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ABSTRACT 
Often software systems are developed by organizations consisting 
of many teams of individuals working together. Brooks states in 
the Mythical Man Month book that product quality is strongly 
affected by organization structure. Unfortunately there has been 
little empirical evidence to date to substantiate this assertion. In 
this paper we present a metric scheme to quantify organizational 
complexity, in relation to the product development process to 
identify if the metrics impact failure-proneness. In our case study, 
the organizational metrics when applied to data from Windows 
Vista were statistically significant predictors of failure-proneness. 
The precision and recall measures for  identifying failure-prone 
binaries, using the organizational metrics, was significantly higher 
than using traditional metrics like churn, complexity, coverage, 
dependencies, and pre-release bug measures that have been used 
to date to predict failure-proneness. Our results provide empirical 
evidence that the organizational metrics are related to, and are 
effective predictors of failure-proneness. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Software Metrics – complexity 

measures, performance measures, process metrics, product 

metrics.  

General Terms 
Measurement, Reliability, Human Factors. 

Keywords 
Organizational structure, Failures, Code churn, Developers, 
Software mining, Empirical studies. 

 

1. INTRODUCTION 
Software engineering is a complex engineering activity. It 
involves interactions between people, processes, and tools to 
develop a complete product. In practice, commercial software 
development is performed by teams consisting of a number of 
individuals ranging from the tens to the thousands. Often these 
people work via an organizational structure reporting to a manager 
or set of managers.  

The intersection of people [9], processes [29] and organization 
[33] and the area of identifying problem prone components early 
in the development process using software metrics (e.g. [12, 23, 
27, 30]) has been studied extensively in recent years. Early 
indicators of software quality are beneficial for software engineers 
and managers in determining the reliability of the system, 
estimating and prioritizing work items, focusing on areas that 
require more testing, inspections and in general identifying 
“problem-spots” to manage for unanticipated situations. Often 
such estimates are obtained from measures like code churn, code 
complexity, code coverage, code dependencies, etc. But these 
studies often ignore one of the most influential factors in software 
development, specifically “people and organizational structure”.  
This interesting fact serves as our main motivation to understand 
the intersection between organizational structure and software 
quality: How does organizational complexity influence quality? 

Can we identify measures of the organizational structure? How 

well do they do at predicting quality, e.g., do they do a better job 

of identifying problem components than earlier used metrics? 

Conway’s Law states that “organizations that design systems are 
constrained to produce systems which are copies of the 
communication structures of these organizations.” [8]. Similarly, 
Fred Brooks argues in the Mythical Man Month [6] that the 
product quality is strongly affected by org structure. With the 
advent of global software development where teams are 
distributed across the world the impact of organization structure 
on Conway’s law [14] and its implications on quality is 
significant. To the best of our knowledge there has been little or 
no empirical evidence regarding the relationship/association 
between organizational structure and direct measures of software 
quality like failures.  

In this paper we investigate this relationship between 
organizational structure and software quality by proposing a set of 
eight measures that quantify organizational complexity. These 
eight measures provide a balanced view of organizational 
complexity from the code viewpoint. For the organizational 
metrics, we try to capture issues such as organizational distance of 
the developers; the number of developers working on a 
component; the amount of multi-tasking developers are doing 
across organizations; and the amount of change to a component 
within the context of that organization etc. from a quantifiable 
perspective. Using these measures we empirically evaluate the 
efficacy of the organizational metrics to identify failure-prone 
binaries in Windows Vista.  

The organization of the rest of the paper is as follows. Section 2 
describes the related work focusing on prior work on 
organizational structure and predicting defects/failures. Section 3 
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highlights our contribution and Section 4 describes the 
organizational metric suite. Section 5 presents our case study and 
the results of our investigation on the relationship between 
organizational metrics and quality. Section 6 discusses the threats 
to validity and section 7 the conclusions and future work. 

2. RELATED WORK 
Our discussion of related work falls into one of the following two 
categories: Organizational research from the software perspective 
and predicting faults/failures.  

2.1 Software Organizational Studies 
From the historical perspective, Fred Brooks in his classic book 
The Mythical Man Month [6] provides an analogy in the chapter 
on Why did the (mythical) Tower of Babel Fail? The observation 
being that, the people had (1) a clear mission; (2) manpower; (3) 
(raw) materials; (4) time and (5) technology. The project failed 
because of – communication, and its consequent organization [6]. 
Brooks further states that in software systems: schedule disasters, 
functional misfits and system bugs arise from a lack of 
communication between different teams. Quoting Brooks[6] “The 

purpose of organization is to reduce the amount of communication 

and coordination necessary; hence organization is a radical 

attack on the communication problems…”. In 1968 Conway [8] 
also observed from his study (organizations produce designs 
which are copies of the communication structures of these 
organizations) that the flexibility of an organization is important 
to effective design [8]. He further went on to say that ways must 
be found to reward design managers for keeping their 
organizations lean and flexible indicating the importance of 
organization on design quality [8]. In a similar vein, Parnas [32] 
also indicated that a software module is “a responsibility 
assignment rather than a subprogram” indicating the importance 
of organizational structure in the software industry. 

We summarize here recent work from the perspective of 
organizational structure towards communication and coordination. 
Herbsleb and Grinter [13] look at Conway’s law from the 
perspective of global software development. Their paper explores 
global software development from a team organizational context 
based on teams working in Germany and UK.  They provide 
recommendations based on their empirical case study for the 
associated problems geographically distributed organizations face 
with respect to communication barriers and coordination 
mechanisms. They observed the primary barriers to team 
coordination were lack of unplanned contact; knowing the right 
person to contact about specific issues; cost of initiating the 
contact; effective communication and lack of trust. Further 
Herbsleb and Mockus [15] formulate and evaluate an empirical 
theory (of coordination) towards understanding engineering 
decisions from the viewpoint of coordination within software 
projects. This paper is one of the closest in scale, size and 
motivation to our study, though our study focuses on predicting 
quality using the organization metrics (with the underlying 
relationship between organizational structure and coordination). 
Also Mockus et al. [22] investigate how different individuals 
across geographical boundaries contribute towards open source 
projects (Apache and Mozilla). Perry et al. [33] discuss and 
motivate the need to consider the larger development picture, 
which encompasses organizational and social as well as 
technological factors. They discuss quantitatively measuring 
people factors and report on the result of two experiments, one 

which is a self-reported diary of developer activities and the 
second an observational study of developer activities. These two 
experiments also were used to asses the efficacy of each technique 
towards quantifying people factors.  

2.2 Software Metrics and Faults/Failures 
In this section we summarize some of the related work regarding 
metrics and faults/failures. Relevant studies on Microsoft systems 
are also presented providing context and for comparison to our 
current work. We organize our work based on the type of metrics 
that have been studied for fault/failures prediction. 

Code Churn: Graves et al. [12] predict fault incidences using 
software change history based on a weighted time damp model 
using the sum of contributions from all changes to a module, 
where large and/or recent changes contribute the most to fault 
potential [12]. Ostrand et al. [31] use information of file status 
such as new, changed, unchanged files along with other 
explanatory variables such as lines of code, age, prior faults etc. as 
predictors in a negative binomial regression equation to 
successfully predict (high accuracy for faults found in both early 
and later stages of development) the number of faults in a multiple 
release software system. Nagappan and Ball [25] in a prior study 
on Windows Server 2003 showed the use of relative code churn 
measures (relative churn measures are normalized values of the 
various measures obtained during the evolution of the system) to 
predict defect density at strong statistically significant levels. 
Zimmermann et al. [37] mined source code repositories of eight 
large scale open source systems (IBM Eclipse, Postgres, KOffice, 
gcc, Gimp, JBoss, JEdit and Python) to predict where future 
changes will take place in these systems. The top three 
recommendations made by their system identified a correct 
location for future change with an accuracy of 70%. 

Code Complexity: Khoshgoftaar et al. [18] studied two 
consecutive releases of a large legacy system (containing over 
38,000 procedures in 171 modules) for telecommunications. 
Discriminant analysis identified fault-prone modules based on 16 
static software product metrics. Their model when used on the 
second release showed a type I and II misclassification rate of 
21.7%, 19.1% respectively and an overall misclassification rate of 
21.0%. From the O-O (object-oriented) perspective the CK metric 
suite [7] consist of six metrics (designed primarily as object 
oriented design measures): weighted methods per class (WMC), 
coupling between objects (CBO), depth of inheritance (DIT), 
number of children (NOC), response for a class (RFC) and lack of 
cohesion among methods (LCOM). The CK metrics have also 
been investigated in the context of fault-proneness. Basili et al. [1] 
studied the fault-proneness in software programs using eight 
student projects. They observed that the WMC, CBO, DIT, NOC 
and RFC were correlated with defects while the LCOM was not 
correlated with defects. Further, Briand et al. [5] performed an 
industrial case study and observed the CBO, RFC, and  LCOM to 
be associated with the fault-proneness of a class. Within five 
Microsoft projects, Nagappan et al. [27] identified complexity 
metrics that predict post-release failures and reported how to 
systematically build predictors for post-release failures from 
history. 

Code Dependencies: Pogdurski and Clarke [34] presented a 
formal model of program dependencies as the relationship 
between two pieces of code inferred from the program text. 
Schröter et al. [35] showed that import dependencies can predict 
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defects. They proposed an alternate way of predicting failures for 
Java classes. Rather than looking at the complexity of a class, they 
looked exclusively at the components that a class uses. For 
Eclipse, the open source IDE they found that using compiler 
packages results in a significantly higher failure-proneness (71%) 
than using GUI packages (14%). Prior work at Microsoft [24] on 
the Windows Server 2003 system illustrates that code 
dependencies can be used to successfully identify failure-prone 
binaries with precision and recall values of around 73% and 75% 
respectively.  

Code Coverage: Hutchins et al. [16] evaluate all-edges and all-
uses coverage criteria using an experiment with 130 fault seeded 
versions of seven programs and observed that test sets achieving 
coverage levels over 90% usually showed significantly better fault 
detection than randomly chosen test sets of the same size. In 
addition, significant improvements in the effectiveness of 
coverage-based tests usually occurred as coverage increased from 
90% to 100%. Frankl and Weiss [11] evaluated all-edges and all-
uses coverage using nine subject programs. Error-exposing ability 
was shown to be positive and strongly correlated to percentage of 
covered definition-use associations in four of the nine subjects. 
Error exposing ability was also shown to be positively correlated 
with the percentage of covered edges in four (different) subjects, 
but the relationship was weaker.  

Combination of metrics: Denaro et al. [10] calculated 38 
different software metrics (lines of code, halstead software 
metrics, nesting levels, cyclomatic complexity, knots, number of 
comparison operators, loops etc.) for the open source Apache 1.3 
and Apache 2.0 projects. Using logistic regression models built 
using the data collected from the Apache 1.3 they verified the 
models against the Apache 2.0 project with high 
correctness/completeness. Khoshgoftaar et al. [19] use code churn 
as a measure of software quality in a program of 225,000 lines of 
assembly language. Using eight complexity measures, including 
code churn, they found neural networks and multiple regression to 
be an efficient predictor of software quality, as measured by gross 
change in the code. Nagappan et al. [26] used code churn, code 
complexity and code coverage measures to predict post-release 
field failures in Windows Server 2003 using logistic regression 
models built with Windows XP data. The built models identify 

failure-prone binaries with a statistically significant positive and 
strong correlation between actual and estimated failures. 

Pre-release bugs: Biyani and Santhanam [4] show for four 
industrial systems at IBM there is a very strong relationship 
between development defects per module and field defects per 
module. This allows building of prediction models based on 
development defects to identify field defects. 

3. CONTRIBUTIONS 
 
Our work extends the state of the art in the following ways. 

1. The introduction, definition and use of an organizational 
metric suite specifically targeted at the software domain. 

2. A methodology to systematically build predictors for failure-
proneness using organizational structure metrics.  

3. An investigation of whether organizational metrics are better 
predictors of failure-proneness compared to traditional code 
churn, code complexity, code dependencies, code coverage 
and pre-release defects.  

4. It quantifies institutional knowledge in terms of developer 
experience on prior versions of Windows to define a baseline 
for other systems and applications outside of Microsoft. 

5. It is one of the largest studies of commercial software—in 
terms of code size (> 50 Million lines of code), team sizes 
(several thousand), and software users (several Million). 

4. ORGANIZATIONAL METRICS 
In this section we will explain the organizational metrics that were 
developed for the purpose of our study. These metrics and their 
interactions were refined using the G-Q-M (Goal-Question-
Metric) approach [2]. To explain the measures better we use a 
pseudo example shown in Figure 1 to represent the organizational 
structure of a company “XYZ”. 

Context: As a background to our example consider the 
measurement of the organizational metrics for a binary A.dll 
developed by company “XYZ”. Over the course of its 
development prior to its release, the total number of edits for the 
 

Figure 1: Example Organization Structure of Company “XYZ” 
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files that were compiled into A.dll is 250. In Figure 1, Person A is 
the overall head of the company and manages the 100 person 
organization. Person AB manages a 30 person organization, AC 
manages a 40 person organization, AD manages a 30 person 
organization representing the three organizations within the 
company. The rest of the sub-managers, frontline engineers are 
also shown in Figure 1. We now define the eight organizational 
measures to quantify the organization complexity of company 
“XYZ” from the perspective of software development: in our case 
binary A.dll. 

1. Number of Engineers (NOE): This is the absolute number of 
unique engineers who have touched a binary and are still 
employed by the company. 
Implication: The more people who touch the code, the higher the 
chances of defective code as there is a higher need for 
coordination amongst the engineers[6]. Brooks [6] states that if 
there are N engineers who touch a piece of code there needs to be 
(N*(N-1))/2 theoretical communication paths for the N engineers 
to communicate amongst themselves. In our case if there is a large 
number of engineers who work on a particular binary there may 
be miscommunication between those engineers leading to design 
mismatches, breaking another engineers code (build breaks), and 
problem understanding design rationale. 
Example: In this example this is a straight forward measurement 
of 32 engineers extracted from the version control system (VCS). 

2. Number of Ex-Engineers (NOEE): This is the total number of 
unique engineers who have touched a binary and have left the 
company as of the release date of the software system (in our case 
A.dll). 
Implications: This measure deals with knowledge transfer. If the 
employee(s) who worked on a piece of code leaves the company 
then there is a likelihood that the new person taking over might 
not be familiar with the design rationale, the reasoning behind 
certain bug fixes, and information about other stake holders in the 
code.  
Example: This measure too is a straight forward value extracted 
from the VCS and checking against the org structure. In this 
example there were zero ex-engineers.  

3. Edit Frequency (EF): This is the total number times the source 
code, that makes up the binary, was edited. An edit is when an 
engineer checks code out of the VCS, alters it and checks it back 
in again. This is independent of the number of lines of code 
altered during the edit.  
Implications: This measure serves two purposes. One being that, 
if a binary had too many edits it could be an indicator of the lack 
of stability/control in the code from the different perspectives of 
reliability, performance etc. , this is even if a small number of 
engineers where making the majority of the edits. Secondly, it 
provides a more complete view of the distribution of the edits: did 
a single engineer make majority of the edits, or were they widely 
distributed amongst the engineers?. The EF cross balances with 
NOE and NOEE to make sure that a few engineers making all the 
edits do not inflate our measurements and ultimately affect our 
predict model. Also if the engineers who made most of the edits 
have left the company (NOEE) then it can lead to the above 
discussed issues of knowledge transfer. 
Example: In our example the edit frequency is 250 also extracted 
from the VCS. 

4. Depth of Master Ownership (DMO): This metric determines 
the level of ownership of the binary depending on the number of 

edits done. The organization level of the person whose reporting 
engineers perform more than 75% of the rolled up edits is deemed 
as the DMO. The DMO metric determines the binary owner based 
on activity on that binary. Our choice of 75% is based on prior 
historical information on Windows to quantify ownership.  
Implications: The deeper in the tree is the ownership the more 
focused the activities, communication, and responsibility. A 
deeper level of ownership indicates less diffusion of activities, a 
single point of approval/control which should improve intellectual 
control. If a binary does not have a clear owner (or has a very low 
DMO at which 75% of the edits toll up) then there could be issues 
regarding decision-making when performing a risky bug fix, lack 
of engineers to follow-up if there is an issue, understanding 
intersecting code dependencies etc. A management owner who 
has not made a large number of edits (i.e. not familiar with the 
code) may not be able to make the above decisions without 
affecting code quality.  
Example: In our above example more than 75% of the edits roll 
up to the engineer ABCA (190 edits out of a total of 250). Hence 
the DMO measure in this case is 2 (level 0 is AB, AC and AD; 
Level 1 is ABA to ADA. Person A being the top person is not 
involved in the technical day to day activities). The overall org 
owner for this org is AB.  

5. Percentage of Org contributing to development (PO): The 
ratio of the number of people reporting at the DMO level owner 
relative to the Master owner org size. 
Implications: The lower the percentage the more local is the 
ownership and contributions to the binary leading to lower 
coordination/communication overhead across organizations and 
improved synchronization amongst individuals, better intellectual 
control and provide a single point of contact. This metric 
minimizes the impact of an unbalanced organization, whereby the 
DMO may be two levels deep but 90% of the total organization 
reports into that DMO. 
Example: In our example this ratio is (7/30)*100. Seven 
engineers report to ABCA and the org to which ABCA belongs to 
is of size 30. 

6. Level of Organizational Code Ownership (OCO): The 
percent of edits from the organization that contains the binary 
owner or if there is no owner then the organization that made the 
majority of the edits to that binary.  
Implications: The more the development contributions belong to 
a single organization, the more they share a common culture, 
focus, and social cohesion. The more diverse the contributors to 
the code itself, the higher the chances of defective code, e.g., 
synchronization issues, mismatches, build breaks.  If a binary has 
a defined owner then this measure identifies whether the 
remaining edits to the binary was performed by people in the same 
organization (common culture). This measure is particularly 
important when a binary does not have a defined owner, as it 
provides a measure of how much control any single organization 
has over the binary. Also if there is a large PO value due to 
several of the engineers only having worked on the binary a few 
times the OCO measure will counter-balance that taking into 
account the development activities in terms of the edits. 
Example: This ratio is 200/ (200+40+10). 200 is the highest 
proportion of edits made in org reporting to AB. This ratio is 
computed against the total edits of 200+40+10 across all the three 
orgs. 
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7. Overall Organization Ownership (OOW): This is the ratio of 
the percentage of people at the DMO level making edits to a 
binary relative to total engineers editing the binary. A high value 
is good. 
Implications: As with previous ownership measures the more the 
activities belong to a single organization, the more they share a 
common culture, focus, and social cohesion. Furthermore, the 
bigger the organizational distance the more chance there is of 
miscommunication and misunderstanding of goals focus, etc. This 
measure counter balances OCO and PO to account for a common 
phenomenon in large teams that exist due to “super” engineers. 
These engineers have considerable experience in the code base 
and contribute a substantial amount of code to the system. We do 
not want one or a few such engineers influencing our measures 
nor do we want them to be ignored. PO, OCO and OOW account 
for this type of inter relationship.   
Example: In our example we observe that five engineers 
contributed code reporting to the manager ABCA. There were a 
total of 32 editing engineers contributing code to this binary 
across the orgs. Hence the percentage of engineers in org is 5/32. 

8. Organization Intersection Factor (OIF): A measure of the 
number of different organizations that contribute greater than 10% 
of edits, as measured at the level of the overall org owners. 
Implications: Greater is the OIF the more diffused is the 
contribution to a binary. This implies a lack of strong ownership 
from one particular org. This measure is particularly important 
when a binary has no owner as it identifies how diffused the 
ownership is across the total organization.  
Example: In our example, there are totally 250 edits. 10% of this 
is 25 edits. We observe that all the two organizations under the 
Master owner (AB, AC) contributed more than 25 edits. Therefore 
the OIF here is 2. Ideally a lower value is considered to be better.  

The measures proposed here attempt to balance the various 
assertions about how organizational structure can influence the 
quality of the binary, some of which seem to represent opposing 
positions. A high level summary of the assertions and the 
measures that purport to quantify these assertions is presented in 
Table 1. The measures are motivated more by these concepts and 
not going bottom-up by fitting all the available data to statistical 
models. 

Table 1: Summary of organizational measures 

Assertion Metric 

The more people who touch the code the lower the 
quality. 

NOE 

A large loss of team members affects the knowledge 
retention and thus quality. 

NOEE 

The more edits to components the higher the 
instability and lower the quality. 

EF 

The lower level is the ownership the better is the 
quality. 

DMO 

The more cohesive are the contributors 
(organizationally) the higher is the quality. 

PO 

The more cohesive is the contributions (edits) the 
higher is the quality. 

OCO 

The more the diffused contribution to a binary the 
lower is the quality. 

OOW 

The more diffused the different organizations 
contributing code, the lower is the quality. 

OIF 

5. CASE STUDY AND RESULTS 
In this section we describe our case study and results of our 
experiments on Windows Vista. Section 5.1 describes our case 
study set-up and a correlation analysis to identify the inter-
relationships between elements discussed in Section 4. Section 5.2 
provides an overview of the institutional knowledge in Windows 
to define and publish a baseline for prior engineer’s experience on 
large legacy projects. Section 5.3 illustrates the building of 
prediction models using the organizational metrics to predict 
failure-proneness. Section 5.4 discusses the building of prediction 
models using other metrics to compare against the model built 
using organizational measures to predict failure-proneness.  

5.1 Description 
The organizational metrics defined in Section 4 are collected 
relative to the release point of Vista. We obtained access to the 
people management software at Microsoft that maintains 
employee information like employee ids, email alias, start date at 
Microsoft. We did not access any personally identifiable 
information like nationality, age, sex etc. Using this information 
we built a tree map of the organization structure as illustrated by 
the example in Figure 1. To maintain an appropriate sense of scale 
for the study we restrict ourselves to the analysis of Windows 
Vista. We extracted from the version control system (VCS) for 
Vista the code check-in information which includes check-in 
history, date, size of check-in. Our quality variable is defined by 
post-release failures. Post-release failures are measured for the 
first six months of the release of the product. All organizational 
changes were monitored for Vista development from the 
beginning milestone for Vista on a fortnightly basis. The overall 
data was collected for Vista was across 3404 binaries which 
account for a code size greater than 50 Million Lines of Code 
(LOC). A discussion of the correlation matrix between the various 
elements and the inter-relationships between them can be found in 
an extended version of this paper [28]. 

 5.2 Quantifying Organizational Knowledge 
Often large commercial legacy systems have a substantial number 
of engineers experienced in a prior version of the system who 
architect and build the new versions. Unfortunately there has been 
no empirical quantification on the proportion of experienced 
engineers who work in the new version. The overall motivation of 
this section is to quantify and publish the proportion of engineers 
who worked in Windows Vista who had prior experience in an 
earlier version of Windows. For this purpose we collected 
organizational, people metrics and code check-in data from the 
VCS for seven years to quantify the number of experienced 
engineers working in Windows Vista. Our observations were: 
a. 33% of the Vista engineers had contributed code to Windows 

Server 2003 or Windows XP. This only includes engineers 
whose code made it into the released version of Windows 
server 2003 or Windows XP. Engineers that developed tests 
or process software, for these releases of Windows, are 
excluded from the analysis.   

b. 61% of the engineers had managers who had contributed 
code to Windows Server 2003 or Windows XP. 

c. 37% of them had managers of managers who previously 
contributed code to Windows.  

d. Each legacy binary (i.e. binary that has shipped in an earlier 
version of Windows) had an average of 31 engineers working 
on it, of which 2 had checked in code on the same binary in 
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Windows Server 2003, 15 had checked in code on previous 
versions of Windows. The remaining 14 engineers had not 
checked released code into previous versions of Windows but 
may have worked on other aspects of Windows, or have 
checked code into other Microsoft products.  

These results are across the complete development cycle of 
Windows Vista in which several thousand engineers contributed 
code. We plan on using this data to observe if there are any 

differences in the organizational knowledge/experience for new 
versions of Windows in the future. We also hope other external 
companies can use these results to baseline their projects against 
Windows. An interesting point to note is the significant difference 
in values between point (a) and (b). This is explained by the fact 
that over the course of time a number of the engineers who had 
worked on XP/Server 2003 would have been promoted and would 
now be managers in Vista, hence the significant difference. 

5.3 Predicting Failure-Proneness 
In order to determine if organizational metrics defined in section 4 
are effective indicators/predictors of code quality we use the eight 
organizational metrics as predictors in a logistic regression 
equation to classify Windows Vista binaries as failure-prone or 
not. Our dataset consists of the above defined 3404 binaries 
exceeding 50 Million LOC where each binary has its eight 
organizational metrics and post-release failures mapped. Failure-
proneness is the probability that a particular software element 
(such as a binary) will fail in operation in the field. The higher the 
failure-proneness, the higher the probability of experiencing a 
post-release failure. To classify the binaries in Vista in two 
categories, not failure-prone and failure-prone we define a 
statistical lower confidence bound (LCB) on all failures. The 
general form of a logistic regression equation is given as in 
Equation 1: 

Probability (π ) =e(c+a1*X1+a2*X2+…)                                              (1) 

                        1 + e (c+a1*X1+a2*X2+…)                                      

where a1,a2 are the logistic regression predicted constants and the 
X1,X2…are the independent variables used for building the 
logistic regression mode. In our case the independent variables are 
the eight organizational metrics. Binaries with failures lower than 
the LCB are classified as not failure-prone and other binaries are 
failure-prone. 

An important question to address is whether all the eight 
organizational metrics are required in building the model. To 
address this we use two approaches.  
(i) Step-wise regression [20]: Step-wise regression is a robust 
technique compared to normal regression. The initial regression 
model consists of the predictor having the single largest 
correlation with the dependent variable. Subsequently, new 
predictors are selected for addition into the model based on their 
partial correlation with the predictors already in the model. With 
each new set of predictors, the model is evaluated and predictors 
that do not significantly contribute towards statistical significance 
in terms of the F-ratio are removed so that, in the end, the best set 
of predictors explaining the maximum possible variance is left. A 
step-wise regression performed using the eight organizational 
measures as the predictor variables and post-release failures as the 
dependent variable did not yield any reduction in the number of 
predictor variables (retaining all eight measures) indicating that 
all eight organizational metrics were contribute towards 
explaining the variance in accounting for the post-release failures. 
(ii) Principal Component Analysis (PCA) [17]: When the 
organizational measures are inter-correlated  they can suffer from 
multicollinearity [17] – i.e. over fitting of the data due to inter-
correlations between elements which can lead to inflated variance 
in the prediction of failure-proneness. PCA can account for the 
multicollinearity among the measures. With PCA, a small number 
of uncorrelated linear combinations of metrics (that account for as 

much sample variance as possible) are generated, such that the 
transformed variables are independent. Running a PCA on the 
eight organizational measures resulted in the generation of eight 
principal components indicating that PCA does not reduce the 
computation overhead in anyway by transforming the organization 
measures into fewer factors which can be used as predictors.  

From the above results of using PCA and step-wise regression we 
can observe that all the eight organizational measures contribute 
towards explaining the variance in the post-release failures (our 
dependent variable) and hence we retain all eight measures to 
build our logistic regression equation to predict failure-proneness. 

We use the technique of data splitting [25] to measure the ability 
of the organizational measures to predict failure-proneness. The 
data splitting technique is employed to get an independent 
assessment of how well the failure-proneness could be estimated 
from a population sample. We randomly select two thirds (2268) 
of the binaries to build the prediction model and use the remaining 
one third (1136) to verify the prediction accuracy. If the predicted 
failure-proneness probability is > 0.5 we call the binary failure-
prone, otherwise not failure-prone. 

In order to determine the efficacy of the organizational metrics to 
predict failure-prone binaries we compute precision and recall of 
each random split. Zhang and Zhang indicate that due to having a 
small number of defective modules in a sample, using the 
probability of detection and the probability of false alarm 
measures may lead to impractical prediction models [36]. They 
suggest using precision and recall measures to measure the 
accuracy of a software defect prediction model [36]. Table 2 
shows the overall classification table produced for each random 
split to assess how well the actual and estimated classifications for 
the 1136 binaries match. 

Table 2: Classification table 

  Predicted 

  
Not Failure-

prone 
Failure-
prone 

Not failure-
prone 

a b 
Actual 

Failure-prone c d 

Precision (P) is computed as the proportion of the predicted 
failure-prone binaries that were correct, as calculated using the 
equation 2:  

db

d
P

+

=

   (2)

 

Recall(R) is the proportion of failure-prone binaries that were 
correctly identified, as calculated using the equation 3:  

dc

d
R

+

=

   (3)

 

Theoretically a perfect prediction has a precision=recall=1. In 
order to address the issue of generalizability we repeated the 
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random split 50 times to ensure validity of the experiment. Figure 
2 and 3 show the respective precision and recall values for the 50 
random splits. The average precision across all 50 random splits 
was 0.87 or 87% of the predicted failure-prone binaries that were 
actually failure-prone. Similarly the average recall value was 0.84, 
i.e. 84% is the proportion of failure-prone binaries that were 
correctly identified. Also to quantify the sensitivity of the 
prediction we ran a Spearman’s rank correlation between the 
predicted failure-proneness probability values of the 1136 binaries 
and actual post-release field failures. The more positive and 
stronger the correlation the greater the sensitivity indicating that 
binaries with a high value of predicted failure-proneness have a 
high number of actual field failures. We repeated the correlation 
for all the 50 random splits. Figure 4 shows the correlation values. 
All the correlations were strong, positive and statistically 
significant at 99% confidence indicating that as the predicted 
failure-proneness increased the actual field failures also increased.  

 

Figure 2: Precision values for 50 Random splits 

 

Figure 3: Recall values for 50 Random splits 

 

Figure 4: Spearman correlation for 50 Random splits 

From the average precision and recall values and the correlation 
results across 50 random splits along with the consistency of the 
predictions evident from Figure 2, 3 and 4 across a large sample 
of 3400+ binaries spread across 50 Million LOC we can observe 
the efficacy of the organizational metrics to predict failure-
proneness in Windows Vista. The precision, recall values and 
strength of correlations computed are substantially better than our 
previous results [24-27] and recent results on predicting failures in 
large systems [35]. 

5.4 Comparing Prediction Models  
Prior research in software engineering has traditionally used code 
churn, code complexity, code coverage, code dependencies and 
pre-release defect measures to build prediction models to identify 
failure-prone/fault-prone binaries. A summary of previous work in 
these five areas was presented in Section 2. To compare how the 
model built using organization metrics performs against models 
built using code churn, code complexity, code coverage, code 
dependencies and pre-release defect measures we collect five sets 
of these measures at the release point of Windows Vista. The data 
described below is used to build five comparable models. The 
granularity of measurement of all data is at the level of binaries 
across the Windows code base and post-release failures are 
mapped back as earlier to each binary. 

(i) Code Churn Model: A total of three churn measures are 
collected. 

a. Total Churn: Total added, modified and deleted lines of code 
of a binary occurring during the development of Vista. The 
churn is measured relative to Windows Server 2003, the 
latest release before Vista. 

b. Freq: The number of time that a binary was edited during its 
development cycle. The implication is the greater the number 
of edits then the greater the risk of failures.  

c. Repeat Freq: The number of consecutive edits that are 
performed on a binary. A consecutive edit is when the binary 
is edited during build N and build N+1 and then between 
builds N+1 and N+2. This is a measure of the instability of 
the binary during its development, the greater the repeat 
frequency then the greater the instability of the binary during 
its development.  

(ii) Code Complexity Model: A maximum (Max – at a 
function/module level) and total (Total – at a binary level) of eight 
complexity metrics to a total of 19 complexity values are collected 
per binary. Windows code is predominantly non-OO (Object-
Oriented). Only Binaries that have OO code have the OO metrics 
shown below measured. (Denoted by the notation– (if any)). 

a. (Max)(Total) Cyclomatic complexity[21] measures the 
number of linearly-independent paths through a program 
module.   

b. (Max)(Total) Fan-In: # of functions calling function f() 

c. (Max)(Total) Fan-Out: # of functions called by function f() 

d. (Max)(Total) Lines of Code (LOC) 

e. (Max)(Total) Weighted methods per class (if any) 

f. (Max)(Total) Depth of Inheritance (if any) 

g. (Max)(Total) Coupling between objects (if any) 

h. (Max)(Total) Number of sub classes (if any) 

i. Total Global variables. 
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(iii) Dependencies Model: For code dependencies we measured 
both data dependence and call dependence including dependence 
information at the function level, including caller-callee 
dependencies, imports, exports, RPC, COM, Registry access, etc. 
For each binary (e.g. A.dll) we compute the following dependency 
metrics. 

a. Incoming direct : Number of incoming direct dependencies to 
a binary A.dll 

b. Incoming closure: Number of incoming indirect 
dependencies to a binary A.dll 

c. Outgoing direct: Number of outgoing direct dependencies to 
a binary A.dll 

d. Outgoing closure: Number of outgoing indirect dependencies 
to a binary A.dll 

e. Layer information: The architectural layering of Windows 
computes the distance of a binary from the system hardware 
(CPU) i.e. the Kernel. 

(iv) Code coverage Model: We use the total block and arc 
coverage measures (analogous to statement and branch coverage) 
for each binary within Windows Vista. 

a. Block coverage 

b. Arc coverage 

(v) Pre-release defects Model: 

a. Number of pre-release bugs found during Vista’s 
development, prior to its release. 

We use the computation of precision and recall as defined in 
Section 5.3 to determine the efficacy of identifying failure-prone 
binaries across the entire system (3404 binaries, 50 + Million 
LOC). Table 3 below shows the precision and recall value of the 
classification models built using the five different types of data 
sources compared to the organizational metrics model. From 
Table 3 we observe that organizational structure metrics are 
significantly better predictors for identifying failure-prone binaries 
in terms of precision, and recall compared to models built using 
code churn, code complexity, code coverage, code dependencies 
and pre-release defect measures. For example comparing between 
the precision for the models built by organizational metrics and 
code churn we observe a difference of 7.6% which across our 
sample size translates to several hundred more binaries being 
correctly classified. 
 

Table 3: Overall model accuracy using different software 

measures 

Model Precision Recall 

Organizational 

Structure 

86.2% 84.0% 

Code Churn 78.6% 79.9% 

Code Complexity 79.3% 66.0% 

Dependencies 74.4% 69.9% 

Code Coverage 83.8% 54.4% 

Pre-Release Bugs 73.8% 62.9% 

6. THREATS TO VALDITY 
Internal validity. In our study internal validity issues primarily 
deal with the causal issues of our results. These concerns are 
addressed to some extent due to the fact that the engineers in 
Windows had no knowledge that this study was being performed 
for them to artificially modify their behavior/coding practices or 
organizational structure to affect our measurements. Further, two 
of the authors belong to Microsoft Research, an organization 
outside of Windows and the third author is not a Microsoft 
employee. Hence there is no internal motivation to show results 
either way to influence Windows. The experiment does suffer 
from experimenter bias. To minimize this bias the second author 
worked independently to collect and process the data and the first 
and third authors independently analyzed the results.  

Construct validity. Construct validity issues arise when there are 
errors in measurement. This is negated to an extent by the fact that 
the entire data collection process of the organizational metrics, 
failures and VCS is automated. These concerns are also alleviated 
to some extent by the cross check among the organizational 
measures to identify abnormal values for any of the measures (in 
addition to the manual checking of the dataset for inconsistencies 
if any), and by the large size and diversity of our dataset. 

External validity. External validity issues may arise from the fact 
that all the data is from one software system (albeit one with many 
different binaries) and that the software is very large as other 
software systems used for a similar analysis may not be of 
comparable size. To address this issue the analysis was replicated 
on a reduced set basis to determine the type and size of 
organization structure required to be able to use the same 
approach. The results indicate that a team of size 30 engineers and 
three levels of depth should be sufficient to collect the 
organizational metrics to predict failure-proneness. We plan to 
replicate this experiment in smaller organizations at Microsoft to 
explore this further. 

7. CONCLUSION AND FUTURE WORK  
In this paper we have reported on our empirical investigation of 
organizational metrics from the perspective of software quality. 
We define a set of organizational measures that quantify the 
complexity of a software development organization. The 
organizational measures are then used to quantify and study the 
effect that an organization structure would have on software 
quality. More generally, it is beneficial to obtain early estimates of 
software quality (e.g. failure-proneness) to help inform decisions 
on testing, code inspections, design rework, as well as financial 
costs associated with a delayed release. Our organizational 
measures predict failure-proneness in Windows Vista with 
significant precision, recall and sensitivity. Our study also 
compares the prediction models built using organizational metrics 
against traditional code churn, code complexity, code coverage, 
code dependencies and pre-release defect measures to show that 
organizational metrics are better predictors of failure-proneness 
than the traditional metrics used so far.   

Drawing general conclusions from empirical studies in software 
engineering is difficult because any process depends to a large 
degree on a potentially large number of relevant context variables 
[3]. For this reason, we cannot assume a priori that the results of a 
study generalize beyond the specific environment in which it was 
conducted [3].  Researchers become more confident in a theory 
when similar findings emerge in different contexts [3]. Since this 
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study was performed on the Windows operating system we plan to 
replicate this study in other organizations within and outside of 
Microsoft. There has been preliminary interest in collaborating 
with the Fraunhofer research institute to replicate this study in 
other companies. At Microsoft groups have begun investigating 
the organizational structure of teams to study their impact on 
quality. 

We also plan to investigate this line of research from the context 
of open source teams where virtual organizations exist to quantify 
appropriate organizational measures and study their effect on 
quality. Two other areas of future work is to study such 
organizational metrics in the context of global software 
development [13], and collaborate with cognitive psychologists 
and organizational behavior researchers to look at social and 
cognitive aspects of our work by doing observational studies of 
engineers. We also plan to compare our empirical quantification 
of the organizational experience/knowledge of Windows to 
compare and contrast with data from other companies to 
supplement the observational studies. A more detailed empirical 
discussion of the development of the metrics via GQM [2] is also 
planned.  
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