribute the most to fault
potential [12]. Ostrand et al. [31] use information of file status
such as new, changed, unchanged files along with other
explanatory variables such as lines of code, age, prior faults etc. as
predictors in a negative binomial regression equation to
successfully predict (high accuracy for faults found in both early
and later stages of development) the number of faults in a multiple
release software system. Nagappan and Ball [25] in a prior study
on Windows Server 2003 showed the use of relative code churn
measures (relative churn measures are normalized values of the
various measures obtained during the evolution of the system) to
predict defect density at strong statistically significant levels.
Zimmermann et al. [37] mined source code repositories of eight
large scale open source systems (IBM Eclipse, Postgres, KOffice,
gcc, Gimp, JBoss, JEdit and Python) to predict where future
changes will take place in these systems. The top three
recommendations made by their system identified a correct
location for future change with an accuracy of 70%.

Code Complexity: Khoshgoftaar et al. [18] studied two
consecutive releases of a large legacy system (containing over
38,000 procedures in 171 modules) for telecommunications.
Discriminant analysis identified fault-prone modules based on 16
static software product metrics. Their model when used on the
second release showed a type I and II misclassification rate of
21.7%, 19.1% respectively and an overall misclassification rate of
21.0%. From the O-O (object-oriented) perspective the CK metric
suite [7] consist of six metrics (designed primarily as object
oriented design measures): weighted methods per class (WMC),
coupling between objects (CBO), depth of inheritance (DIT),
number of children (NOC), response for a class (RFC) and lack of
cohesion among methods (LCOM). The CK metrics have also
been investigated in the context of fault-proneness. Basili et al. [1]
studied the fault-proneness in software programs using eight
student projects. They observed that the WMC, CBO, DIT, NOC
and RFC were correlated with defects while the LCOM was not
correlated with defects. Further, Briand et al. [5] performed an
industrial case study and observed the CBO, RFC, and LCOM to
be associated with the fault-proneness of a class. Within five
Microsoft projects, Nagappan et al. [27] identified complexity
metrics that predict post-release failures and reported how to
systematically build predictors for post-release failures from
history.

Code Dependencies: Pogdurski and Clarke [34] presented a
formal model of program dependencies as the relationship
between two pieces of code inferred from the program text.
Schröter et al. [35] showed that import dependencies can predict

522

defects. They proposed an alternate way of predicting failures for
Java classes. Rather than looking at the complexity of a class, they
looked exclusively at the components that a class uses. For
Eclipse, the open source IDE they found that using compiler
packages results in a significantly higher failure-proneness (71%)
than using GUI packages (14%). Prior work at Microsoft [24] on
the Windows Server 2003 system illustrates that code
dependencies can be used to successfully identify failure-prone
binaries with precision and recall values of around 73% and 75%
respectively.

Code Coverage: Hutchins et al. [16] evaluate all-edges and all-
uses coverage criteria using an experiment with 130 fault seeded
versions of seven programs and observed that test sets achieving
coverage levels over 90% usually showed significantly better fault
detection than randomly chosen test sets of the same size. In
addition, significant improvements in the effectiveness of
coverage-based tests usually occurred as coverage increased from
90% to 100%. Frankl and Weiss [11] evaluated all-edges and all-
uses coverage using nine subject programs. Error-exposing ability
was shown to be positive and strongly correlated to percentage of
covered definition-use associations in four of the nine subjects.
Error exposing ability was also shown to be positively correlated
with the percentage of covered edges in four (different) subjects,
but the relationship was weaker.

Combination of metrics: Denaro et al. [10] calculated 38
different software metrics (lines of code, halstead software
metrics, nesting levels, cyclomatic complexity, knots, number of
comparison operators, loops etc.) for the open source Apache 1.3
and Apache 2.0 projects. Using logistic regression models built
using the data collected from the Apache 1.3 they verified the
models against the Apache 2.0 project with high
correctness/completeness. Khoshgoftaar et al. [19] use code churn
as a measure of software quality in a program of 225,000 lines of
assembly language. Using eight complexity measures, including
code churn, they found neural networks and multiple regression to
be an efficient predictor of software quality, as measured by gross
change in the code. Nagappan et al. [26] used code churn, code
complexity and code coverage measures to predict post-release
field failures in Windows Server 2003 using logistic regression
models built with Windows XP data. The built models identify

failure-prone binaries with a statistically significant positive and
strong correlation between actual and estimated failures.

Pre-release bugs: Biyani and Santhanam [4] show for four
industrial systems at IBM there is a very strong relationship
between development defects per module and field defects per
module. This allows building of prediction models based on
development defects to identify field defects.

3. CONTRIBUTIONS

Our work extends the state of the art in the following ways.

1. The introduction, definition and use of an organizational
metric suite specifically targeted at the software domain.

2. A methodology to systematically build predictors for failure-
proneness using organizational structure metrics.

3. An investigation of whether organizational metrics are better
predictors of failure-proneness compared to traditional code
churn, code complexity, code dependencies, code coverage
and pre-release defects.

4. It quantifies institutional knowledge in terms of developer
experience on prior versions of Windows to define a baseline
for other systems and applications outside of Microsoft.

5. It is one of the largest studies of commercial software—in
terms of code size (> 50 Million lines of code), team sizes
(several thousand), and software users (several Million).

4. ORGANIZATIONAL METRICS
In this section we will explain the organizational metrics that were
developed for the purpose of our study. These metrics and their
interactions were refined using the G-Q-M (Goal-Question-
Metric) approach [2]. To explain the measures better we use a
pseudo example shown in Figure 1 to represent the organizational
structure of a company “XYZ”.

Context: As a background to our example consider the
measurement of the organizational metrics for a binary A.dll
developed by company “XYZ”. Over the course of its
development prior to its release, the total number of edits for the

Figure 1: Example Organization Structure of Company “XYZ”

523

files that were compiled into A.dll is 250. In Figure 1, Person A is
the overall head of the company and manages the 100 person
organization. Person AB manages a 30 person organization, AC
manages a 40 person organization, AD manages a 30 person
organization representing the three organizations within the
company. The rest of the sub-managers, frontline engineers are
also shown in Figure 1. We now define the eight organizational
measures to quantify the organization complexity of company
“XYZ” from the perspective of software development: in our case
binary A.dll.

1. Number of Engineers (NOE): This is the absolute number of
unique engineers who have touched a binary and are still
employed by the company.
Implication: The more people who touch the code, the higher the
chances of defective code as there is a higher need for
coordination amongst the engineers[6]. Brooks [6] states that if
there are N engineers who touch a piece of code there needs to be
(N*(N-1))/2 theoretical communication paths for the N engineers
to communicate amongst themselves. In our case if there is a large
number of engineers who work on a particular binary there may
be miscommunication between those engineers leading to design
mismatches, breaking another engineers code (build breaks), and
problem understanding design rationale.
Example: In this example this is a straight forward measurement
of 32 engineers extracted from the version control system (VCS).

2. Number of Ex-Engineers (NOEE): This is the total number of
unique engineers who have touched a binary and have left the
company as of the release date of the software system (in our case
A.dll).
Implications: This measure deals with knowledge transfer. If the
employee(s) who worked on a piece of code leaves the company
then there is a likelihood that the new person taking over might
not be familiar with the design rationale, the reasoning behind
certain bug fixes, and information about other stake holders in the
code.
Example: This measure too is a straight forward value extracted
from the VCS and checking against the org structure. In this
example there were zero ex-engineers.

3. Edit Frequency (EF): This is the total number times the source
code, that makes up the binary, was edited. An edit is when an
engineer checks code out of the VCS, alters it and checks it back
in again. This is independent of the number of lines of code
altered during the edit.
Implications: This measure serves two purposes. One being that,
if a binary had too many edits it could be an indicator of the lack
of stability/control in the code from the different perspectives of
reliability, performance etc. , this is even if a small number of
engineers where making the majority of the edits. Secondly, it
provides a more complete view of the distribution of the edits: did
a single engineer make majority of the edits, or were they widely
distributed amongst the engineers?. The EF cross balances with
NOE and NOEE to make sure that a few engineers making all the
edits do not inflate our measurements and ultimately affect our
predict model. Also if the engineers who made most of the edits
have left the company (NOEE) then it can lead to the above
discussed issues of knowledge transfer.
Example: In our example the edit frequency is 250 also extracted
from the VCS.

4. Depth of Master Ownership (DMO): This metric determines
the level of ownership of the binary depending on the number of

edits done. The organization level of the person whose reporting
engineers perform more than 75% of the rolled up edits is deemed
as the DMO. The DMO metric determines the binary owner based
on activity on that binary. Our choice of 75% is based on prior
historical information on Windows to quantify ownership.
Implications: The deeper in the tree is the ownership the more
focused the activities, communication, and responsibility. A
deeper level of ownership indicates less diffusion of activities, a
single point of approval/control which should improve intellectual
control. If a binary does not have a clear owner (or has a very low
DMO at which 75% of the edits toll up) then there could be issues
regarding decision-making when performing a risky bug fix, lack
of engineers to follow-up if there is an issue, understanding
intersecting code dependencies etc. A management owner who
has not made a large number of edits (i.e. not familiar with the
code) may not be able to make the above decisions without
affecting code quality.
Example: In our above example more than 75% of the edits roll
up to the engineer ABCA (190 edits out of a total of 250). Hence
the DMO measure in this case is 2 (level 0 is AB, AC and AD;
Level 1 is ABA to ADA. Person A being the top person is not
involved in the technical day to day activities). The overall org
owner for this org is AB.

5. Percentage of Org contributing to development (PO): The
ratio of the number of people reporting at the DMO level owner
relative to the Master owner org size.
Implications: The lower the percentage the more local is the
ownership and contributions to the binary leading to lower
coordination/communication overhead across organizations and
improved synchronization amongst individuals, better intellectual
control and provide a single point of contact. This metric
minimizes the impact of an unbalanced organization, whereby the
DMO may be two levels deep but 90% of the total organization
reports into that DMO.
Example: In our example this ratio is (7/30)*100. Seven
engineers report to ABCA and the org to which ABCA belongs to
is of size 30.

6. Level of Organizational Code Ownership (OCO): The
percent of edits from the organization that contains the binary
owner or if there is no owner then the organization that made the
majority of the edits to that binary.
Implications: The more the development contributions belong to
a single organization, the more they share a common culture,
focus, and social cohesion. The more diverse the contributors to
the code itself, the higher the chances of defective code, e.g.,
synchronization issues, mismatches, build breaks. If a binary has
a defined owner then this measure identifies whether the
remaining edits to the binary was performed by people in the same
organization (common culture). This measure is particularly
important when a binary does not have a defined owner, as it
provides a measure of how much control any single organization
has over the binary. Also if there is a large PO value due to
several of the engineers only having worked on the binary a few
times the OCO measure will counter-balance that taking into
account the development activities in terms of the edits.
Example: This ratio is 200/ (200+40+10). 200 is the highest
proportion of edits made in org reporting to AB. This ratio is
computed against the total edits of 200+40+10 across all the three
orgs.

524

7. Overall Organization Ownership (OOW): This is the ratio of
the percentage of people at the DMO level making edits to a
binary relative to total engineers editing the binary. A high value
is good.
Implications: As with previous ownership measures the more the
activities belong to a single organization, the more they share a
common culture, focus, and social cohesion. Furthermore, the
bigger the organizational distance the more chance there is of
miscommunication and misunderstanding of goals focus, etc. This
measure counter balances OCO and PO to account for a common
phenomenon in large teams that exist due to “super” engineers.
These engineers have considerable experience in the code base
and contribute a substantial amount of code to the system. We do
not want one or a few such engineers influencing our measures
nor do we want them to be ignored. PO, OCO and OOW account
for this type of inter relationship.
Example: In our example we observe that five engineers
contributed code reporting to the manager ABCA. There were a
total of 32 editing engineers contributing code to this binary
across the orgs. Hence the percentage of engineers in org is 5/32.

8. Organization Intersection Factor (OIF): A measure of the
number of different organizations that contribute greater than 10%
of edits, as measured at the level of the overall org owners.
Implications: Greater is the OIF the more diffused is the
contribution to a binary. This implies a lack of strong ownership
from one particular org. This measure is particularly important
when a binary has no owner as it identifies how diffused the
ownership is across the total organization.
Example: In our example, there are totally 250 edits. 10% of this
is 25 edits. We observe that all the two organizations under the
Master owner (AB, AC) contributed more than 25 edits. Therefore
the OIF here is 2. Ideally a lower value is considered to be better.

The measures proposed here attempt to balance the various
assertions about how organizational structure can influence the
quality of the binary, some of which seem to represent opposing
positions. A high level summary of the assertions and the
measures that purport to quantify these assertions is presented in
Table 1. The measures are motivated more by these concepts and
not going bottom-up by fitting all the available data to statistical
models.

Table 1: Summary of organizational measures

Assertion Metric

The more people who touch the code the lower the
quality.

NOE

A large loss of team members affects the knowledge
retention and thus quality.

NOEE

The more edits to components the higher the
instability and lower the quality.

EF

The lower level is the ownership the better is the
quality.

DMO

The more cohesive are the contributors
(organizationally) the higher is the quality.

PO

The more cohesive is the contributions (edits) the
higher is the quality.

OCO

The more the diffused contribution to a binary the
lower is the quality.

OOW

The more diffused the different organizations
contributing code, the lower is the quality.

OIF

5. CASE STUDY AND RESULTS
In this section we describe our case study and results of our
experiments on Windows Vista. Section 5.1 describes our case
study set-up and a correlation analysis to identify the inter-
relationships between elements discussed in Section 4. Section 5.2
provides an overview of the institutional knowledge in Windows
to define and publish a baseline for prior engineer’s experience on
large legacy projects. Section 5.3 illustrates the building of
prediction models using the organizational metrics to predict
failure-proneness. Section 5.4 discusses the building of prediction
models using other metrics to compare against the model built
using organizational measures to predict failure-proneness.

5.1 Description
The organizational metrics defined in Section 4 are collected
relative to the release point of Vista. We obtained access to the
people management software at Microsoft that maintains
employee information like employee ids, email alias, start date at
Microsoft. We did not access any personally identifiable
information like nationality, age, sex etc. Using this information
we built a tree map of the organization structure as illustrated by
the example in Figure 1. To maintain an appropriate sense of scale
for the study we restrict ourselves to the analysis of Windows
Vista. We extracted from the version control system (VCS) for
Vista the code check-in information which includes check-in
history, date, size of check-in. Our quality variable is defined by
post-release failures. Post-release failures are measured for the
first six months of the release of the product. All organizational
changes were monitored for Vista development from the
beginning milestone for Vista on a fortnightly basis. The overall
data was collected for Vista was across 3404 binaries which
account for a code size greater than 50 Million Lines of Code
(LOC). A discussion of the correlation matrix between the various
elements and the inter-relationships between them can be found in
an extended version of this paper [28].

 5.2 Quantifying Organizational Knowledge
Often large commercial legacy systems have a substantial number
of engineers experienced in a prior version of the system who
architect and build the new versions. Unfortunately there has been
no empirical quantification on the proportion of experienced
engineers who work in the new version. The overall motivation of
this section is to quantify and publish the proportion of engineers
who worked in Windows Vista who had prior experience in an
earlier version of Windows. For this purpose we collected
organizational, people metrics and code check-in data from the
VCS for seven years to quantify the number of experienced
engineers working in Windows Vista. Our observations were:
a. 33% of the Vista engineers had contributed code to Windows

Server 2003 or Windows XP. This only includes engineers
whose code made it into the released version of Windows
server 2003 or Windows XP. Engineers that developed tests
or process software, for these releases of Windows, are
excluded from the analysis.

b. 61% of the engineers had managers who had contributed
code to Windows Server 2003 or Windows XP.

c. 37% of them had managers of managers who previously
contributed code to Windows.

d. Each legacy binary (i.e. binary that has shipped in an earlier
version of Windows) had an average of 31 engineers working
on it, of which 2 had checked in code on the same binary in

525

Windows Server 2003, 15 had checked in code on previous
versions of Windows. The remaining 14 engineers had not
checked released code into previous versions of Windows but
may have worked on other aspects of Windows, or have
checked code into other Microsoft products.

These results are across the complete development cycle of
Windows Vista in which several thousand engineers contributed
code. We plan on using this data to observe if there are any

differences in the organizational knowledge/experience for new
versions of Windows in the future. We also hope other external
companies can use these results to baseline their projects against
Windows. An interesting point to note is the significant difference
in values between point (a) and (b). This is explained by the fact
that over the course of time a number of the engineers who had
worked on XP/Server 2003 would have been promoted and would
now be managers in Vista, hence the significant difference.

5.3 Predicting Failure-Proneness
In order to determine if organizational metrics defined in section 4
are effective indicators/predictors of code quality we use the eight
organizational metrics as predictors in a logistic regression
equation to classify Windows Vista binaries as failure-prone or
not. Our dataset consists of the above defined 3404 binaries
exceeding 50 Million LOC where each binary has its eight
organizational metrics and post-release failures mapped. Failure-
proneness is the probability that a particular software element
(such as a binary) will fail in operation in the field. The higher the
failure-proneness, the higher the probability of experiencing a
post-release failure. To classify the binaries in Vista in two
categories, not failure-prone and failure-prone we define a
statistical lower confidence bound (LCB) on all failures. The
general form of a logistic regression equation is given as in
Equation 1:

Probability (π) =e(c+a1*X1+a2*X2+…) (1)

 1 + e (c+a1*X1+a2*X2+…)

where a1,a2 are the logistic regression predicted constants and the
X1,X2…are the independent variables used for building the
logistic regression mode. In our case the independent variables are
the eight organizational metrics. Binaries with failures lower than
the LCB are classified as not failure-prone and other binaries are
failure-prone.

An important question to address is whether all the eight
organizational metrics are required in building the model. To
address this we use two approaches.
(i) Step-wise regression [20]: Step-wise regression is a robust
technique compared to normal regression. The initial regression
model consists of the predictor having the single largest
correlation with the dependent variable. Subsequently, new
predictors are selected for addition into the model based on their
partial correlation with the predictors already in the model. With
each new set of predictors, the model is evaluated and predictors
that do not significantly contribute towards statistical significance
in terms of the F-ratio are removed so that, in the end, the best set
of predictors explaining the maximum possible variance is left. A
step-wise regression performed using the eight organizational
measures as the predictor variables and post-release failures as the
dependent variable did not yield any reduction in the number of
predictor variables (retaining all eight measures) indicating that
all eight organizational metrics were contribute towards
explaining the variance in accounting for the post-release failures.
(ii) Principal Component Analysis (PCA) [17]: When the
organizational measures are inter-correlated they can suffer from
multicollinearity [17] – i.e. over fitting of the data due to inter-
correlations between elements which can lead to inflated variance
in the prediction of failure-proneness. PCA can account for the
multicollinearity among the measures. With PCA, a small number
of uncorrelated linear combinations of metrics (that account for as

much sample variance as possible) are generated, such that the
transformed variables are independent. Running a PCA on the
eight organizational measures resulted in the generation of eight
principal components indicating that PCA does not reduce the
computation overhead in anyway by transforming the organization
measures into fewer factors which can be used as predictors.

From the above results of using PCA and step-wise regression we
can observe that all the eight organizational measures contribute
towards explaining the variance in the post-release failures (our
dependent variable) and hence we retain all eight measures to
build our logistic regression equation to predict failure-proneness.

We use the technique of data splitting [25] to measure the ability
of the organizational measures to predict failure-proneness. The
data splitting technique is employed to get an independent
assessment of how well the failure-proneness could be estimated
from a population sample. We randomly select two thirds (2268)
of the binaries to build the prediction model and use the remaining
one third (1136) to verify the prediction accuracy. If the predicted
failure-proneness probability is > 0.5 we call the binary failure-
prone, otherwise not failure-prone.

In order to determine the efficacy of the organizational metrics to
predict failure-prone binaries we compute precision and recall of
each random split. Zhang and Zhang indicate that due to having a
small number of defective modules in a sample, using the
probability of detection and the probability of false alarm
measures may lead to impractical prediction models [36]. They
suggest using precision and recall measures to measure the
accuracy of a software defect prediction model [36]. Table 2
shows the overall classification table produced for each random
split to assess how well the actual and estimated classifications for
the 1136 binaries match.

Table 2: Classification table

 Predicted

Not Failure-

prone
Failure-
prone

Not failure-
prone

a b
Actual

Failure-prone c d

Precision (P) is computed as the proportion of the predicted
failure-prone binaries that were correct, as calculated using the
equation 2:

db

d
P

+

=

 (2)

Recall(R) is the proportion of failure-prone binaries that were
correctly identified, as calculated using the equation 3:

dc

d
R

+

=

 (3)

Theoretically a perfect prediction has a precision=recall=1. In
order to address the issue of generalizability we repeated the

526

random split 50 times to ensure validity of the experiment. Figure
2 and 3 show the respective precision and recall values for the 50
random splits. The average precision across all 50 random splits
was 0.87 or 87% of the predicted failure-prone binaries that were
actually failure-prone. Similarly the average recall value was 0.84,
i.e. 84% is the proportion of failure-prone binaries that were
correctly identified. Also to quantify the sensitivity of the
prediction we ran a Spearman’s rank correlation between the
predicted failure-proneness probability values of the 1136 binaries
and actual post-release field failures. The more positive and
stronger the correlation the greater the sensitivity indicating that
binaries with a high value of predicted failure-proneness have a
high number of actual field failures. We repeated the correlation
for all the 50 random splits. Figure 4 shows the correlation values.
All the correlations were strong, positive and statistically
significant at 99% confidence indicating that as the predicted
failure-proneness increased the actual field failures also increased.

Figure 2: Precision values for 50 Random splits

Figure 3: Recall values for 50 Random splits

Figure 4: Spearman correlation for 50 Random splits

From the average precision and recall values and the correlation
results across 50 random splits along with the consistency of the
predictions evident from Figure 2, 3 and 4 across a large sample
of 3400+ binaries spread across 50 Million LOC we can observe
the efficacy of the organizational metrics to predict failure-
proneness in Windows Vista. The precision, recall values and
strength of correlations computed are substantially better than our
previous results [24-27] and recent results on predicting failures in
large systems [35].

5.4 Comparing Prediction Models
Prior research in software engineering has traditionally used code
churn, code complexity, code coverage, code dependencies and
pre-release defect measures to build prediction models to identify
failure-prone/fault-prone binaries. A summary of previous work in
these five areas was presented in Section 2. To compare how the
model built using organization metrics performs against models
built using code churn, code complexity, code coverage, code
dependencies and pre-release defect measures we collect five sets
of these measures at the release point of Windows Vista. The data
described below is used to build five comparable models. The
granularity of measurement of all data is at the level of binaries
across the Windows code base and post-release failures are
mapped back as earlier to each binary.

(i) Code Churn Model: A total of three churn measures are
collected.

a. Total Churn: Total added, modified and deleted lines of code
of a binary occurring during the development of Vista. The
churn is measured relative to Windows Server 2003, the
latest release before Vista.

b. Freq: The number of time that a binary was edited during its
development cycle. The implication is the greater the number
of edits then the greater the risk of failures.

c. Repeat Freq: The number of consecutive edits that are
performed on a binary. A consecutive edit is when the binary
is edited during build N and build N+1 and then between
builds N+1 and N+2. This is a measure of the instability of
the binary during its development, the greater the repeat
frequency then the greater the instability of the binary during
its development.

(ii) Code Complexity Model: A maximum (Max – at a
function/module level) and total (Total – at a binary level) of eight
complexity metrics to a total of 19 complexity values are collected
per binary. Windows code is predominantly non-OO (Object-
Oriented). Only Binaries that have OO code have the OO metrics
shown below measured. (Denoted by the notation– (if any)).

a. (Max)(Total) Cyclomatic complexity[21] measures the
number of linearly-independent paths through a program
module.

b. (Max)(Total) Fan-In: # of functions calling function f()

c. (Max)(Total) Fan-Out: # of functions called by function f()

d. (Max)(Total) Lines of Code (LOC)

e. (Max)(Total) Weighted methods per class (if any)

f. (Max)(Total) Depth of Inheritance (if any)

g. (Max)(Total) Coupling between objects (if any)

h. (Max)(Total) Number of sub classes (if any)

i. Total Global variables.

527

(iii) Dependencies Model: For code dependencies we measured
both data dependence and call dependence including dependence
information at the function level, including caller-callee
dependencies, imports, exports, RPC, COM, Registry access, etc.
For each binary (e.g. A.dll) we compute the following dependency
metrics.

a. Incoming direct : Number of incoming direct dependencies to
a binary A.dll

b. Incoming closure: Number of incoming indirect
dependencies to a binary A.dll

c. Outgoing direct: Number of outgoing direct dependencies to
a binary A.dll

d. Outgoing closure: Number of outgoing indirect dependencies
to a binary A.dll

e. Layer information: The architectural layering of Windows
computes the distance of a binary from the system hardware
(CPU) i.e. the Kernel.

(iv) Code coverage Model: We use the total block and arc
coverage measures (analogous to statement and branch coverage)
for each binary within Windows Vista.

a. Block coverage

b. Arc coverage

(v) Pre-release defects Model:

a. Number of pre-release bugs found during Vista’s
development, prior to its release.

We use the computation of precision and recall as defined in
Section 5.3 to determine the efficacy of identifying failure-prone
binaries across the entire system (3404 binaries, 50 + Million
LOC). Table 3 below shows the precision and recall value of the
classification models built using the five different types of data
sources compared to the organizational metrics model. From
Table 3 we observe that organizational structure metrics are
significantly better predictors for identifying failure-prone binaries
in terms of precision, and recall compared to models built using
code churn, code complexity, code coverage, code dependencies
and pre-release defect measures. For example comparing between
the precision for the models built by organizational metrics and
code churn we observe a difference of 7.6% which across our
sample size translates to several hundred more binaries being
correctly classified.

Table 3: Overall model accuracy using different software

measures

Model Precision Recall

Organizational

Structure

86.2% 84.0%

Code Churn 78.6% 79.9%

Code Complexity 79.3% 66.0%

Dependencies 74.4% 69.9%

Code Coverage 83.8% 54.4%

Pre-Release Bugs 73.8% 62.9%

6. THREATS TO VALDITY
Internal validity. In our study internal validity issues primarily
deal with the causal issues of our results. These concerns are
addressed to some extent due to the fact that the engineers in
Windows had no knowledge that this study was being performed
for them to artificially modify their behavior/coding practices or
organizational structure to affect our measurements. Further, two
of the authors belong to Microsoft Research, an organization
outside of Windows and the third author is not a Microsoft
employee. Hence there is no internal motivation to show results
either way to influence Windows. The experiment does suffer
from experimenter bias. To minimize this bias the second author
worked independently to collect and process the data and the first
and third authors independently analyzed the results.

Construct validity. Construct validity issues arise when there are
errors in measurement. This is negated to an extent by the fact that
the entire data collection process of the organizational metrics,
failures and VCS is automated. These concerns are also alleviated
to some extent by the cross check among the organizational
measures to identify abnormal values for any of the measures (in
addition to the manual checking of the dataset for inconsistencies
if any), and by the large size and diversity of our dataset.

External validity. External validity issues may arise from the fact
that all the data is from one software system (albeit one with many
different binaries) and that the software is very large as other
software systems used for a similar analysis may not be of
comparable size. To address this issue the analysis was replicated
on a reduced set basis to determine the type and size of
organization structure required to be able to use the same
approach. The results indicate that a team of size 30 engineers and
three levels of depth should be sufficient to collect the
organizational metrics to predict failure-proneness. We plan to
replicate this experiment in smaller organizations at Microsoft to
explore this further.

7. CONCLUSION AND FUTURE WORK
In this paper we have reported on our empirical investigation of
organizational metrics from the perspective of software quality.
We define a set of organizational measures that quantify the
complexity of a software development organization. The
organizational measures are then used to quantify and study the
effect that an organization structure would have on software
quality. More generally, it is beneficial to obtain early estimates of
software quality (e.g. failure-proneness) to help inform decisions
on testing, code inspections, design rework, as well as financial
costs associated with a delayed release. Our organizational
measures predict failure-proneness in Windows Vista with
significant precision, recall and sensitivity. Our study also
compares the prediction models built using organizational metrics
against traditional code churn, code complexity, code coverage,
code dependencies and pre-release defect measures to show that
organizational metrics are better predictors of failure-proneness
than the traditional metrics used so far.

Drawing general conclusions from empirical studies in software
engineering is difficult because any process depends to a large
degree on a potentially large number of relevant context variables
[3]. For this reason, we cannot assume a priori that the results of a
study generalize beyond the specific environment in which it was
conducted [3]. Researchers become more confident in a theory
when similar findings emerge in different contexts [3]. Since this

528

study was performed on the Windows operating system we plan to
replicate this study in other organizations within and outside of
Microsoft. There has been preliminary interest in collaborating
with the Fraunhofer research institute to replicate this study in
other companies. At Microsoft groups have begun investigating
the organizational structure of teams to study their impact on
quality.

We also plan to investigate this line of research from the context
of open source teams where virtual organizations exist to quantify
appropriate organizational measures and study their effect on
quality. Two other areas of future work is to study such
organizational metrics in the context of global software
development [13], and collaborate with cognitive psychologists
and organizational behavior researchers to look at social and
cognitive aspects of our work by doing observational studies of
engineers. We also plan to compare our empirical quantification
of the organizational experience/knowledge of Windows to
compare and contrast with data from other companies to
supplement the observational studies. A more detailed empirical
discussion of the development of the metrics via GQM [2] is also
planned.

Acknowledgements
We would like to thank Windows senior management for giving
us access to the employee information database. We would like to
thank Tom Ball and Jim Larus for discussions and feedback on
our work.

REFERENCES
[1] V. Basili, Briand, L., Melo, W., “A Validation of Object

Oriented Design Metrics as Quality Indicators”, IEEE

Transactions on Software Engineering, 22(10), pp. 751 -
761, 1996.

[2] V. Basili, G. Caldiera, and D. H. Rombach, “The Goal
Question Metric Paradigm,” in Encyclopedia of Software

Engineering, Vol. 2: John Wiley and Sons, Inc., pp. 528-532,
1994.

[3] V. Basili, Shull, F., Lanubile, F., “Building Knowledge
through Families of Experiments”, IEEE Transactions on

Software Engineering, 25(4), pp.456-473, 1999.

[4] S. Biyani, Santhanam, P., “Exploring defect data from
development and customer usage on software modules over
multiple releases”, Proceedings of International Symposium
on Software Reliability Engineering, pp. 316-320, 1998.

[5] L. C. Briand, Wuest, J., Ikonomovski, S., Lounis, H.,
“Investigating quality factors in object-oriented designs: an
industrial case study”, Proceedings of International
Conference on Software Engineering, pp. 345-354, 1999.

[6] F. P. Brooks, The Mythical Man-Month, Anniversary Edition:
Addison-Wesley Publishing Company, 1995.

[7] S. R. Chidamber, Kemerer, C.F., “A Metrics Suite for Object
Oriented Design”, IEEE Transactions on Software

Engineering, 20(6), pp. 476-493, 1994.

[8] M. E. Conway, “How Do Committees Invent?” Datamation,
14(4), pp. 28-31, 1968.

[9] T. DeMarco and T. Lister, Peopleware. New York: Dorset
House Publishers, 1977.

[10] G. Denaro, Pezze., M, “An empirical evaluation of fault-
proneness models”, Proceedings of International
Conference on Software Engineering, pp. 241-251, 2002.

[11] P. Frankl, Weiss, S., “An Experimental Comparison of the
Effectiveness of Branch Testing and Data Flow Testing”,
IEEE Transactions in Software Engineering, 19(8), pp. 774 -
787, 1993.

[12] T. L. Graves, Karr, A.F., Marron, J.S., Siy, H., “Predicting
Fault Incidence Using Software Change History”, IEEE

Transactions in Software Engineering, 26(7), pp. 653 - 661,
2000.

[13] J. D. Herbsleb, Grinter, R. E., “Splitting the Organization and
Integrating the Code: Conway's Law Revisited”,
Proceedings of International Conference on Software
Engineering, pp. 85-95, 1999.

[14] J. D. Herbsleb, Grinter, R. E., “Architectures, coordination,
and distance: Conway's Law and beyond”, IEEE Software,
16(5), pp. 63-70, 1999.

[15] J. D. Herbsleb, Mockus, A., “Formulation and preliminary
test of an empirical theory of coordination in software
engineering”, Proceedings of European Software
Engineering Conference/Foundations in Software
Engineering, pp. 138-147, 2003.

[16] M. Hutchins, Foster, H., Goradia, T., Ostrand, T.,
“Experiments of the effectiveness of dataflow- and control
flow-based test adequacy criteria”, Proceedings of
International Conference on Software Engineering, pp. 191-
200, 1994.

[17] E. J. Jackson, A User's Guide to Principal Components: John
Wiley & Sons, Inc., 1991.

[18] T. M. Khoshgoftaar, Allen, E.B., Goel, N., Nandi, A.,
McMullan, J., “Detection of Software Modules with high
Debug Code Churn in a very large Legacy System”,
Proceedings of International Symposium on Software
Reliability Engineering, pp. 364-371, 1996.

[19] T. M. Khoshgoftaar, Szabo, R.M., “Improving Code Churn
Predictions During the System Test and Maintenance
Phases”, Proceedings of IEEE International Conference on
Software Maintenance, pp. 58-67, 1994.

[20] D. G. Kleinbaum, Kupper, L.L., Muller, K.E., Applied

Regression Analysis and Other Multivariable Methods.
Boston: PWS-KENT Publishing Company, 1987.

[21] T. J. McCabe, “A Complexity Measure”, IEEE Transactions

on Software Engineering, 2(4), pp. 308-320, 1976.

[22] A. Mockus, Fielding, R.T., Herbsleb, J., “Two case studies of
open source software development: Apache and Mozilla”,
ACM Transactions on Software Engineering and

Methodology, 11(3), pp. 309 - 346, 2002.

[23] A. Mockus, Zhang, P., Li, P., “Drivers for customer
perceived software quality”, Proceedings of International
Conference on Software Engineering, pp. 225-233, 2005.

[24] N. Nagappan, Ball, T., “Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study”, Proceedings of International Symposium on
Empirical Software Engineering, pp. 364-373, 2007.

[25] N. Nagappan, Ball, T., “Use of Relative Code Churn
Measures to Predict System Defect Density”, Proceedings

529

of International Conference on Software Engineering, pp.
284-292, 2005.

[26] N. Nagappan, Ball, T., Murphy, B., “Using Historical In-
Process and Product Metrics for Early Estimation of
Software Failures”, Proceedings of International
Symposium on Software Reliability Engineering, pp. 62-74,
2006.

[27] N. Nagappan, Ball, T., Zeller, A., “Mining metrics to predict
component failures”, Proceedings of International
Conference on Software Engineering, pp. 452-461, 2006.

[28] N. Nagappan, Murphy, B., Basili, V., “The Influence of
Organizational Structure On Software Quality: An Empirical
Case Study,” Microsoft Research Technical Report
(http://research.microsoft.com), MSR-TR-2008-11, 2008.

[29] L. J. Osterweil, “Software Processes Are Software Too”,
Proceedings of International Conference on Software
Engineering, pp. 2-13, 1987.

[30] T. Ostrand, Weyuker, E., Bell, R.M., “Predicting the location
and number of faults in large software systems”, IEEE

Transactions in Software Engineering, 31(4), pp. 340 - 355,
2005.

[31] T. J. Ostrand, Weyuker, E.J, Bell, R.M., “Where the Bugs
Are”, Proceedings of the 2004 ACM SIGSOFT

International Symposium on Software Testing and Analysis,
pp. 86-96, 2004.

[32] D. Parnas, “On the Criteria to be Used in Decomposing
Systems into Modules”, Communications of the ACM, 15(2),
pp. 1053-1058, 1972.

[33] D. E. Perry, Staudenmayer, N. A., Votta, L., “People,
Organizations, and Process Improvement”, IEEE Software,
11(4), pp. 36-65, 1994.

[34] A. Pogdurski, Clarke, L.A., “A Formal Model of Program
Dependences and its Implications for Software Testing,
Debugging, and Maintenance”, IEEE Transactions in

Software Engineering, 16(9), pp. 965-979, 1990.

[35] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting
Component Failures at Design Time,” Proceedings of
International Symposium on Empirical Software
Engineering, pp. 18-27, 2006.

[36] H. Zhang, Zhang, X., “Comments on “Data Mining Static
Code Attributes to Learn Defect Predictors”“, IEEE

Transactions in Software Engineering, 33(9), pp. 635-636,
2007.

[37] T. Zimmermann, Weißgerber, P., Diehl, S., Zeller, A.,
“Mining Version Histories to Guide Software Changes”,
IEEE Transactions in Software Engineering, 31(6), pp. 429-
445, 2005.

530

