Triglyceride determination

Introduction:

- Triglycerides are esters of fatty acids and are hydrolyzed to glycerol and free fatty acids(by lipase).
- Triglyceride determinations when performed in conjunction with other lipid assays are useful in the diagnosis of **primary and secondary hyperlipoproteinemia**.
- They are also of interest in following the course of <u>diabetes mellitus</u> <u>nephrosis, biliary obstruction, and various metabolic abnormalities due</u> <u>to endocrine disturbances.</u> $H_{3}C-(CH_{2})_{n}-C-0-C$

 $\begin{array}{c}
 0 \\
 H_{3}C - (CH_{2})_{n} - C - O - CH_{2} \\
 0 \\
 H_{3}C - (CH_{2})_{n} - C - O - CH \\
 0 \\
 H_{3}C - (CH_{2})_{n} - C - O - CH_{2} \\
 H_{3}C - (CH_{2})_{n} - C - O - CH_{2} \\
 Triacylglycerol$

- **Hyperlipoproteinemia:** abnormally elevated of fat in blood (disorder in lipid metabolism).

- Standard methods for the measurement of triglyceride concentrations involved either **enzymatic** or **alkaline hydrolysis** to liberate glycerol.

- Principle:

The enzymatic reaction sequence employed in the assay of Triglycerides is as follows:

Triglycerides+ H₂O <u>Lipase</u> > Glycerol + Fatty Acids

Glycerol + ATP _____Glycerol - Glycerol - 3 - Phosphate + ADP

Glycerol-3-Phosphate+ $O_{-2} \xrightarrow{G-1-P} < -- DAP + H_2O_2$

 $H_2O_2 + 4AAP + 4$ chlorophenol<u>Peroxidase</u> >Quinoneimine Dye + 2 H_2O

- The present procedure involves hydrolysis of triglycerides by lipase .

- The glycerol concentration is then determined by enzymatic assay coupled with Trinder reaction that terminates in the formation of <u>a quinoneimine dye</u>.

- **The amount of the dye formed**, determined by its absorption at 500 nm, <u>is directly proportional</u> to the concentration of triglycerides in the samples.

- Specimen collection and storage:

1. Fresh, non-hemolyzed serum from fasting patients is recommended.

- 2. Triglycerides in serum appears stable for <u>three days</u> when stored at 2-8 °C.
- 3. Prolonged storage of the samples at room temperature is not recommended
- since other glycerol containing compounds may hydrolyze, releasing free glycerol with an apparent increase in total triglycerides content.

- Method:

- By Triglyceride reagent kit.

-Follow the table:

	Blank	Standard	Test		
Reconstituted Reagent	1 ml	1 ml	1 ml		
Pre-worm at 37°C for 2 min and add:					
Distilled water	0.01 ml (10 μl)				
Standard		0.01 ml (10 μl)			
Sample			0.01 ml (10 μl)		
Mix and incubate at 37°C for 5 min Read the absorbance of standard and sample at 500 nm against blank					

-Calculation:

Conc .of TG= $\frac{Ab \text{ Test}}{Ab \text{ Std.}}$ X conc. of Std. (200 mg/d)

- Normal range: 10 -190 mg/dl

HDL-Cholesterol determination

- Introduction:

- Cholesterol is a fatty substance found in <u>blood</u>, <u>bile and brain tissue</u>.
- It serves as a precursor to bile acids, steroids and vitamin D.
- In the plasma, cholesterol is transported by three lipoproteins: high density

lipoprotein (HDL-Cholesterol), low density lipoprotein (LDL-Cholesterol), and very low density lipoprotein (VLDL- Cholesterol).

- The concentration of **total cholesterol** in serum has been <u>associated with</u>

metabolic, infectious and coronary heart diseases.

- The concentration of HDL-cholesterol in serum has important in diagnosis of the how the level of **risk to get coronary heart diseases**.
- More HDL-Chol. That indicate low risk to get coronary heart disease.
- Castelli and co-workers have indicated that an <u>inverse relationship</u>
 <u>exists between serum HDL-Cholesterol and the risk of coronary heart disease.</u>
 The measurement of <u>HDL Cholesterol and triglyceride</u> provides valuable information for the prediction of coronary heart disease and for lipoprotein phenotyping.

- Specimen collection:

1. Specimen should be serum and free from hemolysis.

2. Patient should be fasting for 12-14 hours.

- Principle:

- HDL cholesterodetermination

- It is direct method without specimen pre treatment.

- A color reaction which is proportional to HDL-Cholesterol concentration. **The absorbance is measured at 600 nm.**
 - LDL= Low density lipoprotein VLDL= Very low density lipoprotein
 - **CO=** Cholesterol Oxidase
 - **4-AAP=** 4- Aminoantipyrine

POD= Peroxidase

- **CE=** Cholesterol Esterase
- AAO= Ascorbate Oxaldase
- **DSBmT=** N,N-bis (4-sulphobutyl)-m-toluidine-disodium

Method:

- HDL Cholesterol:
- Follow the Table:

	Blank	Calibrator	Assay	
Reagent R1	300 μl	300 μl	300 μl	
Calibrator		3 μl	3 μl	
Mix vigorously, let stand for 5 min at 37°C . Read absorbance A1 at 600 nm against blank.				
Add Reagent R2	100 μl	100 µl	100 µl	
Mix vigorously, let stand for 5 min at 37°C . Read absorbance A2 at 600 nm against blank.				

- Calculation:

- * Determine the HDL Cholesterol conc.
 - Δ Abs. = (A2 0.75 A1)

Conc. Of HDL = $\Delta Ab Assay$ $\Delta Ab Calibrator$ X conc.of calibrator (50 mg/dl) = mg/dl

- Normal value of:
- HDL-Cholesterol :
- Low level (risk factor) < 40 mg/dl
- High HDL (protector factor) ≥ 60 mg/dl