GE	201
Sta	tics

Department of Civil Engineering King Saud University

King Saud University	
Course Description: GE 201 Statics (Required for a BSCE degree)	Force systems; vector analysis, moments and couples in 2D and 3D. Equilibrium of force systems. Analysis of structures; plan trusses and frames. Distributed force system; centroids and composite bodies. Area moments of inertia. Analysis of beams. Friction. 3 (3,1, 0)
Prerequisite	MATH 106 and MATH 107, Prerequisite by Topics: 1. Knowledge of mathematics and physics. 2. Understanding calculus including, integration and matrices. 3. Determining the area properties of various cross sections.
Course Learning Outcomes	Students completing this course successfully will be able to
	1. Analyze 2D and 3D force system and calculate moment about any point/axis in a 2D and 3D structures
	Analyze truss, beam, and frame structures using equilibrium equations
	3. Locate centroid of regular and composite cross sections
	4. Evaluate area moment of inertia of engineering cross sections about different axes.
	5. Analyze and solve friction related equilibrium problems
Topics Covered	 Introduction (2 hrs) Force Systems: 2D and 3D (15 hrs)
	3. Equilibrium, system isolation (4 hrs)
	4. Analysis of trusses and frames (8 hrs)
	5. Distribution of forces, centroids and composite bodies (4 hrs)
	6. Area moment of inertias (4 hrs)
	7. Shear force and moment for simple determinate beams (3 hrs)8. Friction (2 hrs)
Class/ tutorial Schedule	Class is held three times per week in 50-minute lecture sessions. There is also a 50-minute weekly tutorial associated with this course.
Textbook(s) and/or Other Required Material	Engineering Mechanics, Volume 1, Statics ,
	8 th Edition, SI units Version by J. L. Meriam and L. G. Kraige
Date	First Semester 1441-42 (2020-21)

Prof. M. Iqbal Khan – Coordinator (Office: 2A83). miqbal@ksu.edu.sa Prof. Tarek Almusallam (Office: 2A28). musallamt@gmail.com Prof. Nadeem Siddiqui (Office: 2A89). nadeem@ksu.edu.sa Dr. Ahmet Tüken (Office: 2A90). atuken@ksu.edu.sa Dr. Abdulrahman Albidah (Office: 2A52). aalbidah@ksu.edu.sa Dr. Abdulaziz Alaskar (Office: 2A22). abalaskar@ksu.edu.sa Dr. Abdulaziz S. Alsaif (Office: 2A65). aalsaiff@ksu.edu.sa Dr. Hussam Alghamdi (Office: 2A82). hsghmadi@ksu.edu.sa

Grade Distribution

 Final Exam
 40%

 Semester work
 60%

 Mid-term Exams
 50%

 Tutorial
 5%

 Model Demonstration (MD)
 5%

Class Quizzes and Tutorial:

Quizzes will be conducted from time to time in both lecture and tutorial classes.

Tutorial marks will be based on the best 5 quizzes: 5%

Model Demonstration (MD) will be based on attendance in MD and report writing: 5%

Mid Term Exams

Mid Term Exam schedule will be announced by the College of Engineering administration.