King Saud University Mechanical Engineering Department ME 494 Selected Topics in Mechanical Engineering (Foundation of Energy Efficiency)

Instructors: Dr. Abdullah Alabdulkarem (CEM), Dr. Hany Alansary, Dr. Zakariya Kaneesamkandi **Office:** (2C34), (2C87), (2C81)

Email: (aalabdulkarem@ksu.edu.sa), (hansary@ksu.edu.sa), (zkaneesamkandi@ksu.edu.sa) Website: (fac.ksu.edu.sa/aalabdulkarem), (faculty.ksu.edu.sa/alansary), (fac.ksu.edu.sa/zkaneesamkandi) Phone: (4696132), (4676686), (4676680)

Course Objectives:

Foundation of Energy Efficiency is a multi-disciplinary course that introduces energy consumption reduction measures in buildings, transportation and industrial sectors. The main objective of the course is to provide engineering and architect students with the basic principles of energy efficiency, fundamental concepts, sustainability, energy policy, energy finance and energy and environment.

Credit hours: 3 lectures, 1 hour tutorial

Prerequisites: None, preferably for students in their senior year.

Textbook: None

Reference Textbooks:

"Sustainable Energy: Choosing Among Options" by J. Tester *et al.*, 2012, 2nd Edition.

"Handbook of Energy Audits" by A. Thumann et al., 2012, 9th Edition.

"Fundamentals of Thermal-Fluid Sciences" by Y. Çengel et al., 2012, 4th Edition.

"Sustainable Energy - Without the Hot Air" by D. MacKay, 2009, UIT Cambridge Ltd., 1st Edition.

"Energy Efficiency Manual" by D. Wulfinghoff, 2000, Energy Inst Pr, 1st Edition.

Course Content

Week	Торіс	Lecture Topic
1	Fundamental Concepts	L1: Course outline, need for energy efficiency in Saudi
		Arabia, and critical factors that influence energy
		efficiency decisions in the Kingdom
		L2: Distinction between demand and supply side energy
		efficiency
		L3: Energy efficiency terminology, barriers to energy
		efficiency, derivation of associated thermal units and
		inter-relationships
2	Fundamental Concepts	L4: Review of laws of thermodynamics and Carnot
		efficiency
		L5: Modes of heat transfer (conduction, convection, and
		radiation)
		L6: Basic electrical concepts in energy – current,
		voltage, power, energy, phases, power factor, etc.
3	Fundamental Concepts	L7: Understanding the energy supply-chain: well-head
		to end-user
		L8: Guest Lecturers: SEEC (demand-side) and SEC
		(supply-side)
		L9: Demand-side consumers of energy – international
		and domestic benchmarks
4	Building Energy	L10: Break-down of energy in residential, commercial,
	Efficiency	and industrial buildings and introduction of concept of
		Energy Use Intensity.

		Equipment to monitor energy consumption – kWh-
		meters and smart-meters.
		L11: Lighting – types (LED, CFL, and incandescent),
		calculations of efficiency and standards formulation
		L12: Lighting continued
5	Building Energy	L13: Thermal insulation – need and types based on
	Efficiency	building envelopes and setting R/U value
		L14: Appliances – concepts & advancements in
		technology
		L15: Air-conditioning – definitions (including EER) and
		psychometric charts
6	Building Energy	L16: Air-conditioning – residential (types/technologies)
	Efficiency	L17: Air-conditioning – commercial and industrial
		L18: Guest Lecturer: SASO on EE Standards
7	Urban Planning &	L19: Importance of urban planning and introduction of
	District Cooling	district cooling
		L20: Cooling towers, types of chillers, thermal storage,
		and treated sewage effluent
		L21: Combined heat & power
8	Industrial Energy	L22: Major consumers of energy and ISO 50001
	Efficiency	L23: Electric motors – types, energy consumption,
		efficient use and setting standards
		L24: Pumps and compressors – types, applications,
		sizing, and methods of improving efficiency
9	Industrial Energy	L25: Boilers – electric and gas fired boilers and MEPS
	Efficiency	L26: Performance benchmarking and improvement
		measures in petrochemical or cement industry
		L27: Guest lecturer: SABIC – case-studies on energy
		efficiency in industry
10, 11	Energy Auditing	L28,29,30: Conducting an energy audit of a building
		based on International Performance Measurement &
		Verification Protocol (IPMVP)
		L31: Concept of Energy Service Company market and
		types of contracts
		L32,33: Making retrofit recommendations and report
		writing
12	Transportation &	L34: Types of fuel, fuel economy standards, and
	Behavioral Energy	labeling for light duty vehicles, including TRR
	Efficiency	L35: Methods to improve fuel economy for heavy duty
		vehicles – aerodynamic additives, anti-idling, etc.
		L36: Behavioral aspects – best practices
13	Economics of Energy	L37: Guest lecturer – World Bank – case studies
	Efficiency	L38: Economics of energy efficiency – calculation of
		pay-back periods and financing
		L39: Benefit to cost ratio – Kingdom and end-user
14	Energy policy and Global	L40: Carbon markets and introduction to GHG
	Programs	L41: Relative performance of global energy efficiency
		programs
		L42: Economics of oil markets
15	Course Wrap-up	L43: Project Presentation
		L44: (buffer)
		L45: Course conclusion – review of critical learnings
		and discussion of final examination

Design Content: 10% **Lectures:** 90 % **Laboratory Portion:** None

Assessment Tools:

10 %
30 %
20 %
40 %

Estimated ABET Category Content:

Mathematics and Basic Science: 0 credit units or	0%
Engineering Science: 3.0 credit units or	100%
Engineering Design: 0 credit units or	0%

Project:

The project shall be on conducting an energy audit on your own house (or a commercial or an industrial facility). You will need to apply the energy saving measures discussed in the class and, then, discuss the cost and benefit of every measure you propose. You will be required to submit a 10 pages report and presentation.

Learning Outcomes:

Upon successful completion of the course, students will:

- 1. Have an awareness of the importance of energy efficiency.
- 2. Recognize the terminology used in energy efficiency along with units used to quantify parameters (e.g. power) and relationship among parameters and associated units.
- 3. Understand the energy value chain for major drivers of energy demand and consumption in the major sectors (buildings, industry and transportation).
- 4. Learn about methods used to reduce energy consumption in the buildings, industry and transportation sectors.
- 5. Have knowledge on the business (financial and economic) aspects of energy efficiency.
- 6. Be adept at using equipment used to measure energy consumption of products deployed in the buildings, industrial, and transportation sectors.
- 7. Be familiar with global energy and energy efficiency policies.