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1.1  ERROR TYPES

Gross errors are, in fact, not errors at all, but results of mistakes that are due to the carelessness
of the observer. The gross errors must be detected and eliminated from the survey measurements
before such measurements can be used. Systematic errors follow some pattern and can be expressed
by functional relationships based on some deterministic system. Like the gross errors, the systematic
errors must also be removed from the measurements by applying necessary corrections. After all
mistakes and systematic errors have been detected and removed from the measurements, there will
still remain some errors in the measurements, called the random errors or accidental errors. The
random errors are treated using probability models. Theory of errors deals only with such type of
observational errors.

1.2  PROBABILITY DISTRIBUTION

If a large number of masurements have been taken, the frequency distribution could be considered
to be the probability distribution. The statistical analysis of survey observations has indicated that
the survey measurements follow normal distribution or Gaussian distribution, being expressed by
the equation,

dxedy
x 22

1 2/)(

2

1 σµ

πσ
−−= ...(1.1)

where dy is the probability that the value will lie between the limits of x1 and (x1+dx), µ  is the true
mean of the population, and σ  is the standard deviation.

1.3  MOST PROBABLE VALUE

Different conditions under which the measurements are made, cause variations in measurments and,
therefore, no measured quantity is completely detrminable. A fixed value of a quantity may be
concieved as its true value. The difference between the measured quantity and its true value τ is
known as error ε, i.e.,

τε −= x ...(1.2)

Since the true value of a measured quantity cannot be determined, the exact value of ε can
never be found out. However, if a best estimate x̂  which is known as the most probable value of
τ, can be determined, x̂  can be used as a reference to express the variations in x. If we define
υ  as residual then

�

�
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xx −= ˆυ         ...(1.3)

The residuals express the variations or deviations in the measurements.

1.4  STANDARD DEVIATION

Standard deviation also called the root-mean square (R.M.S.) error, is a measure of spread of a
distribution and for the population, assuming the observations are of equal reliability it is expressed
as








 −Σ
±=

n

x
n

2)(µσ ...(1.4)

However, µ cannot be determined from a sample of observations. Instead, the arithmetic mean
x  is accepted as the most probable value and the population standard deviation is estimated as

σn
x x

n
− = ± −

−
�

�
�

�

�
�1

2

1

Σ ( � )

( )
...(1.5)

or 







−

Σ±=
)1(

2

n

υ
...(1.6)

The standard deviation given by the above expression is also called the standard error. Henceforth

in this book the symbol σ  will mean 1−nσ .

1.5  VARIANCE

Variance of a quantity is expressed as

    
1

2

−
Σ=
n

V
υ

 ...(1.7)

or 2
1−= nσ

or 2σ= ...(1.8)

and is also used as a measure of dispersion or spread of a distribution.

1.6  STANDARD ERROR OF MEAN

The standard error of mean σm is given by

     







−

Σ±=
)1(

2

nnm

υσ ...(1.9)

or  =
n

σ± ...(1.10)
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and hence the precision of the mean is enhanced with respect to that of a single observation. There
are n deviations (or residuals) from the mean of the sample and their sum will be zero. Thus, knowing
(n – 1) deviations the surveyor could deduce the remaining deviation and it may be said that there are
(n – 1) degrees of freedom. This number is used when estimating the population standard deviation.

1.7  MOST PROBABLE ERROR

The most probable error is defined as the error for which there are equal chances of  the true error
being less and greater than probable error. In other words, the probability of the true error  being
less than the probable error is 50% and the probability of the true error  being greater than the
probable error is also 50%. The most probable error is given by









−

Σ±=
)1(

6745.0
2

n
e

υ
...(1.11)

    σ6745.0±= ...(1.12)

1.8  CONFIDENCE LIMITS

After establishing the sample mean as estimate of the true value of the quantity, the range of values
within which the true value should lie for a given probability is required. This range is called the
confidence interval, its bounds called the confidence limits. Confidence limits can be established for
that stated probability from the standard deviation for a set of observations. Statistical tables are
available for this purpose. A figure of 95% frequently chosen implies that nineteen times out of
twenty the true value will lie within the computed limits. The presence of a very large error in a
set of normally distributed errors, suggests an occurance to the contrary and such an observation
can be rejected if the residual error is larger than three times the standard deviation.

1.9  WEIGHT

This quantity ω  is known as weight of the measurement indicates the reliability of a quantity. It

is inversely proportional to the variance ( 2σ ) of the observation, and can be expressed as

ω
σ

= k
2

where k is a constant of proportionality. If the weights and the standard errors for observations

x1, x2, ,….., etc., are respectively 1ω , 2ω ,….., etc., and 1σ , 2σ ,….., etc., and uσ  is the

standard error for the observation having unit weight then we have
22

22
2
11 ...... uσσωσω === . ...(1.13)

Hence

       ,
2
1

2

1 σ
σω u= ,

2
2

2

2 σ
σω u=   etc.,
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and ,
2
1

2
2

2

1

σ
σ

ω
ω

=    etc. ...(1.14)

The weights are applied to the individual measurements of unequal reliability to reduce them
to one standard. The most probable value is then the weighted mean xm of the measurements. Thus

( )
ω
ω

Σ
Σ= x

xmˆ , ...(1.15)

and standard error of the wieghted mean

 σ
ω

ω
x

m

m

x x

n
= ±

−
−

�

�
�
�

�

�
�
�

Σ
Σ

( � )

( )

2

1

� �
 ...(1.16)

The standard deviation of an observation of unit weight is given by

  σ
ω

u
mx x

n
= ±

−
−

�

�
�
�

�

�
�
�

Σ ( � )

( )

2

1

� �
...(1.17)

and the standard deviation of an observation of weight nω  is given by

 σ
ω
ω

w
m

n

x x

n
= ±

−
−

�

�
�
�

�

�
�
�

Σ ( � )

( )

2

1

� �
...(1.18)

1.10 PRECISION AND ACCURACY

Precision is the degree of closeness or conformity of repeated measurements of the same quantity
to each other whereas the accuracy is the degree of conformity of a measurement to its true value.

1.11 PROPAGATION OF ERROR

The calculation of quantities such as areas, volumes, difference in height, horizontal distance, etc.,
using the measured quantities distances and angles, is done through mathematical relationships
between the computed quantities and the measured quantities. Since the measured quantities have
errors, it is inevitable that the quantities computed from them will not have errors. Evaluation of
the errors in the computed quantities as the function of errors in the measurements, is called error
propagation.

Let    y = f(x1, x2,......., xn) then the error in y is

  dy f
x

dx f
x

dx f
x

dx
n

n= + + +∂
∂

∂
∂

∂
∂1

1
2

2 ....... ...(1.19)

and the standard deviation of y is

      

22

2

2

1

2 ........
21 








∂
∂++





∂
∂+





∂
∂=

nx
n

xxy x

f

x

f

x

f σσσσ ...(1.20)
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where ,, 21 dxdx ....., etc., are the errors in x1, x2,....., etc., and ,,
21 xx σσ ....., etc., are their

standard deviations. In a similar way if

 nxxxy +++= .......21

then 2222 ........
21 nxxxy σσσσ +++= , since 

1x

f

∂
∂

, etc. = 1.                  ...(1.21)

And if

 y = 1kx  in which k is free of error

      σ σy xk= 1

since     
1x

f

∂
∂

 = k.

In the above relationships it is assumed that x1, x2,......., xn are independent implying that the
probability of any single observation having a certain value does not depend on the values of other
observations.

1.12 NORMAL DISTRIBUTION

The expression for the normal distribution is

dy e dxx= − −1
2

1
2 22

σ π
µ σ( ) / . ...(1.23)

Taking 
σ

µ x
u

−= , the expression becomes

dy e duu= −1
2

2 2

π
/ . ...(1.24)

Eq. (1.24) is the standardized form of the above expression, and Fig. 1.1 illustrates the
relationship between dy/du and u is illustrated in Fig. 1.1.

The curve is symmetrical and its total area is 1, the two parts about u = 0 having areas of
0.5. The shaded area has the value

1
2

21
2

π
e duu

u
−

−∞

+

	 /

and it gives the probability of u being lying between – ∞  and + u1. The unshaded area gives the
probability that u will be larger than + u1. Since the curve is symmetrical, the probability that u takes
up a value outside the range + u1 to – u1 is given by the two areas indicated in Fig. 1.2.
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0−1−2−3 +1 +2 +3

u

u1

dxdy

0−1−2−3 +1 +2 +3

u

dxdy

Fig. 1.1 Fig. 1.2

The values of the ordinates of the standardized form of the expression for the normal distribution,
and the corresponding definite integrals, have been determined for a wide range of u and are
available in various publications. A part of such table is given in Table 1.5 and some typical values
used in this example have been taken from this table.

Example 1.1. The following are the observations made on the same angle:

47o26′13″ 47o26′18″
47o26′10″ 47o26′15″
47o26′16″ 47o26′12″
47o26′09″ 47o26′15″
47o26′18″ 47o26′14″

Determine

(a) the most probable value of the angle,

(b) the range,

(c) the standard deviation,

(d) the standard error of the mean, and

(e) the 95% confidence limits.

Solution:

For convenience in calculation of the required quantities let us tabulate the data as in Table 1.1.
The total number of observations n = 10.

(a) Most probable value = �x  = 47°26′14″″″″″
(b) Range = 47°26′18″ – 47°26′09″ = 9″″″″″
(c) Standard deviation









−

Σ±=
)1(

2

n

υσ









−

±=
)110(

84
 =  ± 3.1″″″″″.

dy dx dy dx
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(d) Standard error of mean

n
m

σ
σ ±=

   
10

1.3±=  = ± 1.0″″″″″.

Table 1.1

Observed angles (x) υ=− )ˆ( xx 22)ˆ( υ=− xx

    47°26’13″ + 1 1

          10″ + 4 16

          16″ – 2 4

          09″ + 5 25

          18″ – 4 16

          18″ – 4 16

          15″ – 1 1

          12″ + 2 4

          15″ – 1 1

          14″  0 0

       Σ = 140″ 0=Σ 84=Σ

    �x x
n

= = ° ′ ′′ = ° ′ ′′Σ 47 6 140
10

47 26 14

(e) 95% confidence limits

The lower confidence limit
n

t
x

σ−= ˆ

The upper confidence limit
n

t
x

σ+= ˆ ...(1.22)

where t is selected from statistical tables for a given value of n. For n = 10, t = 2.26 and so

  
t
n
σ = = ′′

2 26 3 1

10
2 2

. × .
. .

Hence the 95% confidence limits are 47°26′′′′′14″ ″ ″ ″ ″ ± 2.2″″″″″.
It is a common practice in surveying to reject any observation that differs from the most

probable value by more than three times the standard deviation.

Example 1.2. The length of a base line was measured using two different EDM instruments
A and B under identical conditions with the following results given in Table 1.2. Determine the
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relative precision of the two instruments and the most probable length of the base line.

  Table 1.2

                                        A (m)            B (m)

�������� ��������

�������� ��������

�������� �����675

1001.682 1001.678

1001.674 1001.677

1001.679 1001.682

1001.679

1001.675

Solution:

(i) The standard deviation of the masurements by A









−

±=







−

Σ±=
)16(

164
)1(

2

nA
υσ

    = ± 5.73 mm.

Table 1.3

                A                          B

Distance υ 2υ Distance υ 2υ
(m) (mm) (mm2) (m) (mm) (mm2)

1001.678 – 3 9 1001.677 + 1 1

1001.670 + 5 25 1001.681 – 3 9

1001.667 + 8 64 1001.675 + 3 9

1001.682 – 7 49 1001.678 0 0

1001.674 + 1 1 1001.677 + 1 1

1001.679 – 4 16 1001.682 – 4 16

1001.679 – 1 1

1001.675 + 3 9

050.6001=Σ 164=Σ 424.8013=Σ 46=Σ

          675.1001
6

050.6001ˆ ==Ax  m             678.1001
8

424.8013ˆ ==Bx  m

The standard deviation of the measurements by B

      







−

±=
)18(

46
Bσ = ± 2.56 mm.
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The standard error of the mean for A

34.2
6

73.5 ±=±=mAσ mm.

(ii) The standard error of the mean for B

91.0
8

56.2 ±=±=mBσ mm.

(iii) The relative precision of the two instruments A and B is calculated as follows:

If the weights of the measurements 1001.675 m and 1001.678 m are 
Aω  and 

Bω  having the

standard errors of means as ± 2.34 mm and ± 0.91 mm, repectively, then the ratio 
BA ωω is a

measure of the relative precision of the two instruments. Thus

6.6
1

34.2

91.0
2

2

2

2

=

==
A

B

B

A

σ
σ

ω
ω

Therefore,
6.6
B

A

ωω = .

(iv) The most probable length of the line is the weighted mean of the two observed lengths.
Now

ω
ω

ω
Σ

Σ= )( x
x

BA

BBAA LL

ωω
ωω

+
+=

   =
+

+

ω ω

ω ω

B
B

B
B

6 6
1001 675 1001 678

6 6

.
× . × .

.

   
6.61

678.10016.6675.1001

+
×+=  = 1001.6776 m.

In accordance with the observations, ωx̂ could be written as 1001.678 m to the nearest

millimetre.

Example 1.3. An angle was measured with different weights as follows:

Determine
(a) the most probable value of the angle,
(b) the standard deviation of an obsevation of unit weight,
(c) the standard deviation of  an observation of weight 3, and
(d) the standard error of the weighted mean.
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Angle Weight
( ω )

86°47′25″ 1

86°47′28″ 3

86°47′22″ 1

86°47′26″ 2

86°47′23″ 4

86°47′30″ 1

86°47′28″ 3

86°47′26″ 3

Solution: Tabulating the data and the weighted results working from a datum of  86°47′, we
get the values as given in Table 1.4.

(a) The most probable value of the angle is the weighted mean

  =ωx  Datum + 
( )
ω
ω

Σ
Σ x

= ° ′ + = ° ′ ′′86 47 467
18

86 47 25 9.

(b) Standard deviation of an observation of unit weight

  
( )









−

Σ±=
)1(

2

nu

ωυσ ( )18
93

−
±= ±= 3.64″″″″″.

Table 1.4

Observed x ω ωx υ 2ωυ
angle

86°47′25″ 25 1 25 + 1 1

86°47′28″ 28 3 84 – 2 12

86°47′22″ 22 1 22 + 4 16

86°47′26″ 26 2 52 0 0

86°47′23″ 23 4 92 + 3 36

86°47′30″ 30 1 30 – 4 16

86°47′28″ 28 3 84 – 2 12

86°47′26″ 26 3 78 0 0

208=Σ 18=Σ 467=Σ 93=Σ

                       26
8

208
ˆ ==x
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(c) Standard deviation of an observation of weight 3

( )








−

Σ±=
)1(

2

nnω
ωυσϖ

    







−×

±=
)18(3

93
±= 2.10″″″″″.

Alternatively,

22
22

2
11 ...... uσσωσω ===

We have 33 =ω , therefore

3

64.3
3

64.3

3

22
2

±=

==

ϖ

ϖ

σ

σ
σ u

(d) Standard error of the weighted mean

σ
ωυ

ω
xm

n
= ±

−

�

�
�
�

�

�
�
�

Σ
Σ


 �
2

1( )

                       







×−

±=
18)18(

93
 ±= 0.86″″″″″.

Alternatively,

22
umm s σω =

Since  ωω Σ=m , we have

   ω
σ
Σ

±= u
ms

       
18

64.3±=  ±= 0.86″″″″″.

Example 1.4. If the standard deviation uσ  of a single measurement in Example 1.1 is ± 3",

calculate

  (i) the magnitude of the deviation likely to occur once in every two measurements,

±=  2.10″″″″″ .
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 (ii) the probability that a single measurement  may deviate from the true value by ± 6", and

(iii)  the probability that the mean of nine measurments may deviate from the true value by
   ± 1.5".

Solution:

If a deviation is to occur once in every two measurements a probability of 50% is implied.
Thus in Fig. 1.2 the two shaded parts have areas of 0.25 each and the total shaded area is 0.5.

Table 1.5

u dy/du
−∞

+

	
u

0.0 0.3989 0.5000

0.6 0.3332 0.7257

0.7 0.3123 0.7580

1.5 0.1295 0.9332

2.0 0.0540 0.9772

Since 
−∞

+

	
u1

is the shaded area as shown in Fig. 1.2, a value of u is required such that

1 0 25
1

− =
−∞

+

	 . ,
u

 i.e., =
−∞

+

	 0 75
1

. .
u

By inspection, we find in the Table 1.5 that the value 0.75 of the integral lies between the values

0.6 and 0.7 of u. The value of u is 0.6745 for =
−∞

+

	 0 75
1

. .
u

Now       
σ

µ x
u

−= =0.6745

therefore,  deviation       (u – x) = 0.6745 σ
                    = ± 0.6745 × 3

 = ± 2.0".

(b) For a deviation (u – x) of ± 6" for a single measure

    u
x= − = = ′′

µ
σ

6
3

2 0. .

For u = + 2.0 from Table 1.5, we have

 =
−∞

+

	 0 9772
2 0

. .
.

Hence    1 1 0 9772 0 0228
2 0

− = − =
− ∞

+

	 . . .
.

For the deviation to lie at the limits of, or outside, the range + 6" to – 6", the probability is
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= 2 × 0.0228

= 0.0456,  or  4.6%.

(c) The standard deviation of the mean of nine observations

9

0.3==
n

m
σσ  = ± 1.0".

For a deviation of ±1.5"

        u x

m

= − = ′′µ
σ

15
1 0.

    = 1.5".

For u = + 1.5 from the Table 1.5, we get

   1 1 0 9332 0 0668
15

− = − =
−∞

+

	
.

. . .

Therefore the probability of  assuming a deviation of ± 1.5"

    = 2 × 0.0668

    = 0.1336,  or  13.4%.

Example 1.5. The coordinates with standard deviations of two stations A and B were determined
as given below. Calculate the length and standard deviation of AB.

Station Easting Northing

A 456.961 m ± 20 mm 573.237 m ± 30 mm

B 724.616 m ± 40 mm 702.443 m ± 50 mm

The length of AB was independently measured as 297.426 m ± 70 mm and its separate determination
by EDM is as 297.155 m ± 15 mm. Calculate the most probable length of the line and its standard
deviation.

Solution:

If ∆E is the difference in the eastings of A and B and ∆N is the difference in the northings
then the length of the line AB

( ) ( )
22

22

22

206.129655.267

237.573443.702961.456616.724

+=

−+−=

∆+∆= NE

= 297.209 m.

From Eq. (1.21) the standard deviation σE and σN  of ∆E and ∆N, respectively, are

  222

222

NBNAN

EBEAE

σσσ

σσσ

+=

+=
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20±=EAσ mm; 40±=EBσ mm; 30±=NAσ mm; 50±=NBσ mm.

Therefore,

222 4020 +=Eσ ,  or   7.44±=Eσ mm

222 5030 +=Nσ ,  or   3.58±=Nσ  mm

Now from Eq. (1.20), the standard deviation of  the computed length AB

σ ∂
∂

σ ∂
∂

σAB E N
L

E

L

L
2

2 2

=
�


�
�

��
+
�


�
�

��∆ ∆
 � 
 �
…(a)

where   22 NEL ∆+∆= ...(b)

Now by differentiating Eq. (b), we get

   
∂

∂
L

E
E E N

∆
∆ ∆ ∆

� �

 �= + −1

2
2 2 2 1 2

× ×
/

=
+

= = =∆
∆ ∆

∆E

E N

E

L2 2

267 655
297 209

0 901.
.

.

Similarly,

( ) 435.0
209.297

206.129 ==∆=
∆∂
∂

L

N

E

L

Hence from Eq. (a), we get

  ( ) ( )222 3.58435.07.44901.0 ×+×=ABσ  = 2265.206

or  
ABσ  = ± 47.6 mm.

Now we have three values of the length AB and their standard deviations as given in Table 1.6.

Table 1.6

Length (l) by σ ω = 1/σ2

(m) (mm)

Tape 297.426 ± 70 1/4900

EDM 297.155 ± 15 1/225

Calculation 297.209 ± 47.6 1/2266

Since the weight of a measured quantity is inversely proportional to its variance, we can
calculate the weights of the lengths obtained by different methods, and these have been given in
Table 1.6.
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The most probable length of AB  is the weighted mean of the three values of AB.

Thus

2266
1

225
1

4900
1

209.297
2266

1
155.297

225

1
426.297

4900

1

++

×+×+×
=L

  = 297.171 m.

The weight of L is

    
2266

1

225

1

4900

1 ++=Σω  = 0.00509

Since ω 2/1 σ=

    ω
σ

L

L

= 1
2

    σ
ω

L
L

= =1 1
0 00509.

             = ± 14.0 mm.

The standard deviation of the length 297.171 m is ± 14.0 mm.

Example 1.6. A base line AB  was measured accurately using a subtense bar 1 m long. From
a point C near the centre of the base, the lengths AC and CB were measured as 9.375 m and
9.493 m, respectively. If the standard error in the angular mesurement was ± 1″ , determine the error
in the length of the line.

Solution:

In Fig. 1.3, the subtense bar PQ  is at C and the angles α and β were measured at A and
B, respectively.

It is given that

PQ = b = 1 m

AC = x1 = 9.375 m

CB = x2 = 9.493 m

For subtense bar measurements, we have

  
2

tan2
θ

b
x =

…(a)

where x = the computed distance, and
θ = the angle subtended at the station by the subtense bar.

When θ  is small, Eq. (a) can be written as

Fig. 1.3
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 ,
θ
b

x =  or   
x

b=θ

Therefore 2θ
θdb

dx −=  2









−=

x

b

db θ
)(

2

radiansind
b

dx θθ−=

Writing ,,,, ασσσσ CBACAB and βσ  as the respective standard errors, we have

000426.0
206265

1

1

375.9 22
1 ±=×=−= ασσ
b

x
AC m

000437.0
206265

1

1

493.9 22
2 ±=×=−= βσσ

b

x
CB  m

222
CBACAB σσσ +=  

      22 000437.0000426.0 +±=ABσ

     = ± 0.61 mm.

The ratio of the standard error to the measured length (AB = 9.375 + 9.493 = 18.868 m) is
given as

= 
868.18

00061.0
 = 1 in 30931

Example 1.7. The sides of a rectangular tract were measured as 82.397 m and 66.132 m with
a 30 m metallic tape too short by 25 mm. Calculate the error in the area of the tract.

Solution: Let the two sides of the tract be x1 and x2 then the area

   y = x1.x2 ...(a)

If the errors in x1 and x2  are dx1 and dx2, respectively, then the error in y

       2
2

1
1

dx
x

y
dx

x

y
dy

∂
∂+

∂
∂= ...(b)

Now from Eq. (a), we get

132.662
1

==
∂
∂

x
x

y
m

397.821
2

==
∂
∂

x
x

y
m.

The values of 1dx and 2dx  are computed as
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069.0397.82
30

025.0
1 =×=dx  m

055.0132.66
30

025.0
2 =×=dx  m.

Therefore from Eq. (b), we get

 055.0397.82069.0132.66 ×+×=dy  = 9.095 m2.

The percentage of error

    100
132.66397.82

095.9 ×
×

=  = 0.17 %.

Example 1.8. Two sides and the included angle of a triangle were measured as under:

a = 757.64 ± 0.045 m

b = 946.70 ± 0.055 m

C = 54°18' ± 25"

Compute the area of the triangle and its standard error.

Solution:

(a) Area of a triangle  CabA sin
2

1= ...(a)

   = ° ′1
2

757 64 946 70 54 18× . × . × sin  = 291236.62 m2.

(b) Standard error in A

    

222
2 







∂
∂+







∂
∂+







∂
∂= cbaA c

A

b

A

a

A σσσσ ...(b)

Differentiating Eq. (a), we get

∂
∂
A
a

b C= = ° ′ =1
2

1
2

946 70 54 18 384 400sin × . × sin .

∂
∂
A
b

b C= = ° ′ =1
2

1
2

747 64 54 18 307 633sin × . × sin .

∂
∂

A
C

ab C= − = − ° ′ =1
2

1
2

946 70 757 64 54 18 209274 739cos × . × . × sin .

Now from Eq. (b), we get

( ) ( )
2

22

206265
25

739.209274055.0633.307045.0400.384 




 ×+×+×±=Aσ

    = ± 35.05 m2.
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OBJECTIVE TYPE QUESTIONS

1. Accuracy is a term which indicates the degree of conformity of a measurement to its

(a) most probable value. (b) mean value.

(c) true value. (d) standard error.

2. Precision is a term which indicates the degree of conformity of

(a) measured value to its true value.

(b) measured value to its mean value.

(c) measured value to its weighted mean value.

(d) repeated measurements of the same quantity to each other.

3. Theory of probability is applied to

(a) gross errors. (b) systematic errors.

(c) random errors. (d) all the above.

4. Residual of a measured quantity is the

(a) difference of the observed value from its most probable value.

(b) value obtained by adding the most probable value to its true value.

(c) remainder of the division of the true value by its most probable value.

(d) product of the most probable value and the observed value.

5. If the standard deviation of a quantity is ± 1″, the maximum error would be

(a) 2.39″. (b) 3.29″.
(c) 2.93″. (d) 9.23″.

6. If the standard deviation of an observation is ± 10 m, the most probable error would be

(a) 6.745 m. (b) 20 m.

(c) 10 m. (d) 0.6745 m.

7. The systematic errors

(a) are always positive. (b) are always negative.

(c) may be positive or negative. (d) have same sign as the gross errors.

8. Variance of a quantity is an indicator of

(a) precision. (b) accuracy.

(c) randomness. (d) regular nature.

9. In the case of a function y = f(x1,x2), the error in y is computed as

(a) 2
2

1
1

dx
x

f
dx

x

f
dy 





∂
∂+





∂
∂=

(b) 2

2

2
1

2

1

dx
x

f
dx

x

f
dy 





∂
∂+





∂
∂=
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(c) ( ) ( )2
2

2

2
1

1

dx
x

f
dx

x

f
dy 





∂
∂+





∂
∂=

(d)

2

2
2

2

1
1







∂
∂+





∂
∂= dx

x

f
dx

x

f
dy

10. The adjusted value of an observed quantity may contain

(a) small gross errors. (b) small systematic errors.

(c) small random errors. (d) all the above.

11. One of the characteristics of random errors is that

(a) small errors occur as frequently as the large errors.

(b) plus errors occur more frequently than the negative errors.

(c) small errors occur more frequently than the large errors.

(d) large errors may occur more frequently.

12. If the standard error of each tape length used to measure a length is ± 0.01 m. the standard error
in 4 tape lengths will be

(a) 0.01 m. (b) 0.02 m.

(c) 0.04 m. (d) 0.16 m.

ANSWERS

1. (c) 2. (d) 3. (c) 4. (a) 5. (b) 6. (a)

7. (c) 8. (a) 9. (a) 10. (c) 11. (c) 12. (b).
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Three methods of distance measurement are briefly discussed in this chapter. They are

Direct method using a tape or wire

Tacheometric method or optical method

EDM (Electromagnetic Distance Measuring equipment) method.

2.1 DIRECT METHOD USING A TAPE

In this method, steel tapes or wires are used to measure distance very accurately. Nowadays, EDM
is being used exclusively for accurate measurements but the steel tape still is of value for measuring
limited lengths for setting out purposes.

Tape measurements require certain corrections to be applied to the measured distance depending
upon the conditions under which the measurements have been made. These corrections are discussed
below.

Correction for Absolute Length

Due to manufacturing defects the absolute length of the tape may be different from its designated
or nominal length. Also with use the tape may stretch causing change in the length and it is
imperative that the tape is regularly checked under standard conditions to determine its absolute
length. The correction for absolute length or standardization is given by

L
l

c
ac = ...(2.1)

where

c = the correction per tape length,

l = the designated or nominal length of the tape, and

L= the measured length of the line.

If the absolute length is more than the nominal length the sign of the correction is positive and vice
versa.

Correction for Temperature

If the tape is used at a field temperature different from the standardization temperature then the
temperature correction to the measured length is

( )Ltmttc 0−=α ...(2.2)

��

�
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End support
Intermediate support

Catenary

Sag

Chord Length

where

α = the coefficient of thermal expansion of the tape material,

tm = the mean field temperature, and

t0 = the standardization temperature.

The sign of the correction takes the sign of ( )0ttm − .

Correction for Pull or Tension

If the pull applied to the tape in the field is different from the standardization pull, the pull correction
is to be applied to the measured length. This correction is

( )
L

AE

PP
pc 0−

= ...(2.3)

where

P = the pull applied during the measurement,

      0P = the standardization pull,

A = the area of cross-section of the tape, and

E = the Young’s modulus for the tape material.

The sign of the correction is same as that of ( )0PP − .

Correction for Sag

For  very accurate measurements the tape can be allowed to hang in catenary between two supports
(Fig. 2.1a). In the case of long tape, intermediate supports as shown in Fig. 2.1b, can be used to
reduce the magnitude of correction.

                 (a)   (b)
Fig. 2.1

The tape hanging between two supports, free of ground, sags under its own weight, with
maximum dip occurring at the middle of the tape. This necessitates a correction for sag if the tape
has been standardized on the flat, to reduce the curved length to the chord length. The correction
for the sag is

c W

P
Lg = �

��
�
��

1
24

2

...(2.4)

where

W = the weight of the tape per span length.

Sag



�� ������	
�

The sign of this correction is always negative.

If both the ends of the tape are not at the same level, a further correction due to slope is
required. It is given by

′ =c cg g cos α ...(2.5)

where

α = the angle of slope between the end supports.

Correction for Slope

If the length L is measured on the slope as shown in Fig.
2.2, it must be reduced to its horizontal equivalent
L cos θ. The required slope correction is

c Ls = −1 cos θ� � (exact)    ...(2.6)

   
L

h

2

2

= (approximate)    …(2.7)

where

 θ = the angle of the slope, and

  h = the difference in elevation of the ends of the tape.

The sign of this correction is always negative.

Correction for Alignment

If the intermediate points are not in correct alignment with ends
of the line, a correction for alignment given below, is applied to
the measured length (Fig. 2.3).

L

d
cm 2

2

= (approximate)         …(2.8)

where

d = the distance by which the other end of the tape is out of alignment.

The correction for alignment is always negative.

Reduction to Mean Sea Level (M.S.L.)

In the case of long lines in triangulation surveys the relationship between
the length AB measured on the ground and the equivalent length A′B′
at mean sea level has to be considered (Fig. 2.4). Determination of the
equivalent mean sea level length of the measured length is known as
reduction to mean sea level.

 The reduced length at mean sea level is given by

L R

R H
L′ =

+( )
…(2.9)

L cosθ

hL

θ

Fig. 2.2

dL

A B
Fig. 2.3

A

R

L

L′
M.S.L.

A′

Fig. 2.4
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where

R = the mean earth’s radius (6372 km), and

H = the average elevation of the line.

When H is considered small compared to R, the correction to L is given as

c HL
R

approximatemsl = ( ) …(2.10)

The sign of the correction is always negative.

The various tape corrections discussed above, are summarized in Table 2.1.

2.2 ERROR IN PULL CORRECTION DUE TO ERROR IN PULL

If the nominal applied pull is in error the required correction for pull will be in error. Let the error
in the nominal applied pull P be ± Pδ  then the

  actual pull correction = 
( )

L
AE

PPP 0−± δ
…(2.11)

and nominal pull correction = 
( )

L
AE

PP 0−
…(2.12)

Therefore error = actual pull correction – nominal pull correction

 = 
( )

L
AE

PPP 0−± δ
 – 

( )
L

AE

PP 0−

 = ± P
AE

L δ …(2.13)

From Eq. (2.12), we have

  
0

correction pull nominal

PPAE

L

−
=

Therefore from Eq. (2.13), we get

Error in pull correction = P
PP

δ
0

correction pull nominal
 

−
± …(2.14)

From Eq. (2.14), we find that an increase in pull increases the pull correction.

2.3 ERROR IN SAG CORRECTION DUE TO ERROR IN PULL

If the applied pull is in error the computed sag correction will be in error. Let the error in pull be
± δP then

the actual sag correction L
PP

W
2

24

1






±
−=

δ
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22

1
24

1
−







 ±






−=

P

P
L

P

W δ

and nominal sag correction L
P

W
2

24

1










−=

Therefore error 











−





 ±










−=

−

11
24

1
22

P

P
L

P

W δ


















−=

P

P
L

P

W δ
2

24

1
2

�  neglecting the terms of higher power.

= �  nominal sag correction 






P

Pδ2
...(2.15)

Eq. (2.15) shows that an increase in pull correction reduces the sag correction.

2.4 ELONGATION OF A STEEL TAPE WHEN USED FOR MEASUREMENTS IN A
      VERTICAL SHAFT

Elongation in a steel tape takes place when transferring the level in a tunnel through a vertical shaft.
This is required to establish a temporary bench mark so that the construction can be carried

Table 2.1

Correction Sign Formula

Absolute length (ca) ± L
l

c

Temperature (ct) ± ( )Ltmt 0−α

Pull (cp) ±
( )

L
AE

PP 0−

Sag (cg) – L
P

W
2

24

1








Slope (cs) – ( )Lθcos1 −  (exact)

Alignment (cm)  –
L

h

2

2
  (approximate)

Mean sea level (c
msl

) −
L

d

2

2
  (approximate)

R

HL
 (approximate)
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out to correct level as well as to correct line. Levels are carried down from a known datum, may
be at the side of the excavated shaft at top, using a very long tape hanging vertically and free of
restrictions to carry out operation in a single stage. In the case when a very long tape is not
available, the operation is carried out by marking the separate tape lengths in descending order.

The elongation in the length of the tape AC  hanging vertically from a fixed point A  due to
its own weight as shown in Fig. 2.5, can be determined as below.

Let s = the elongation of the tape,

g = the acceleration due to gravity,

x = the length of the suspended tape used
for the measurement,

(l – x) = the additional length of the tape not required
in the measurements,

A = the area of cross-section of the tape,

E = the modulus of elasticity of the tape material,

m = the mass of the tape per unit length,

M = the attached mass,

l = the total length of the tape, and

P0 = the standard pull.

The tension sustained by the vertical tape due to self-loading is maximum at A. The tension
varies with y considered from free-end of the tape, i.e., it is maximum when y is maximum and,
therefore, the elongations induced in the small element of length dy, are greater in magnitude in the
upper regions of the tape than in the lower regions.

Considering an element dy at y,

loading on the element dy = mgy

and extension over the length dy 
AE

dy
mgy=

Therefore, extension over length AB, Ex ( )∫ −
=

l

xl AE

dy
mgy

  
( )

constant
2

2

+







=

−

l

xl

y

AE

mg

We have Ex = 0 when  y = 0, therefore the constant = 0. Thus

    ( )[ ]22

2
xll

AE

mg
Ex −−=  



 −=

2

2 xl

AE

mgx
…(2.16)

To ensure verticality of the tape and to minimize the oscillation, a mass M may be attached
to the lower end A. It will have a uniform effect over the tape in the elongation of the tape.

x

l

dy

y

(l−x)

A

B

Support

Fixed end of tape

Measured length

Free end of tape

C

Fig. 2.5
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Additional extension due to mass M over length x

    
AE

x
Mg=

If the standard pull is P0 , it should be allowed in the same way as the standard pull in the
pull correction.

Therefore elongation over length x becomes

AE

xP

AE

Mgxxl

AE

mgx
Ex

0

2

2 −+



 −=

   ( ) 







−+−=

g

P
Mxl

m

AE

gx 02
2 …(2.17)

2.5 TACHEOMETRIC OR OPTICAL METHOD

In stadia tacheometry the line of sight of the tacheometer may be kept horizontal or inclined
depending upon the  field conditions. In  the  case of horizontal line of sight (Fig. 2.6), the horizontal
distance between the instrument at A and the staff at B is

D = ks + c ...(2.18)

where

 k and c = the multiplying and additive constants of the tacheometer, and

       s = the staff intercept,

   = ST – SB , where ST  and SB are the top hair and bottom hair readings, respectively.

Generally, the value of k and c are kept equal to 100 and 0 (zero), respectively, for making
the computations simpler. Thus

D = 100 s ...(2.19)

Datum

D

s

hi

hA hB

SM

A B

Levelling staff

    Horizontal line of sight
Tacheometer

Fig. 2.6

The elevations of the points, in this case, are obtained by determining the height of instrument
and taking the middle hair reading. Let

hi = the height of the instrument axis above the ground at A,

hA, hB = the elevations of  A and B, and
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SM = the middle hair reading

then the height of  instrument is

H.I. = hA + hi

and hB = H.I. –  SM

= hA + hi – SM ...(2.20)

In the case of inclined line of sight as shown in
Fig. 2.7, the vertical angle α  is measured, and the horizontal
and vertical distances, D and V, respectively, are determined
from the following expressions.

   α2cosksD = ...(2.21)

   α2sin
2
1

ksV = ...(2.22)

The elevation of B is computed as below.

        hB = hA + hi +  V – SM ...(2.23)

2.6 SUBTENSE TACHEOMETRY

In subtense tacheometry the distance is determined by measuring the horizontal angle subtended by
the subtense bar targets (Fig. 2.8a) and for heighting, a vertical angle is also measured
(Fig. 2.8b).

Let b = the length of the subtense bar PQ,

θ = the horizontal angle subtended by the subtense bar targets P and Q at the
station A, and

α = the vertical angle of R at O

then             

2
tan2

θ
b

D =  ≈ θ
b

 (when θ is small) …(2.24)

            αtanDV = …(2.25)

and             siAB hVhhh −++= …(2.26)

where  hs = the height of the subtense bar above the ground.

When a vertical bar with two targets is used vertical angles are required to be measured and
the method is termed as tangential system.

2.7 EFFECT OF STAFF VERTICALITY

In Fig. 2.9, the staff is inclined through angle δ towards the instrument. The staff intercept for the
inclined staff would be PQ rather than the desired value MN for the vertical staff.

Datum

s

hi

hA

hB

V

A

BHorizontal

Inclined line of sight

SMα

Fig. 2.7
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Datum

hi

hA

hB

V

A

B
Horizontal

Inclined line of sight

hS
α

b

P

Q

R

O

Subtense bar

(a)                                                                      (b)
Fig. 2.8

Draw two lines ab and cd perpendicular to the line of sight. Since ab and cd are very close
to each other, it can be assumed that ab = cd. Moreover,

 ∠ PBM = δ
 ∠ MEa = α
  ∠ PFc = α + δ

From ∆MEa, we have

     αcosMEaE =

or      cdMNab == αcos …(2.27)

From DPFc, we have

     cF PF= +cos α δ� �
or      cd PQ= +cos α δ� � …(2.28)

Equating the values of cd from Eqs. (2.27) and (2.28), we get

     MN PQcos cosα α δ= +� �

or     MN
PQ

=
+cos

cos

α δ
α
� �

…(2.29)

The Eq. (2.29) holds for the  case when the staff is inclined away from the instrument for
angle of elevation (α).

In Fig. 2.10, the staff is inclined away from the instrument. In this case

   ∠ PFc = α – δ

Therefore,      MN
PQ

=
−cos

cos

α δ
α
� �

…(2.30)

Datum

b/2
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Fig. 2.9 Fig. 2.10

The Eq. (2.30) holds for the case the staff is inclined towards the instrument for the angle
of elevation (α).

2.8 EFFECT OF ERROR IN MEASUREMENT OF HORIZONTAL ANGLE IN
       SUBTENSE TACHEOMETRRY

From Eq. (2.24), the horizontal distance RO (Fig. 2.8a) is

2
tan2

θ
b

D =  = θ
b

   (when θ is small) …(2.31)

    θ
θ

d
b

dD
2

−=

Substituting the value of θ from Eq. (2.31), we get

   θd
b

D
dD

2

−= …(2.32)

The above expression gives the error in D for the given accuracy in θ. The negative sign
shows that there is decrease in D for increase in θ.

The relative accuracy or fractional error in linear measurements is given by the following
expression.

θd
b

D

D

dD −= …(2.33)

2.9 EFFECT OF SUBTENSE BAR NOT BEING NORMAL TO THE LINE JOINING
THE INSTRUMENT AND THE SUBTENSE BAR

Let the subtense bar A′B′ be out from being normal to the line OC by an angle δ as shown in Fig.
2.11,
then

OC′ = D′ = A′C′ cot 
2

θ

A′C′ = A′C cos δ
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′ = ′D A C cos cotδ θ
2

   = b
2 2

cos cotδ θ
 …(2.34)

Therefore error in horizontal distance D = D – D′

   
2

cotcos
22

cot
2

θδθ bb −=

   ( )δθ
cos1

2
cot

2
−= b

  …(2.35)

2.10 EELECTROMAGNETIC DISTANCE MEASUREMENT (EDM)

The EDM equipments which are commonly used in land surveying are mainly electronic or microwave
systems and  electro-optical instruments. These operate on the principle that a transmitter at the
master station sends modulated continuous carrier wave to a receiver  at  the remote  station  from
which  it  is  returned  (Fig. 2.12). The  instruments measure slope distance D between transmitter
and receiver. It is done by modulating the continuous carrier wave at different frequencies and then
measuring the phase difference at the master between the outgoing and incoming signals. This
introduces an element of  double distance is introduced. The expression for the distance D traversed
by the wave is

knD ++= λ
π
φλ
2

2 …(2.36)

where

φ = the measured phase difference,

λ = the modulated wavelength,

n = the number of complete wavelength contained within the double distance (an unknown),
    and

k = a constant.

To evaluate n, different modulated frequencies are deployed and the phase difference of the
various outgoing and measuring signals are compared.

If c0 is the velocity of light in vacuum and f  is the frequency, we have

nf

c0=λ …(2.37)

where n is the refractive index ratio of the medium through which the wave passes. Its value
depends upon air temperature, atmospheric pressure, vapour pressure and relative humidity. The
velocity of light c0 in vacuum is taken as 3 × 108 m/s.

Fig. 2.11

θ /2
θ

A′

B′

O

b/2

b/2

A

B

C
C′

D
D′

δ
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Fig. 2.12

The infrared based EDM equipments fall within the electro-optical group. Nowadays, most local
survey and setting out for engineering works are being carried out using these EDM’s. The infrared
EDM has a passive reflector, using a retrodioptive prism to reflect the transmitted infrared wave to
the master. The distances of 1-3 km can be measured with an accuracy of ± 5 mm. Many of these
instruments have microprocessors to produce horizontal distance, difference in elevation, etc.

Over long  ranges (up to 100 km with an accuracy of ± 50 mm) electronic or microwave
instruments  are  generally  used. The remote instrument needs an operator acting to the instructions
from the master at the other end of the line. The signal is transmitted from the master station,
received by the remote station and retransmitted to the master station.

Measurement of Distance from Phase Difference

The difference of the phase angle of the reflected signal and the phase angle of the transmitted signal
is the phase difference. Thus, if φ1 and φ2 are the phase angles of the transmitted and reflected
signals, respectively, then the phase angle difference is

12 φφφ −=∆ …(2.38)

The phase difference is usually expressed as a fraction of the wavelength (λ). For example,

∆φ 0° 90° 180° 270° 360°

Wavelength 0 λ/4 λ/2 3λ/4 λ
Fig. 2.13 shows a line AB. The wave is transmitted from the master at A towards the

reflector at B and is reflected back by the reflector and received back by the master at A. From
A to B the wave completes 2 cycles and 1/4 cycles. Thus if at A phase angle is 0° and at B it is
90° then

4
90

λφ ==∆ �

and the distance between A and B is

4
2

λλ +=D

Again from B to A, the wave completes 2 cycles and 1/4 cycles. Thus if φ1 is 90° at B and
φ2 is 180° at A, then

4
90

λφ == �D

and the distance between A and B is

Transmitter

Wave fronts

λ/4

D

λ

λ

Master
station

Remote
station

Receiver
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4
2

λλ +=D

The phase difference between the wave at A when transmitted and when received back is
180°, i.e.,  λ/2 and the number of complete cycles is 4. Thus






 +=

+=

2
4

2

1
2

42

λλ

λλ

D

D

…(2.39)

The above expression in a general form can be written as

( )λλ ∆+= nD
2

1

where
n = the number of complete cycles of the wave in traveling from A to B and back from B

   to A, and
∆l = the fraction of wavelength traveled by the wave from A to B and back from B to A.
The value of ∆λ depends upon the phase difference of the wave transmitted and that received

back at the master. It is measured as phase angle (φ) at A by an electrical phase detector built in
the master unit at A. Obviously,

λφλ 




 ∆=∆

�360
where

∆φ = the phase difference

    = 12 φφ −
In Eq. (3.39), n is an unknown and thus the value of D cannot be determined. In EDM

instruments the frequency can be increased in multiples of 10 and the phase difference for each
frequency is determined separately. The distance is calculated by evaluating the values of n solving
the following simultaneous equations for each frequency.

( )1112
1 λλ ∆+= nD …(2.40)

( )2222

1 λλ ∆+= nD …(2.41)

( )3332

1 λλ ∆+= nD …(2.42)

For more accurate results, three or more frequencies are used and the resulting equations are
solved.

Let us take an example to explain the determination of  n1, n2, n3, etc. To measure a distance
three frequencies f1, f2, and f3 were used in the instrument and phase differences ∆λ1, ∆λ2, and

∆λ3 were measured. The f2 frequency is 110

9
f  and the f3 frequency is 1100

99
f . The wavelength

of  f1 is 10 m.
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We know that        
f

1∝λ

therefore,
1

2

2

1

f

f
=

λ
λ

1
2

1
2 λλ

f

f
= = f

f

1

1
9

10

10×

    = =100
9

11 111. m.

2¼ cycle

1 cycle
¼ cycle

1 cycle

180°0° 180°φ ° = 360° 360°90°360° 180°360°

Wave travelling
from A to B

      A
Master

Wave travelling
from B to A

     A
Master

       B
Reflector

(Outward) (Inward)

4½ cycle

2¼ cycle

Fig. 2.13

Similarly, λ3
1

1
99

100

10= f

f
×  = 1000

99
 = 10.101 m.

Let the wavelength of the frequency (f1 – f2) be λ′  and that of (f1 – f3) be λ″, then

( ) 101010

10

1
1

11

21

11 ×===
−

=′ λλλλ
f

f

ff

f
 = 100 m

( ) 10100100

100

1
1

11

31

11 ×===
−

=′′ λλλλ
f

f

ff

f
 = 1000 m.

Since one single wave of frequency (f1 – f2) has length of 100 m, λ1 being 10 m and  λ2 being
11.111 m, the f1 frequency wave has complete 10 wavelengths and the f2 frequency wave has
complete 9 wavelengths within a distance of 100 m.

To any point within the 100 m length, or stage, the phase of the (f1 – f2) frequency  wave
is equal to the difference in the phases of the other two waves. For example, at the 50 m point
the phase of f1 is (10/2) × 2π  = 10π whilst that of f2 is (9/2) × 2π = 9π, giving a difference of



�� ������	
�

10π – 9π = π, which is the phase of the (f1 – f2) frequency. This relationship allows distance to
be measured within 100 m. This statement applies as well when we consider a distance of
1000 m. Within distance of 500 m, the f1  wave has phase of (100/2) × 2π  = 100π, the f3 wave
has  (99/2) × 2π  = 99π, and the (f1 – f3) wave has phase of 100π – 99π = π. If in a similar manner
further frequencies are applied, the measurement can be extended to a distance of 10,000 m, etc.,
without any ambiguity.

The term fine frequency can be assigned to f1 which appear in all the frequency difference
values, i.e. (f1 –  f2) whilst the other frequencies needed to make up the stages, or measurements
of distance 100 m, 1000 m, etc., are termed as coarse frequencies. The f1 phase difference
measured at the master station covers the length for 0 m to 10 m. The electronics involved in
modern EDM instruments automatically takes care of the whole procedure.

On inspection of Fig. 2.14, it will be seen that two important facts arise:

(a) When ∆λ1 < ∆λ2, n1 = n2 + 1      (n1  = 7, n2 = 6)

(b) When ∆λ1 > ∆λ2, n1 = n2            (n1  = 5, n2 = 5)

These  facts are important when evaluating overall phase differences.

Now from Eqs. (2.40) and (2.41), we get

111 λλ ∆+n  = 222 λλ ∆+n

111 λλ ∆+n  = ( ) 221 1 λλ ∆+−n ...(2.43)

From Eq. (3.43) the value of n1 can be determined.

Fig 2.14

Effect of Atmospheric Conditions

All electromagnetic waves travel with the same velocity in a vacuum. The velocity of the waves
is reduced when travelling through atmosphere due to retarding effect of atmosphere. Moreover,
the velocity does not remain constant due to changes in the atmospheric conditions. The wavelength
λ of a wave of frequency f  has the following relationship with its velocity V.

f

V=λ

EDM instruments use electromagnetic waves, any change in V will affect λ and thus the
measurement of the distance is also affected because the distance is measured in terms of wavelengths.

Refractive Index Ratio

The changes in velocity are determined from the changes in the refractive index ratio (n). The
refractive index ratio is the ratio of the velocity of electromagnetic waves in vacuum to that in

1 2 3 4 5 6

1 2 3 4 5 6 7

∆λ′ 2

∆λ2

∆λ1∆λ′ 1

Master MasterReflector

f1, λ1

f2, 
9

10
λ1

(a) (b)
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atmosphere. Thus

V

c
n 0=

or
n

c
V 0=

The value of n is equal to or greater than unity. The value depends upon air temperature,
atmospheric pressure and the vapour pressure.

For the instruments using carrier waves of wavelength in or near visible range of electromagnetic
spectrum, the value of n is given by

( ) ( ) 










−=−

760

273
11 0

p

T
nn …(2.44)

          










=

760

273
0

p

T
NN …(2.45)

where
p = the atmospheric pressure in millimetre of mercury,
T = the absolute temperature in degrees Kelvin (T = 273° + t°C),
n0 = the refractive index ratio of air at 0°C and 760 mm of mercury,
N = (n – 1) and,
N0 = (n0 – 1).

The value of n0 is given by

( ) 6
420 10

068.08864.4
604.2871 −×





+





+=−

λλ
n …(2.46)

where λ is the wavelength of the carrier wave in µm.

The instruments that use microwaves, the value of n for them is obtained from

  ( ) ( ) e
TT

ep
T

n 




 ++−=×− 5748
1

26.8649.103
101 6

…(2.47)

where e is the water vapour pressure in millimetre of mercury.

Determination of Correct Distance

If the distance D′ has not been measured under the standard conditions, it has to be corrected. The
correct distance D is given by






′=

n

n
DD s

…(2.48)
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where

ns = the standardizing refractive index,

n = the refractive index at the time of measurement.

The values of ns and n are obtained from Eq. (2.44) taking the appropriate values of p, T, n0,
and e.

Slope and Height Corrections

The measured lengths using EDM instruments are generally slope lengths. The following corrections
are applied to get their horizontal equivalent and then the equivalent mean sea level length.

The correction for slope is given by Eqs. (2.6) and (2.7) and that for the mean sea level by
Eq. (2.10). The sign of both the corrections is negative. Thus if the measured length is L′, the
correct length is

L L c c

L L HL
R

g msl= ′ + +

= ′ − − ′ − ′1 cos θ� �

  L
R

H ′




 −= θcos …(2.49)

where
θ = the slope angle of the line,
H = the average elevation of the line, and
R = the mean radius of the earth (≈ 6370 km).

2.11 ACCURACY IN VERTICAL ANGLE MEASUREMENTS

The accuracy, with which a vertical angle must be measured in order to reduce a slope distance
to the corresponding horizontal distance, can be determined. Accuracy in distances can be expressed
as absolute or relative. If a distance of 10,000 m is measured with an accuracy of 1 m then the
absolute accuracy with which the distance has been measured is 1 m. For this case, the relative
accuracy is 1 m/10,000 m or 1/10,000 or 1:10,000. The relative accuracy is preferred as it does
not involve the length of lines.

Fig 2.15

In Fig 2.15, let the slope distance AB be S and the corresponding horizontal distance be D.
If α is the slope angle, we can write

D = S cos α …(2.50)
Differentiating Eq. (2.50), we get

dD = – S cos α dα …(2.51)

α
A

D

S

B
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Dividing Eq. (2.51) by Eq. (2.50) and disregarding the negative sign, the relative accuracy is
given as

D

dD
= α

αα
cos

sin

S

dS

     = αα dtan …(2.52)

where dα is a the desired accuracy in measurement of the slope angle α for an accuracy of 
D

dD
in

linear measurements.

Example 2.1. A line AB between the stations A and B was measured as 348.28 using a 20
m tape, too short by 0.05 m. Determine

the correct length of AB,

the reduced horizontal length of AB if AB lay on a slope of 1 in 25, and

the reading required to produce a horizontal distance of 22.86 m between two pegs, one being
0.56 m above the other.

Solution:

(a) Since the tape is too short by 0.05 m, actual length of AB will be less than the measured
length. The correction required to the measured length is

L
l

c
ca =

It is given that

c = 0.05 m

l = 20 m

L = 348.28 m

28.348
20

05.0 ×=ac  = 0.87 m

The correct length of the line

   = 348.28 – 0.87 = 347.41 m

(b) A slope of 1 in 25 implies that there is a rise of 1 m for every 25 m horizontal distance.
If the angle of slope is α  (Fig. 2.16) then

   tan α = 1
25

25

1
tan 1−=α  = 2°17′26″

Thus the horizontal equivalent of the corrected slope
length 347.41 m is

D
25 m

1 mαA

B

Fig. 2.16
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D AB=

= ° ′ ′′

cos

. × cos ( )

α

347 41 2 17 26  = 347.13 m.

Alternatively, for small angles, 
25

1=α  radians = 13712 ′′′� , which gives the same value of

D as above.

From Fig. 2.17, we have

22

22

56.086.22 +=

+= CBACAB

 = 22.87 m

Therefore the reading required

    = 22.87 + 87.22
0.20

05.0 ×  = 22.93 m

Example 2.2. A tape of standard length 20 m at 85°F was used to measure a base line. The
measured distance was 882.50 m. The following being the slopes for the various segments of the
line:

Segment length (m) Slope

100 2°20′
150 4°12′
50 1°06′
200 7°48′
300 3°00′

82.5 5°10′

Calculate the true length of the line if the mean temperature during measurement was 63°F and
the coefficient of thermal expansion of the tape material is 6.5 × 10–6 per °F.

Solution:

Correction for temperature

( )Lttc mt 0−=α

   ( ) 50.8828563105.6 6 ×−××= −  = – 0.126 m

Correction for slope

( )[ ]Lcs αcos1−Σ=

   
( ) ( ) ( )
( ) ( ) ( ) 5.82015cos1300003cos1200847cos1

50601cos1150214cos1100022cos1

×′−+×′−+×′−

+×′−+×′−+×′−=
���

���

   = –3.092 m

0.56 mA

B

C22.86 m

Fig. 2.17
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     Total correction = st cc +  = –0.126 + (– 3.092) = – 3.218 m

       Correct length = 882.50 – 3.218 = 879.282 m

Example 2.3. A base line was measured by tape suspended in catenary under a pull of 145
N, the mean temperature being 14°C. The lengths of various segments of the tape and the difference
in level of the two ends of a segment are given in Table 2.2.

  Table 2.2

Bay/Span Length Difference in
(m) level (m)

1 29.988 + 0.346

2 29.895 – 0.214

3 29.838 + 0.309

4 29.910 – 0.106

If the tape was standardized on the flat under a pull of 95 N at 18°C determine the correct
length of the line. Take

Cross-sectional area of the tape = 3.35 mm2

Mass of the tape = 0.025 kg/m

Coefficient of linear expansion = 0.9 × 10–6 per °C

Young’s modulus = 14.8 × 104 MN/m2

Mean height of the line above M.S.L. = 51.76 m

Radius of earth = 6370 km

Solution:

It is given that

P0 = 95 N, P = 145 N

t0 = 18°C, tm = 14°C

A = 3.35 mm2, =α  0.9 × 10–6 per °C

w = mg = 0.025 × 9.81 kg/m

E = 14.8 × 104 MN/m2 = 6

64

10

10108.14 ××
 N/mm2 = 14.8 × 104 N/mm2

H = 51.76 m, R = 6370 km

Total length of the tape L = 29.988 + 29.895 + 29.838 + 29.910 = 119.631 m

Temperature correction

   ( )Lttc mt 0−=α
= 0.9 × 10–6 × (14 – 18) × 119.631 = – 0.0004 m

Pull correction

   
( )

L
AE

PP
c p

0−
=
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= 4108.1435.3

631.119)95145(

××
×−

 = 0.0121 m

Sag correction

   L
P

W
cg

2

24

1





−=

= 

















+





+






+






− 4

2
4

3

2
3

2

2
2

1

2
1

24

1

24

1

24

1

24

1
l

P

wl
l

P

wl
l

P

wl
l

P

wl

( )3
4

3
3

3
2

3
12

2

24
llll

P

w +++−=

( ) ( )3333
2

2

910.29838.29895.29988.29
14524

81.9025.0
+++

×
×−=

= – 0.0128 m

Slope correction

   
L

h
cs 2

2

−=

= 







+++×

910.29
106.0

838.29
309.0

895.29
214.0

988.29
346.0

2
1 2222

= – 0.0045 m

M.S.L.  correction

  cmsl = – 
R

HL

      = – 
10006370

631.11976.51

×
×

 = – 0.0010 m

 Total correction  = mslsgpt ccccc ++++

      = – 0.0004 + 0.0121 – 0.0128 – 0.0045 – 0.0010 = – 0.0066 m

 Correct length    = 119.631 – 0.0066 = 119.624 m

Example 2.4. It is proposed to widen a highway by increasing the gradient of the side slope
to 1 in 1.5. The difference in level between the bottom and top of the embankment at a critical
section was measured as 15.0 m. The length of the embankment along the side slope was measured
as 29.872 m using a steel tape under a pull of 151 N at a temperature of 27°C. Determine the
additional road width which will be available with the new slope.
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The tape was standardized on the flat at 18°C under a pull of 47 N. The cross-sectional area
of the tape is 6.5 mm2, E = 20.8 × 104 MN/m2 and α  = 1.1 × 10–5 per °C.

Solution:

Temperature correction

( )Lttc mt 0−=α

   = 1.1 × 10–5 × (27 – 18) × 29.872 = 0.0030 m

Pull correction

( )
L

AE

PP
c p

0−
=

    = 

6

6
4

10

10
108.205.6

872.29)47151(

×××

×−
 = 0.0023 m

Total correction to the measured slope length L = 0.0030 + 0.0023 = 0.0053 m

Correct slope length L′  = 29.872 + 0.0053 = 29.877 m.

To determine the equivalent horizontal distance x  (Fig. 2.18), the approximate formula 
L

h

2

2

given by Eq. (2.7), should not be used. This will induce a very significant error on the steep slopes
for small values of h. Instead directly the Pythagoras’s theorem should be used.

2222 15877.29 −=−′= hLx

  = 25.839 m

The existing slope

       
= = �

�
�
�

15
29 877

1
29 877

15
. .

 
2

1
=    or  1 in 2  (i.e., n = 2)

Now the additional road width d is obtained as below.

 839.255.115
1

5.1

15
−×=

=+

d

xd

 = 3.34 m

Example 2.5. A tape of 30 m length suspended in catenary measured the length of a base line.
After applying all corrections the deduced length of the base line was 1462.36 m. Later on it was
found that the actual pull applied was 155 N and not the 165 N as recorded in the field book.
Correct the deduced length for the incorrect pull.

d

h = 15 m
L′

B

x

1 in 1.5
1 in n

Proposed slope
Existing slope

Fig. 2.18
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The tape was standardized on the flat under a pull of 85 N having a mass of 0.024 kg/m
and cross-sectional area of 4.12 mm2. The Young’s modulus of the tape material is 152000
MN/ m2 and the acceleration due to gravity is 9.806 m/s2.

Solution:

It is given that

P0 = 85 N, P = 165 N, Pδ = 155 – 165 = – 10 N

E  = 6

6

10

10152000×
 N/mm2 = 152000 N/mm2

W =  0.024 × 9.806 × 30 = 7.060 kg per 30 m

A = 4.12 mm2

g = 9.806 m/s2

Nominal pull correction = 
( )

L
AE

PP 0−

   
( )

15200012.4

3085165

×
×−=  = 0.0038 m per 30 m

Nominal sag correction L
P

W
2

24

1





−=

                 30
165

060.7

24

1
2

×




×−=

           = –0.0023 m per 30 m

From Eq. (2.14), we have

Error in pull correction = P
PP

δ
0

correction pull nominal

−

                       10
85165

0038.0 ×
−

=

                       = 0.0005 m per 30 m

Since the sign of the correction is same as that of Pδ , the correction will be

    = –0.0005 m per 30 m

    
30

36.1462
0005.0 ×−=  for the whole length

    = –0.0244 m



�	�
�
�������������

 ��

From Eq. (2.15), we have

Error in sag correction = nominal sag correction × 






P

Pδ2

Since the sign of this correction is opposite of the sign of δP, the correction of pull error in
sag

  ( )
165

102
0023.0

××−+=  per 30 m

    
30

36.1462

165

102
0023.0 ×××−=  for the whole length

          = –0.0136 m

Thus the total sag correction was too small by 0.0136 m. The length of the line has, therefore,
been overestimated because the pull correction (too large) would have been added to the measured
length, since (P > P0), whilst the sag correction (too small ) would have been subtracted.

Therefore, overestimation = 0.0244 + 0.0136

  = 0.0380 m

The correct length of the line

  = 1462.36 – 0.0380 = 1462.322 m

Example 2.6. The depth of a mine shaft was measured as 834.66 m using a 1000 m steel tape
having a cross-section of 10 mm2 and a mass of 0.08 kg/m. Calculate the correct depth of the mine
shaft if the tape was standardized at a tension of 182 N. The Young’s modulus of elasticity of the
tape material is 21 × 104 N/mm2 and g = 9.806 m/s2.

Solution:

The elongation in the tape hanging vertically is given by Eq. (2.17), is

Ex ( ) 







−+−=

g

P
Mxl

m

AE

gx 02
2

It is given that

P0 = 182 N, l = 1000 m, x = 834.66 m

 g = 9.806 m/s2, E = 21 × 104 N/mm2

 A = 10 mm2, m = 0.08 kg/m, M = 0

Ex ( ) 



 −+−×

××
×=

806.9

182
066.83410002

2

08.0

102110

66.834806.9
4

     = 0.109 m

Therefore the correct depth of the shaft

     = 834.66 + 0.109

     = 834.77 m.
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Example 2.7. To determine the distance between two points A and B, a tacheometer was set
up at P and the following observations were recorded.

(a) Staff at A

Staff readings = 2.225, 2.605, 2.985

Vertical angle = + 7°54′
(b) Staff at B

Staff readings = 1.640, 1.920, 2.200

Vertical angle = – 1°46′
(c) Horizontal angle APB = + 68°32′30″

Elevation of A = 315.600 m

k = 100 m

c = 0.00 m

Determine the distance AB and the elevation of B.

Solution:

The horizontal distance is given by D = ks cos2α
If the horizontal distances PA and PB are DA and DB, respectively, then

( ) ( ) 564.74457cos225.2985.2100 2 =′×−×= �

AD m

( ) ( ) 947.55641cos640.1200.2100 2 =′×−×= �

BD m

Now in ∆ APB if ∠ APB is θ and the distance AB is D then

D D D D DA B A B
2 2 2

2 2

2

74 564 55 947 2 74 564 55 947 68 32 30

5637 686

= + −

= + − ° ′ ′′
=

cos

. . × . × . × cos

.

θ

� �

or  D = 75.085 m
(ii) The vertical distance V is given by

 α2sin
2
1

ksV =

If the vertical distances for the points A and B are VA and VB, respectively, then

( ) 347.104572sin760.0100
2

1 =′××××= �

AV  m

( ) 726.16412sin560.0100
2

1 =′××××= �

BV  m

The elevation of the line of sight for A is
H.I. = Elevation of A + middle hair reading at A – VA

     = 315.600 + 2.605 – 10.347
     = 307.858 m.
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The elevation of B is

  hB = H.I. – VB – middle hair reading at B

            = 307.858 – 1.726 – 1.920

= 304.212 m.

Example 2.8. The following tacheometric observations were made on two points P and Q
from station A.

Table 2.3

Staff at Vertical angle Staff reading

Upper Middle Lower

P – 5°12′ 1.388 0.978 0.610

Q + 27°35′ 1.604 1.286 0.997

The height of the tacheometer at A above the ground was 1.55 m. Determine the elevations
of P and Q if the elevation of A is 75.500 m. The stadia constant k and c are respectively 100 and
0.00 m. Assuming that the standard error in stadia reading is ± 1.6 mm and of vertical angle ± 1.5′,
also calculate the standard errors of the horizontal distances and height differences.

Solution:

Since the vertical angles are given, the line of sights are inclined for both the points. From Eqs.
(2.21) and (2.22), we have

α2cosksH = …(a)

α2sin
2
1

ksV = …(b)

The given data are

( ) 215,m778.0610.0388.1 11 ′==−= �αs

( ) 5327,m607.0997.0604.1 22 ′==−= �αs

Therefore the distances

( ) 161.77215cos778.0100 2 =′××= �

APH m

( ) 022.72152sin778.0100
2
1 =′××××= �

APV m

( ) 686.475327cos607.0100 2 =′××= �

AQH m

( ) 912.2453272sin607.0100
2

1 =′××××= �

AQV m

The height of the instrument
H.I. = Elevation of A + instrument height
     = 75.500 + 1.55 = 77.050 m
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Elevation of P

 hP = H.I. – VAP – middle hair reading at P

     = 77.050 – 7.022 – 0.978

     = 69.050 m

Elevation Q

HQ = H.I. + VAQ – middle hair reading at Q

    = 77.050 + 24.912 – 1.286

    = 100.676 m.

To find the standard errors of horizontal and vertical distances, the expressions (a) and (b) are
differentiated with respect to staff intercept (s) and vertical angle (α), as the distances are influenced
by these two quantities. It is assumed that the multiplying constant k is unchanged.

α2cosk
s

H =
∂
∂

ααα
α

2sinsincos2 ksks
H −=−=

∂
∂

α2sin
2
1

k
s

V =
∂
∂

…(c)

∂
∂α

α αV ks ks= =1
2

2 2 2(cos ) × cos …(d)

Thus the standard error in horizontal distance

22
2 







∂
∂+







∂
∂= ασ

α
σσ H

s

H
sH …(e)

and the standard error in vertical distance

22
2 







∂
∂+







∂
∂= ασ

α
σσ V

s

V
sV …(f)

where σs and σα are the standard errors of stadia reading and vertical angle, respectively.

In obtaining the staff intercept s at a station, two readings are involved and the standard error
in one stadia reading is ± 1.6 mm, thus the standard error σs of s is calculated as

 σ σ σs s s
2 2 2 2 2

1 2
1 6 1 6 5 12= + = + =. . . mm2

The standard error σ1 of vertical angle measurement at a station is ± 1.5′, therefore

( ) ( )24
2

22 103633.4
18060

5.1
5.1 −×=





 ×== πσα
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Now from Fig. 2.19, the difference in elevation between two points, say, A and P, is

MiAP SVhhh −−+=

or  iMPA hSVhhh −+==− …(g)

where

SM = the middle hair reading, and

hi = the height of the instrument above the
      ground.

Assuming hi as constant, the value of h will be
affected due to errors in V and SM. Thus the standard
error of h is given by

22
2









∂
∂+







∂
∂=

MS
M

Vh S

h

V

h
σσσ …(h)

From Eq. (g), we get

1=
∂
∂
V

h
   and 1=

∂
∂

MS

h

From Eq. (f), we get

2
2

2
2

2
ασ

α
σσ 







∂
∂+







∂
∂= V

s

V
sV

Substituting the value of  
s

V

∂
∂

 and α∂
∂V

 from Eq. (c)  and (d), we get

( ) 222
2

2 2cos2sin
2

1
ασασασ ksk sV +





=

     56.26.1 22 ==
MSσ mm2

Thus ( ) 2222
2

2 2cos2sin
2

1
MSsh ksk σσασασ α ++





=

and from Eq. (e), we have

( ) ( ) 222222 2sincos ασασασ ksk sH +=
Between A and P

  ( ) ( )( ) ( )2
42222 103633.42152sin1000778.010012.5215cos100 −××′××××+×′×= ��

Hσ

      = 50399.9 mm2

Fig. 2.19

hA

A

P

SM

Datum
hi

hB

V

A
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σH  = ± 224.5 mm = ± 0.22

 σh
2

2
21

2
100 2 5 12 5 12 100 0 778 1000 2 5 12= °�

��
�
�� + + °′ ′× × sin × × . . × × cos ×	 
 	 
� �

   × . × .4 3633 10 2 564 2− +	 

      = 1534.5 mm2

 σh = ± 39.2 mm = ± 0.039 mm

Between A and Q

( ) ( )( ) ( )2
42222 103633.453272sin1000607.010012.55327cos100 −××′××××+×′×= ��

Hσ

    = 32071.2 mm2

σH  = ± 179.1 mm = ± 0.18 m

σh
2

2
21

2
100 2 27 35 5 12 100 0 607 1000 2 27 35= ° ′�

��
�
�� + + ° ′× ×sin × × . . × × cos ×� � � �	 


  × . × .4 3633 10 2 564 2− +	 
 �

   = 8855.3 mm2

 σh = ± 94.1 mm = ± 0.09 m.

Example 2.9. The following tacheometric observations were made from station A to stations
1 and 2.

Table 2.4

Instrument
Staff at

Zenith Staff reading

at station angle Upper Middle Lower

A
1 96° 55′ 1.388 0.899 0.409

2 122°18′ 1.665 1.350 1.032

Calculate the errors in horizontal and vertical distances if the staff was inclined by 1° to the
vertical in the following cases:

(a) Staff inclined towards the instrument for the line A–1.

(b) Staff inclined away from the instrument for the line A–2.

The height of the instrument above ground was 1.52 m. Take stadia constants as 100 and 0.0 m.

Solution:

Let us first calculate the vertical angles from the zenith angles and the staff intercepts.

For the line A–1

α1 = 90° – 96°55′ = – 6°55′
 s1 = 1.388 – 0.409 = 0.979 m
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For the line A–2

α2 = 90° – 122°18′′  = – 32°18′
 s2 = 1.665 – 1.032 = 0.633 m

For the line A–1

The apparent horizontal distance from Eq. (2.21) when the staff is truly vertical, is

48.96556cos979.0100cos 22
1 =′××==′ �αksD m

The correct horizontal distance D when the staff is inclined, is obtained from Eq. (2.29) by

replacing in the above expression s1 by 
s1 cos

cos

α δ
α

+� � . Thus

D ks ks=
+

= +1
2

1
cos

cos
cos cos cos

α δ
α

α α δ α� � � �

  = ° + ° °′ ′100 0 979 6 55 1 6 55× . × cos × cos	 

  = 96.26 m

Therefore error = D′ – D

            = 96.48 – 96.26 = 0.22 m = 1 in 436 (approximately).

The apparent vertical distance from Eq. (2.22) is

   ( ) ( ) 70.115562sin979.0100
2

1
2sin

2

1
1 =′××××==′ �αksV m

The correct vertical distance is

V ks=
+

=
° ′ + ° ° ′

° ′
1
2

2 1
2

100 0 979 6 55 1 2 6 55

6 55
1

cos

cos
sin ×

× . × cos × sin ×

cos

α δ
α

α� � � � � � � �
� �

     = 11.68 m

Therefore, error            = V′ – V

     = 11.70 – 11.68 = 0.02 m = 1 in 584 (approximately).

For the line A–2

The apparent horizontal distance is

( ) 23.458132cos633.0100 2 =′××=′ �D m

When the staff is inclined away from the instrument the correct horizontal distance from Eq.
(2.30), is

( ) ( )8132cos18132cos633.0100 ′×−′××= ���D

  = 45.72 m
Therefore    error = D′ – D

         = 45.23 – 45.72 = 0.49 m = 1 in 93 (approximately).
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The apparent vertical distance is

′ = ° ′ =V 1
2

100 0 633 2 32 18 28 59× × . × sin × .� � m

The correct vertical distance is

V =
° ′ − ° ° ′

° ′
1
2

100 0 633 32 18 1 2 32 18

32 18
×

× . × cos × sin ×

cos

� � � �
� �

   = 28.90 m

Therefore error = V′ – V

            = 28.59 – 28.90 = 0.31 m = 1 in 93 (approximately).

Example 2.10. In Example 2.9, if the elevation of the point 1 is 115.673 m, determine the
correct elevation of the point 2. The height of the instrument above ground is 1.52 m.

Solution:

Let     h1, h2 =  the elevations of the points 1 and 2,

S1, S2 = the middle hair readings at the points 1 and 2,

           V1, V2 = the vertical distances for the points 1 and 2, and

hi = the height of the instrument above ground.

The height of the instrument above the mean sea level at A is

H.I. = h1 + hi + S1 + V1

= 115.673 + 1.52 + 0.899 + 11.68

= 129.772 m

The elevation of the point 2 is

h2 = H.I. 22 SV +−

= 129.772 – 28.90 – 1.350

= 99.522 m.

Example 2.11. To measure a line AB, a theodolite was set up at A and a subtense bar of length
2 m was set up at B. The horizontal angle measured at A for the subtense bar targets was
4°02′26.4″ .

Determine the length of AB,

the fractional error in the length AB if the horizontal angle was measured with an accuracy
of ± 1.5″, and the error in AB if the subtense bar was out by 1° from being normal to AB.

Solution:

Horizontal distance in subtense tacheometry is given by

AB b=
2 2

cot θ

    = ° ′ ′′�
�

�
�

2 0
2

4 02 26 4
2

. × cot .
 = 28.348 m.
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The error in distance AB is

    

206265

5.1

2

348.28 2

2

′′
×−=

−= θd
b

D
dD

  = 0.003 m   (neglecting the sign).

The fractional error is

      = =dD
D dD

D

1
 = 1 in 9449

The error in horizontal distance due to the bar not being normal to AB, is given by

 

∆D b= −

= ° ′ ′′�
��

�
�� − °

2 2
1

2
2

4 02 26 4
2

1 1

cot ( cos )

× cot . × ( cos )

θ δ

= 0.004 m.

Example 2.12. A line AB  was measured using EDM. The instrument was set up at P in line with
AB on the side of A remote from B. The wavelength of frequency 1 (f1) is 10 m exactly. Frequency
2 (f2) is (9/10) f1 and that of frequency 3 (f3) is (99/100) f1. Calculate the accurate length of AB that
is known to be less than 200 m, from the phase difference readings given in Table 2.5.

Table 2.5

Line
Phase difference (m)

f1 f2 f3

PA 4.337 7.670 0.600

PB 7.386 1.830 9.911

Solution:

In Sec. 2.11.1, we have found out that

λ2 = 11.111 m

λ3 = 10.101 m

From Eq. (2.43) for the line PA, we have

222111 λλλλ ∆+=∆+ nn

    670.7111.11337.410 21 +=+ nn

Since 21 λλ ∆<∆

  121 += nn
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or  112 −= nn

Thus     670.7)1(111.11337.410 11 +−=+ nn

or   71 =n

This calculation has removed any ambiguity in the number of complete wavelengths of f1
frequency lying within the 0 to 100 m stage.

Now considering f3 frequency which when related to f1 gives the 0 to 1000 m stage. Let

1n′  be the number of complete wavelengths of f1 and n3 be that of f3, then

        600.0101.10337.410 31 +=+′ nn

Since     21 λλ ∆>∆

      31 nn =′

  600.0101.10337.410 11 +′=+′ nn

or 371 =′n

Thus there are 37 complete wavelengths of f1 within the distance of PA.

Therefore from Eq. (2.40), we get

    2PA = 37 × 10 + 4.337 = 374.337 m

For the line PB, we have

   830.1111.11386.710 21 +=+ nn

Since      21 λλ ∆>∆

21 nn =

or 51 =n

Again    911.9101.10386.710 31 +=+′ nn

Since      21 λλ ∆<∆

131 +=′ nn

or 751 =′n

Therefore,     2PB = 75 × 10 + 7.386 = 757.386 m

Thus      AB = 
2

22 PAPB −

         
2

337.374386.757 −= = 191.525 m.
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Example 2.13. The following observations were made to measure the length of a base line AB
using an EDM instrument.

Measured distance = 1556.315 m

Elevation of instrument at A = 188.28 m

Elevation of reflector at B = 206.35 m

Temperature = 24°C

Pressure = 750 mm of mercury

Calculate the correct length of AB and its reduced length at mean sea level.

Take ns = 1.0002851, n0 = 296 × 10–6 and R = 6370 km.

Solution:

From Eq. (2.44), we have

( ) ( ) 










−=−

760

273
11 0

p

T
nn

( ) 












+
××=− −

760

750

24273

273
102961 6n

or      n = 1.0002685

From Eq. (2.48), we have

    




′=

n

n
DD s

    




×=

0002685.1

0002851.1
315.1556D  = 1556.341 m

From Eq. (2.49), the correct length of AB is

                           = −�
�

�
� ′cos θ H

R
L

                         
9.54930

341.1556

28.18835.206
sin 1

′′′=






 −= −

�

θ

Therefore,  ( ) ( )
341.1556

100063702

35.20628.188
9.5493cos ×







××
+−′′′=

 = 1556.188 m.

Example 2.14. The slope distance between two stations A and B measured with EDM when
corrected for meteorological conditions and instrument constants, is 113.893 m. The heights of the
instrument and reflector are 1.740 m and 1.844 m, respectively, above the ground. To measure the
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vertical angle a theodolite was set up at A, 1.660 m above the ground and a target at B having height
above the ground as 1.634 m. The measured angle above the horizontal was + 4°23′18″ . Determine

(a) The horizontal length of the line AB.

(b) To what precision the slope angle be measured

(c) if the relative precision of the reduced horizontal distance is to be 1/100000.

(d) if the reduced horizontal distance is to have a standard error of ± 1.8 mm.

Solution:

If the heights of the instrument and the target are not same, a correction known as eye and
object correction is required to be determined to get the correct vertical angle. In Fig. 2.20a, the
observed vertical angle is α. If the correct vertical angle α′ and the correction to α  is β then

βαα +=′

While measuring the distance as shown Fig. 2.20b, the height of the EDM and the reflector
should also be same and the inclination of the line of sight due to height difference between the
EDM and the reflector, a correction of β is to be applied to the slope angle θ, to make the line of
sight inclined at α + β to the horizontal.

Fig. 2.20

From Fig. 2.19a, we have

893.113

026.0

893.113

634.1660.1 =−=β  radians

   = 1.47520626
893.113

026.0 ′′=′′×

From Fig. 2.19b, we have

 
893.113

104.0
893.113

740.1844.1 =−=γ  radians

4.083520626
893.113

104.0 ′′′=′′×=

(a) (b)

Line
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The correct slope angle

θ = α + β + γ
= 4°23′18″ + 47.1″ + 3 ′08.4″

5.13724 ′′′= �

Therefore the horizontal distance

  
L L= ′

= ° ′ ′′

cos

. × cos .

θ
113 893 4 27 13 5

= 113.549 m.

We have   L L= ′ cos θ

       dL L d= − ′ sin θ θ …(a)

The negative sign in the above expression shows decrease in L with increase in dθ. Thus the
relative accuracy

dL
L

L

L
d= ′

′
sin
cos

.
θ
θ

θ

    = tanθ . dθ

It is given that
100000

1=
L

dL
,

therefore,

  θd×′′′= 5.13724tan
100000

1 �

or  dθ = 0.000128 radians

= 0.000128 × 206265″
= 26″

It is given that

dL = ± 1.5 mm,

therefore, from Eq. (a), we get

   θd×′′′×= 5.13724sin893.1130015.0 �

dθ = 0 .000169 radians

= 0.000169 × 206265″
= ± 35″″″″″ .
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OBJECTIVE TYPE QUESTIONS

1. A metallic tape is

(a) a tape made of any metal.

(b) another name of a steel tape.

(c) another name of an invar tape.

(d) is a tape of water proof fabric into which metal wires are woven.

2. Spring balance in linear measurements is used

(a) to know the weight of the tape

(b) to apply the desired pull.

(c) to know the standard pull at the time of measurement.

(d) none of the above.

3. Ranging in distance mesurements is

(a) another name of taping.

(b) a process of establishing  intermediate points on a line.

(c) putting the ranging rod on the hill top for reciprocal ranging.

(d) a process of determining the intersectoion of two straight lines.

4. Reciprocal ranging is employed when

(a) the two ends of a line are not intervisible.

(b) one end of a line is inaccessible.

(c) both the ends are inaccessible.

(d) the ends of the line are not visible even from intermediate points.

5. The following expression gives the relative accuracy in linear measurements when the slope angle
is α.

(a)
dD
D

d= tan . .2α α (b)
dD
D

d= tan . .2 α α

(c)
dD
D

d= 2 tan . .α α (d)
dD
D

d= tan . .α α

6. If the slope angle 64°08′07″ is measured to an accuracy of 10″ the expected relative accuracy in
the linear measurements is

(a) 1/10. (b) 1/100.

(c) 1/1000. (d) 1/10000.

7. The temperature correction and pull correction

(a) may have same sign. (b) always have same sign.

(c) always have opposite signs. (d) always have positive sign.

8. The sag corrections on hills

(a) is positive. (b) is negative.

(c) may be either positive or negative. (d) is zero
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9. The correction for reduced length on the mean sea level is proportional to

(a) H. (b) H 2.

(c) 1/H. (d) 1/2H.

where H is the mean elevetion of the line.

10. If the difference in the levels of the two ends of  a 50 m long line is 1 m and its ends are out
of alignment by 5 m then the corrections for slope (cs) and  alignment (cm) are related to each
other as

(a) cs = 4cm. (b) cs = 0.4cm.

(c) cs = 0.04cm. (d) cs = 0.004cm.

11. Stadia is a form of tacheometric mesurements that relies on

(a) fixed intercept. (b) fixed angle intercept

(c) varying angle intercept (d) none of the above.

12. The tacheometric method of surveying is generally preferred for

(a) providing primary control. (b) large scale survey.

(c) fixing points with highest precision. (d) difficult terrain.

13. If two points A and B 125 m apart, have difference in elevation of 0.5 m, the slope correction to
the measured length is

(a) + 0.001 m. (b) 0.001 m.

(c) + 0.0125 m. (d) 0.001 m.

14. The branch of surveying in which an optical instrument is used too determine both horizontal
and vertical positions, is known as

(a) Tachemetry. (b) Tachometry.

(c) Tacheometry. (d) Telemetry.

15. If the vertical angle from one station to another 100 m apart, is 60°, the staff intercept for a
tacheometer with k = 100 and c = 0, would be

(a) 1. (b) 4.

(c) 5. (d) 0.1.

16. Electronic distance measurement instruments use

(a) X-rays. (b) Sound waves.

(c) Light waves. (d) Magnetic flux.

17. Modern EDM instruments work on the principle of measuring

(a) the reflected energy generated by electromagnetic waves.

(b) total time taken by electromagnetic wave in travelling the distance.

(c) the change in frequency of the electromagnetic waves.

(d) the phase difference between the transmitted and the reflected electromagnetic waves.

18. The range of infrared EDM instrument is generally limited to measuring the distances

(a) 2 to 3 km. (b) 20 to 30 km.

(c) 200 to 300 km. (d) more than 300 km.
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19. Electromagnetic waves are unaffected by

(a) air temperature.

(b) atmospheric pressure.

(c) vapour pressure.

(d) wind speed.

ANSWERS

1. (d) 2. (b) 3. (b) 4. (a) 5. (d) 6. (d)

7. (a) 8. (b) 9. (a) 10. (c) 11. (b) 12. (d)

13. (b) 14. (c) 15. (b) 16. (c) 17. (d) 18. (a)

19. (d).
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3.1 LEVELLING

Levelling is an operation in surveying performed to determine the difference in levels of two points.
By this operation the height of a point from a datum, known as elevation, is determined.

3.2 LEVEL SURFACE

A level surface is the equipotential surface of the earth’s gravity field. It is a curved surface and
every element of which is normal to the plumb line.

3.3 DATUM

A datum is a reference surface of constant potential, called as a level surface of the earth’s gravity
field, for measuring the elevations of the points. One of such surfaces is the mean sea level surface
and is considered as a standard datum. Also an arbitrary surface may be adopted as a datum.

3.4 LEVEL LINE

A line lying in a level surface is a level line. It is thus a curved line.

  

Line of sight

Horizontal line

Staff held vertical

Mean sea-level

Fig. 3.1

A level in proper adjustment, and correctly set up, produces a horizontal line of sight which
is at right angles to the direction of gravity and tangential to the level line at the instrument height.
It follows a constant height above mean sea level and hence is a curved line, as shown in Fig. 3.1.

Over short distances, such as those met in civil engineering works, the two lines can be taken
to coincide. Over long distances a correction is required to reduce the staff readings given by the
horizontal line of sight to the level line equivalent. Refraction of the line of sight is also to be taken
into account. The corrections for the curvature of the level line Cc and refraction Cr are shown in

��

�
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Fig. 3.2. The combined correction is given by

C d

R
cr = − 3

7

2

...(3.1)

where

Ccr = the correction for the curvature and refraction,

d = the distance of the staff from the point of tangency, and

R = the mean earth’s radius.

For the value of R = 6370 km and d in kilometre, the value of Ccr in metre is given as

2067.0 dCcr −= ...(3.2)

Fig. 3.2

3.5 DIRECT DIFFERENTIAL OR SPIRIT LEVELLING

Differential levelling or spirit levelling is the most accurate simple direct method of determining the
difference of level between two points using an instrument known as level with a levelling staff.
A level establishes a horizontal line of sight and the difference in the level of the line of sight and
the point over which the levelling staff is held, is measured through the levelling staff.

Fig. 3.3 shows the principle of determining the difference in level ∆h between two points A
and B, and thus the elevation of one of them can be determined if the elevation of the other one
is known. SA and SB are the staff readings at A and B, respectively, and hA and hB are their
respective elevations.

Fig. 3.3

L e v e l li n e
L in e  o f  sig h t
H o r iz o n ta l  lin e

M ea n  s e a - le v e l

C r

C c
C c r  
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From the figure, we find that
  (i) if SB < SA, the point B is higher than point A.
 (ii) if SB > SA, the point B is lower than point A.
(iii) to determine the difference of level, the elevation of ground point at which the  level is

set up, is not required.

Booking and Reducing the Levels

Before discussing the booking and methods of reducing levels, the following terms associated with
differential levelling must be understood.

Station: A station is the point where the levelling staff is held. (Points A, a, b, B, c, and C
in Fig. 3.4).

Height of instrument (H.I.) or height of collimation: For any set up of the level, the
elevation of the line of sight is the height of instrument. (H.I. = hA + SA  in Fig. 3.3).

Back sight (B.S.): It is the first reading taken on the staff after setting up the level usually
to determine the height of instrument. It is usually made to some form of a bench mark (B.M.) or
to the points whose elevations have already been determined. When the instrument position has to
be changed, the first sight taken in the next section is also a back sight. (Staff readings S1 and S5
in Fig. 3.4).

Section-1 Section-2

B.M.

C.P.
1

2

A

B
C

a

b

B.S.
F.S. F.S.

c

B.S.

I.S..

I.S.S1

S2

S3

S4

S5

S6

S7

B.M.
Staff position/Station
Instrument position

I.S

Fig. 3.4

Fore sight (F.S.): It is the last reading from an instrument position on to a staff held at a point.
It is thus the last reading taken within a section of levels before shifting the instrument to the next
section, and also the last reading taken over the whole series of levels. (Staff readings S4 and S7
in Fig. 3.4).

Change point (C.P.) or turning point: A change point or turning point is the point where
both the fore sight and back sight are made on a staff held at that point. A change point is required
before moving the level from one section to another section. By taking the fore sight the elevation
of the change point is determined and by taking the back sight the height of instrument is determined.
The change points relate the various sections by making fore sight and back sight at the same point.
(Point B in Fig. 3.4).

Intermediate sight (I.S.): The term ‘intermediate sight’ covers all sightings and consequent
staff readings made between back sight and fore sight within each section. Thus, intermediate sight
station is neither the change point nor the last point. (Points a, b, and c in Fig. 3.4).

Balancing of sights: When the distances of the stations where back sight and fore sight are
taken from the instrument station, are kept approximately equal, it is known as balancing of sights.
Balancing of sights minimizes the effect of instrumental and other errors.
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ection-1

S
ection-2

Reduced level (R.L.): Reduced level of a point is its height or depth above or below the
assumed datum. It is the elevation of the point.

Rise and fall: The difference of level between two consecutive points indicates a rise or a
fall between the two points. In Fig. 3.3, if (SA – SB) is positive, it is a rise and if negative, it is
a fall. Rise and fall are determined for the points lying within a section.

Section: A section comprises of one back sight, one fore sight and all the intermediate sights
taken from one instrument set up within that section. Thus the number of sections is equal to the
number of set ups of the instrument. (From A to B for instrument position 1 is section-1 and from
B to C for instrument position 2 is section-2 in Fig. 3.4).

For booking and reducing the levels of points, there are two systems, namely the height
of instrument or height of collimation method and rise and fall method. The columns for
booking the readings in a level book are same for both the methods but for reducing the levels,
the number of additional columns depends upon the method of reducing the levels. Note that
except for the change point, each staff reading is written on a separate line so that each staff
position has its unique reduced level. This remains true at the change point since the staff does
not move and the back sight from a forward instrument station is taken at the same staff position
where the fore sight has been taken from the backward instrument station. To explain the
booking and reducing levels, the levelling operation from stations A to C shown in Fig. 3.4, has
been presented in Tables 3.1 and 3.2 for both the methods. These tables may have additional
columns for showing chainage, embankment, cutting, etc., if required.

Table 3.1 Height of instrument method

Station B.S. I.S. F.S.  H.I.       R.L. Remarks

A S 1 H.I.A = hA B.M. = ha

hA +S1

a S2 ha = H.I.A – S2

b S3 hb = H.I.A – S3

B S 5 S4 H.I.B = hB = H.I.A – S4 C.P.             –

hB + S5

c S6 hc = H.I.B – S6

C S7 HC = H.I.B – S7

Σ B.S. Σ F.S.

                Check:    Σ B.S. – Σ F.S. = Last R.L. – First R.L.

In reducing the levels for various points by the height of instrument method, the height of
instrument (H.I.) for the each section highlighted by different shades, is determined by adding the
elevation of the point to the back sight reading taken at that point. The H.I. remains unchanged for
all the staff readings taken within that section and therefore, the levels of all the points lying in that
section are reduced by subtracting the corresponding staff readings, i.e., I.S. or F.S., from the H.I.
of that section.

In the rise and fall method, the rises and the falls are found out for the points lying within
each section. Adding or subtracting the rise or fall to or from the reduced level of the backward
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station obtains the level for a forward station. In Table 3.2, r and f indicate the rise and the fall,
respectively, assumed between the consecutive points.

Table 3.2 Rise and fall method

Station B.S. I.S. F.S.   Rise     Fall      R.L. Remarks

  A S1 hA B.M. = ha

  a S2 r1 = ha = hA + r1
S1 – S2

  b S3 f1 =  S2 – S3 hb = ha – f1

 B S5 S4 f2 =  S3 – S4 hB = hb – f2 C.P.

 c S6 f3 =  S5 – S6 hc = hB – f3

 C S7 r2 = HC = hc + r2
S6 – S7

Σ B.S. Σ F.S. Σ Rise     Σ Fall

 Check:                  Σ B.S. − Σ F.S. = Σ Rise − Σ Fall = Last R.L. − First R.L.

The arithmetic involved in reduction of the levels is used as check on the computations. The
following rules are used in the two methods of reduction of levels.

(a) For the height of instrument method

  (i)  Σ B.S. – Σ F.S. = Last R.L. – First R.L.

  (ii) Σ [H.I. × (No. of  I.S.’s + 1)] – Σ I.S. – Σ F.S. = Σ R.L. – First R.L.

(b) For the rise and fall method

         Σ B.S. – Σ F.S. = Σ Rise – Σ Fall = Last R.L. – First R.L.

3.6 COMPARISON OF METHODS AND THEIR USES

Less arithmetic is involved in the reduction of levels with the height of instrument method than with
the rise and fall method, in particular when large numbers of intermediate sights is involved.
Moreover, the rise and fall method gives an arithmetic check on all the levels reduced, i.e., including
the points where the intermediate sights have been taken, whereas in the height of instrument
method, the check is on the levels reduced at the change points only. In the height of instrument
method the check on all the sights is available only using the second formula that is not as simple
as the first one.

The height of instrument method involves less computation in reducing the levels when there
are large numbers of intermediate sights and thus it is faster than the rise and fall method. The rise
and fall method, therefore, should be employed only when a very few or no intermediate sights are
taken in the whole levelling operation. In such case, frequent change of instrument position requires
determination of the height of instrument for the each setting of the instrument and, therefore,
computations involved in the height of instrument method may be more or less equal to that required
in the rise and fall method. On the other hand, it has a disadvantage of not having check on the
intermediate sights, if any, unless the second check is applied.
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3.7 LOOP CLOSURE AND ITS APPORTIONING

A loop closure or misclosure is the amount by which a level circuit fails to close. It is the difference
of elevation of the measured or computed elevation and known or established elevation of the same
point. Thus loop closure is given by

e = computed value of R.L. – known value of R.L.

If the length of the loop or circuit is L and the distance of a station to which the correction
c is computed, is l, then

L

l
ec −= ...(3.3)

Alternatively, the correction is applied to the elevations of each change point and the closing
point of known elevation. If there are n1 change points then the total number points at which the
corrections are to be applied is

n = n1 + 1

and the correction at each point is

   
n

e−= ...(3.4)

The corrections at the intermediate points are taken as same as that for the change points
to which they are related.

Another approach could be to apply total of –e/2 correction equally to all the back sights and
total of +e/2 correction equally to all the fore sights. Thus if there are nB back sights and nF fore
sights then

correction to each back sight = 
Bn

e

2
−

correction to each fore sight  = 
Fn

e

2
+ ...(3.5)

3.8 RECIPROCAL LEVELLING

Reciprocal levelling is employed to determine the correct difference of level between two
points which are quite apart and where it is not possible to set up the instrument between the two
points for balancing the sights. It eliminates the errors due to the curvature of the earth, atmospheric
refraction and collimation.

If the two points between which the difference of level is required to be determined are A
and B then in reciprocal levelling, the first set of staff readings (a1 and b1) is taken  by placing the
staff on A and B, and instrument close to A. The second set of readings (a2 and b2) is taken again
on A and B by placing the instrument close to B. The difference of level between A and B is given
by

( ) ( )
2

2211 baba
h

−+−
=∆ ...(3.6)
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and the combined error is given by

( ) ( )
2

2211 abab
e

−−−
= ...(3.7)

where
e = el + ec – er ...(3.8)
el = the collimation error assumed positive for the line of sight inclined upward,
ec = the error due to the earth’s curvature, and
er = the error due to the atmospheric refraction.

We have
ec – er = the combined curvature and refraction error

= 0.067d2.
The collimation error is thus given by

el = e – 0.067d2 in metre …(3.9)
where d is the distance between A and B in kilometre.

3.9 TRIGONOMETRIC LEVELLING

Trigonometric levelling involves measurement of vertical angle and either the horizontal or slope
distance between the two points between which the difference of level is to be determined. Fig. 3.5
shows station A and station B whose height is to be established by reciprocal observations from
A on to signal at B and from B on to signal at A. Vertical angles α (angle of elevation) and β (angle
of depression), are measured at A and B, respectively. The refracted line of sight will be inclined
to the direct line AB and therefore, the tangent to the refracted line of sight makes an angle υ with
AB. The vertical angle α is measured with respect to this tangent and to the horizontal at A.

Similarly, from B the angle of depression β is measured from the horizontal to the tangent to
the line of sight. The point C lies on the arc through A, which is parallel to the mean sea level
surface. d is the geodetic or spheroidal distance between A and B, and could be deduced from the
geodetic coordinates of the two points. Angle BAC between AB and chord AC is related to angle
θ between the two verticals at A and B which meet at the earth’s centre, since AC makes an angle
of  θ/2 with the horizontal at A.

If the elevations of A and B are hA and hB, respectively, then the difference in elevation ∆h
between A and B, is found out by solving the triangle ABC for BC. Thus in triangle ABC
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The correction for curvature and refraction at A and B is (θ/2 – υ) and this refers angles a
and β to chords AC and BD, respectively.

Thus angle of elevation BAC = α + θ/2 – υ and angle of depression DBA = β – θ/2 + υ.

Since AC is parallel to BD, ∠ BAC = ∠ DBA,

Therefore, ∠ BAC + ∠ DBA = (α + θ/2 – υ) + (β – θ/2 + υ)

or      2 ∠ BAC = α + β

or  ∠ BAC = 
2

βα +
 = ∠ DBA.

This is the correct angle of elevation at A or angle of depression at B and is mean of the two
angles α and β. In addition, we can write Eq. (3.10) as

�

αυ

υ
� ���

D B

A C���

Mean sea-level

R

hA

hB

Vertical at A

Vertical at B

Horizontal at A

Horizontal at B

Line of sight

d

90°+���

Fig. 3.5

  BC = AC tan (α + θ/2 – υ)

or    




 +=∆

2
tan

βα
ACh .

Therefore,    hB = hA + �h

                          = 




 ++

2
tan

βα
AChA … (3.11)

Note that in Eq. (3.11) it is assumed that α is the angle of elevation and β is angle of
depression. In practice, only magnitudes need to be considered, not signs provided one angle is
elevation and the other is depression.

The coefficient of refraction K in terms of the angle of refraction υ and the angle θ
subtended at the centre of the spheroid by the arc joining the stations, is given by

θ
υ=K …(3.12)
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3.10 SENSITIVITY OF A LEVEL TUBE

The sensitivity of a level tube is expressed in terms of angle in seconds subtended at the centre
by the arc of one division length of the level tube. The radius of curvature of the inner surface of
the upper portion of the level tube is also a measure of the sensitivity. The sensitivity of a level tube
depends upon radius of curvature of the inner surface of the level tube and its diameter. It also
depends upon the length of the vapour bubble, viscosity and surface tension of the liquid and
smoothness of the inner surface of the tube.

If α′  is the sensitivity of the level tube it is given by

1sin ′′
=′

nD

sα  seconds …(3.13)

where

 s = the change in the staff reading for movement of the
   bubble by n divisions (Fig.3.6), and

D = the distance of the staff from the instrument.

The radius of curvature of the level tube is expressed as

s

nlD
R =    …(3.14)

where l is the length of one division of the level tube.

3.11 TWO-PEG TEST

Two-peg test is conducted for checking the adjustment of a level. Fig. 3.7 shows the method of
conducting the test. Two rigid points A and B are marked on the ground with two pegs and the
instrument is set up exactly between them at point C. Readings are taken on the staff held at A and
B, and the difference between them gives the correct difference in level of the pegs. The equality
in length of back sight and fore sight ensures that any instrumental error, e, is equal on both sights
and is cancelled out in the difference of the two readings. The instrument is then moved to D so
that it is outside the line AB and it is near to one of the pegs. Readings are again taken on the staff
held at A and B. The difference in the second set of the staff readings is equal to the difference
in level of the points A and B, and it will be equal to that determined with the first set of readings
if the instrument is in adjustment. If the two values of the difference in level differ from each other,
the instrument is out of adjustment.

A BC

e e

A B D

e′

d d

Fig. 3.7

The adjustment of the instrument can also be tested by determining the difference in level
of the points A and B by placing the instrument at C and D as shown in Fig. 3.8.

s

D

nl

R

Fig. 3.6



�� ����	
��


A B DA BC

d d d d

θ θ

Fig. 3.8

3.12 EYE AND OBJECT CORRECTION

The heights of the instrument and signal at which the observation is made, are generally not same
and thus the observed angle of elevation θ′ as shown in Fig. 3.9, does not refer to the ground levels
at A and B. This difference in height causes the observed vertical angle θ′ to be larger than that
θ which would have been observed directly from those points. A correction (ε) termed as eye and
object correction, is applied to the observed vertical angle to reduce it to the required value.

The value of the eye and object correction is given by

 
d

hh is −=ε  radians       …(3.15)

   
d

hh is −
= 206265  seconds …(3.16)

Example 3.1. The following readings were taken with a level and 4 m staff. Draw up a level
book page and reduce the levels by the height of instrument method.

0.578 B.M.(= 58.250 m), 0.933, 1.768, 2.450, (2.005 and 0.567) C.P., 1.888, 1.181, (3.679
and 0.612) C.P., 0.705, 1.810.

Solution:

The first reading being on a B.M., is a back sight. As the fifth station is a change point, 2.005
is fore sight reading and 0.567 is back sight reading. All the readings between the first and fifth
readings are intermediate sight-readings. Similarly, the eighth station being a change point, 3.679 is
fore sight reading, 0.612 is back sight reading, and 1.888, 1.181 are intermediate sight readings. The
last reading 1.810 is fore sight and 0.705 is intermediate sight-readings. All the readings have been
entered in their respective columns in the following table and the levels have been reduced by height
of instrument method. In the following computations, the values of B.S., I.S., H.I., etc., for a
particular station have been indicated by its number or name.

Section-1:

H.I.1 = h1 + B.S.1 = 58.250 + 0.578 = 58.828 m

h2 = H.I.1 – I.S.2 = 58.828 – 0.933 = 57.895 m

h3 = H.I.1 – I.S.3 = 58.828 – 1.768 = 57.060 m

h4 = H.I.1 – I.S.4 = 58.828 – 2.450 = 56.378 m

h5 = H.I.1 – F.S.5 = 58.828 – 2.005 = 56.823 m

hs

A

B

hi

B′
B′′

hi

d

ε
θ θ′

Fig. 3.8
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Section-2:

H.I.5 = h5 + B.S.5 = 56.823 + 0.567 = 57.390 m

h6 = H.I.2 – I.S.6 = 57.390 – 1.888 = 55.502 m

h7 = H.I.2 – I.S.7 = 57.390 – 1.181 = 56.209 m

h8 = H.I.2 – F.S.8 = 57.390 – 3.679 = 53.711 m

Section-3:
H.I.8 = h8 + B.S.8 = 53.711 + 0.612 = 54.323 m

h9 = H.I.8 – I.S.9 = 54.323 – 0.705 = 53.618 m

h10 = H.I.8 – F.S.10 = 54.323 – 1.810 = 52.513 m

Additional check for H.I. method: Σ [H.I. × (No. of  I.S.s + 1)] – Σ I.S. – Σ F.S. = Σ R.L.
  – First R.L.

[58.828 × 4 + 57.390 � 3 + 54.323 × 2] – 8.925 – 7.494 = 557.959 – 58.250 = 499.709 (O.K.)

Table 3.3

Station B.S. I.S. F.S. H.I. R.L. Remarks

1 0.578 58.828 58.250 B.M.=58.250 m

2 0.933 57.895

3 1.768 57.060

4 2.450 56.378

5 0.567 2.005 57.390 56.823 C.P.

6 1.888 55.502

7 1.181 56.209

8 0.612 3.679 54.323 53.711 C.P.

9 0.705 53.618

10 1.810 52.513

Σ 1.757 8.925 7.494 557.956

             Check:        1.757 – 7.494 = 52.513 – 58.250 = – 5.737   (O.K.)

Example 3.2. Reduce the levels of the stations from the readings given in the Example 3.1 by
the rise and fall method.

Solution:
Booking of the readings for reducing the levels by rise and fall method is same as explained

in Example 3.1. The computations of the reduced levels by rise and fall method is given below and
the results are tabulated in the table. In the following computations, the values of B.S., I.S., Rise
(r),  Fall (f ), etc., for a particular station have been indicated by its number or name.

(i) Calculation of rise and fall

Section-1: f2 = B.S.1 – I.S.2 = 0.578 – 0.933 = 0.355

f3 = I.S.2 – I.S.3 = 0.933 – 1.768 = 0.835

f4 = I.S.3 – I.S.4 = 1.768 – 2.450 = 0.682
r5 = I.S.4 – F.S.5 = 2.450 – 2.005 = 0.445
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Section-2: f6 = B.S.5 – I.S.6 = 0.567 – 1.888 = 1.321

f7 = I.S.6 – I.S.7 = 1.888 – 1.181 = 0.707

f8 = I.S.7 – F.S.8 = 1.181 –- 3.679 = 2.498

Section-3: f9 = B.S.8 – I.S.9 = 0.612 – 0.705 = 0.093

f10 = I.S.9 – F.S.10 = 0.705 – 1.810 = 1.105

(ii) Calculation of reduced levels

h2 = h1 – f2 = 58.250 – 0.355 = 57.895 m

h3 = h2 – f3 = 57.895 – 0.835 = 57.060 m

h4 = h3 – f4 = 57.060 – 0.682 = 56.378 m

h5 = h4 + r5 = 56.378 + 0.445 = 56.823 m

h6 = h5 – f6 = 56.823 – 1.321 = 55.502 m

h7 = h6 + r7 = 55.502 + 0.707 = 56.209 m

h8 = h7 – f8 = 56.209 – 2.498 = 53.711 m

h9 = h8 – f9 = 53.711 – 0.093 = 53.618 m

h10 = h9 – f10 = 53.618 – 1.105 = 52.513 m

Table 3.4

Station B.S. I.S. F.S. Rise Fall R.L. Remarks

1 0.578 58.250 B.M.=58.250 m

2 0.933 0.355 57.895

3 1.768 0.835 57.060

4 2.450 0.682 56.378

5 0.567 2.005 0.445 56.823 C.P.

6 1.888 1.321 55.502

7 1.181 0.707 56.209

8 0.612 3.679 2.498 53.711 C.P.

9 0.705 0.093 53.618

10 1.810 1.105 52.513

Σ 1.757 7.494 1.152 6.889

                  Check:    1.757 – 7.494 = 1.152 – 6.889 = 52.513 – 58.250 =  – 5.737   (O.K.)

Example 3.3. The following consecutive readings were taken with a level on continuously
sloping ground at a common interval of 20 m. The last station has an elevation of 155.272 m. Rule
out a page of level book and enter the readings. Calculate

(i) the reduced levels of the points by rise and fall method, and
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(ii) the gradient of the line joining the first and last points.

0.420, 1.115, 2.265, 2.900, 3.615, 0.535, 1.470, 2.815, 3.505, 4.445, 0.605, 1.925, 2.885.

Solution:

Since the readings have been taken along a line on a continuously sloping ground, any sudden
large change in the reading such as in the sixth reading compared to the fifth reading and in the
eleventh reading compared to the tenth reading, indicates the change in the instrument position.
Therefore, the sixth and eleventh readings are the back sights and fifth and tenth readings are the
fore sights. The first and the last readings are the back sight and fore sight, respectively, and all
remaining readings are intermediate sights.

The last point being of known elevation, the computation of the levels is to be done from
last point to the first point. The falls are added to and the rises are subtracted from the known
elevations. The computation of levels is explained below and the results have been presented in the
following table.

(i) Calculation of rise and fall

Section-1: f2 = B.S.1 – I.S.2 = 0.420 – 1.115= 0.695

f3 = I.S.2 – I.S.3 = 1.115 – 2.265= 1.150

f4 = I.S.3 – I.S.4 = 2.265 – 2.900= 0.635

f5 = I.S.4 – F.S.5 = 2.900 – 3.615= 0.715

Section-2: f6 = B.S.5 – I.S.6 = 0.535 – 1.470 = 0.935

f7 = I.S.6 – I.S.7 = 1.470 – 2.815 = 1.345

f8 = I.S.7 – I.S.8 = 2.815 – 3.505 = 0.690

f9 = I.S.8 – F.S.9 = 3.505 – 4.445 = 0.940

Section-3: f10 = B.S.9 – I.S.10 = 0.605 – 1.925 = 1.320

f11 = I.S.10 – F.S.11 = 1.925 – 2.885 = 0.960

(ii) Calculation of reduced levels

h10 = h11 + f11 = 155.272 + 0.960 = 156.232 m

h9 = h10 + f10 = 156.232 + 1.320 = 157.552 m

h8 = h9 + f9 = 157.552 + 0.940 = 158.492 m

h7 = h8 + f8 = 158.492 + 0.690 = 159.182 m

h6 = h7 + f7 = 159.182 + 1.345 = 160.527 m

h5 = h6 + f6 = 160.527 + 0.935 = 161.462 m

h4 = h5 + f5 = 161.462 + 0.715 = 162.177 m

h3 = h4 + f4 = 162.177 + 0.635 = 162.812 m

h2 = h3 + f3 = 162.812 + 1.150 = 163.962 m

h1 = h2 + f2 = 163.962 + 0.695 = 164.657 m
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Table 3.5

Station Chainage
B.S. I.S. F.S. Rise Fall   R.L. Remarks

(m)

1 0 0.420 164.657

2 20 1.115 0.695 163.962

3 40 2.265 1.150 162.812

4 60 2.900 0.635 162.177

5 80 0.535 3.615 0.715 161.462 C.P.

6 100 1.470 0.935 160.527

7 120 2.815 1.345 159.182

8 140 3.505 0.690 158.492

9 160 0.605 4.445 0.940 157.552 C.P.

10 180 1.925 1.320 156.232

11 200 2.885 0.960 155.272 Elevation

= 155.272 m

Σ 1.560 10.945 0.000 9.385

       Check:   1.560 – 10.945 = 0.000 – 9.385 = 155.272 – 164.657 = – 9.385  (O.K.)

(iii) Calculation of gradient

The gradient of the line 1-11 is

= 11-1 pointsbetween  distance

11-1 pointsbetween  level of difference

=
155 272 164 657

200

. .−
 = 

200

9.385 −

= 1 in 21.3 (falling)

Example 3.4. A page of level book is reproduced below in which some readings marked as
(×), are missing. Complete the page with all arithmetic checks.

Solution:

The computations of the missing values are explained below.

B.S.4 – I.S.5 = f5,  B.S.4 = f5 + I.S.5 = – 0.010 + 2.440 = 2.430

B.S.9 – F.S.10 = f10,  B.S.9 = f10 + F.S.10 = – 0.805 + 1.525 = 0.720

     B.S.1 + B.S.2 + B.S.4 + B.S.6 + B.S.7 + B.S.9 = ΣB.S.

     3.150 + 1.770 + 2.430 + B.S.6 + 1.185 + 0.720 = 12.055

B.S.6 = 12.055 – 9.255 = 2.800
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Table 3.6

Station B.S. I.S. F.S. Rise Fall R.L. Remarks

1 3.150 ×

2 1.770 × 0.700 × C.P.

3 2.200 × ×

4 × 1.850 × × C.P.

5 2.440 0.010 ×

6 × × 1.100 × C.P.

7 1.185 2.010 × 222.200 C.P.

8 –2.735 × × Staff held

inverted

9 × 1.685 4.420 × C.P.

10 1.525 0.805 ×

Σ 12.055 × ×   ×

B.S.1 – F.S.2 = f2,  F.S.2 =  B.S.1 – f2 =  3.150 – (–0.700) = 3.850

I.S.5 – F.S.6 = r6,  F.S.6 = I.S.5 – r6 =  2.440 – 1.100 = 1.340

B.S.2 – I.S.3 = 1.770 – 2.200 = – 0.430 = 0.430 (fall) = f3
I.S.3 – F.S.4 = 2.200 – 1.850 = 0.350 = r4

B.S.6 – F.S.7 = 2.800 – 2.010 = 0.790 = r7

B.S.7 – I.S.8 = 1.185 – (– 2.735) = 3.920 = r8

For the computation of reduced levels the given reduced level of point 7 is to be used. For
the points 1 to 6, the computations are done from points 6 to 1, upwards in the table and for points
8 to 10, downwards in the table.

h6 = h7 – r7 = 222.200 – 0.790 = 221.410 m

h5 = h6 – r6 = 221.410 – 1.100 = 220.310 m

h4 = h5 + f5 = 220.310 + 0.010 = 220.320 m

h3 = h4 – r4 = 220.320 – 0.350 = 219.970 m

h2 = h3 + f3 = 219.970 + 0.430 = 220.400 m

h1 = h2 + f2 = 220.400 + 0.700 = 221.100 m

h8 = h7 + r8 = 222.200  + 3.920 = 226.120 m

h9 = h8 – f9 = 226.120  – 4.420 = 221.700 m

h10 = h9 – f10 = 221.700 – 0.805 = 220.895 m

The computed missing values and the arithmetic check are given Table 3.7.
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Table 3.7.

Station B.S. I.S. F.S. Rise Fall R.L. Remarks

1 3.150 221.100

2 1.770 3.850 0.700 220.400 C.P.

3 2.200 0.430 219.970

4 2.430 1.850 0.350 220.320 C.P.

5 2.440 0.010 220.310

6 2.800 1.340 1.100 221.410 C.P.

7 1.185 2.010 0.790 222.200 C.P.

8 -2.735 3.920 226.120 Staff held
inverted

9 0.720 1.685 4.420 221.700 C.P.

10 1.525 0.805 220.895

Σ 12.055 12.266 6.610 6.365

             Check: 12.055 – 12.266 = 6.610 – 6.365 = 220.895 – 221.100 = – 0.205 (O.K.)

Example 3.5. Given the following data in Table 3.8, determine the R.L.s of the points 1 to
6. If an uniform upward gradient of 1 in 20 starts at point 1, having elevation of 150 m, calculate
the height of embankment and depth of cutting at all the points from 1 to 6.

Table 3.8

Station Chainage (m) B.S. I.S. F.S. Remarks

B.M. – 10.11 153.46 m

1 0 3.25

2 100 1.10

3 200 6.89 0.35

4 300 3.14

5 400 11.87 3.65

6 500 5.98

Solution:

Reduced levels of the points by height of instrument method

H.I.B.M. = R.L.B.M. + B.S.B.M. = 153.46 + 10.11 = 163.57 m

h1 = H.I.B.M. – I.S.1 = 163.57 – 3.25 = 160.32 m

h2 = H.I.B.M. – I.S.2 = 163.57 – 1.10 = 162.47 m

h3 = H.I.B.M. – F.S.3 = 163.57 – 0.35 = 163.22 m

H.I.3 = h3 + B.S.3 = 163.22 + 6.89 = 170.11 m
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h4 = H.I.3 – I.S.4 = 170.11 – 3.14 = 166.97 m

h5 = H.I.3 – F.S.5 = 170.11 – 3.65 = 166.46 m

H.I.5 = h5 + B.S.5 = 166.46 + 11.87 = 178.33 m

h6 = H.I.5 – F.S.6 = 178.33 – 5.98 = 172.35 m

Levels of the points from gradient

Since the gradient is 1 in 20, for every 100 m the rise is 5 m.

Level of point 1,  h′1 = 150 m (given)

Level of point 2,  h′2 = 150 + 5 = 155 m

Level of point 3,  h′3 = 155 + 5 = 160 m

Level of point 4,  h′4 = 160 + 5 = 165 m

Level of point 5,  h′5 = 165 + 5 = 170 m
Level of point 6,  h′6 = 170 + 5 = 175 m

Height of embankment and depth of cutting

At point 1  h1 – h′1  = 160.32 – 150.00 = + 10.32 m (embankment)

At point 2  h2 – h′2  = 162.47 – 155.00 = + 7.47 m (embankment)

At point 3  h3 – h′3  = 163.22 – 160.00 = + 3.22 m (embankment)

At point 4  h4 – h′4  = 166.97 – 165.00 = + 1.97 m (embankment)

At point 5  h5 – h′5  = 166.46 – 170.00 = – 3.54 m (cutting)

At point 6  h6 – h′6  = 172.35 – 175.00 = – 2.65 m (cutting)

The computed values of the height of embankment and depth of cutting are tabulated below.

Table 3.9

Station Chainage B.S. I.S. F.S. H.I. R.L.
Gradient Embankment/cutting

(m) level Height (m) Depth (m)

B.M. – 10.11 163.57 153.46 –

1 0 3.25 160.32 150 10.32

2 100 1.10 162.47 155 7.47

3 200 6.89 0.35 170.11 163.22 160 3.22

4 300 3.14 166.97 165 1.97

5 400 11.87 3.65 178.33 166.46 170 3.54

6 500 5.98 172.35 175 2.65

Example 3.6. The readings given in Table 3.10, were recorded in a levelling operation from
points 1 to 10. Reduce the levels by the height of instrument method and apply appropriate checks.
The point 10 is a bench mark having elevation of 66.374 m. Determine the loop closure and adjust
the calculated values of the levels by applying necessary corrections. Also determine the mean
gradient between the points 1 to 10.
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Table 3.10

Station Chainage (m) B.S. I.S. F.S. Remarks

1 0 0.597 B.M.= 68.233 m

2 20 2.587 3.132 C.P

3 40 1.565

4 60 1.911

5 80 0.376

6 100 2.244 1.522 C.P

7 120 3.771

8 140 1.334 1.985 C.P

9 160 0.601

10 180 2.002

Solution:

Reduced levels of the points

H.I.1 = h1 + B.S.1 = 68.233 + 0.597 = 68.830 m

h2 = H.I.1 – F.S.2 = 68.233 + 3.132 = 65.698 m

H.I.2 = h2 + B.S.2 = 65.698 + 2.587 = 68.285 m

h3 = H.I.2 – I.S.3 = 68.285 – 1.565 = 66.720 m

h4 = H.I.2 – I.S.4 = 68.285 – 1.911 = 66.374 m

h5 = H.I.2 – I.S.5 = 68.285 – 0.376 = 67.909 m

h6 = H.I.2 – F.S.6 = 68.285 – 1.522 = 66.763 m

H.I.6 = h6 + B.S.6 = 66.763 + 2.244 = 69.007 m

h7 = H.I.6 – I.S.7 = 69.007 – 3.771 = 65.236 m

h8 = H.I.6 – F.S.8 = 69.007 – 1.985 = 67.022 m

H.I.8 = h8 + B.S.8 = 67.022  + 1.334 = 68.356 m

h9 = H.I.8 – I.S.9 = 68.356 – 0.601 = 67.755 m

h10 = H.I.8 – F.S.10 = 68.356 – 2.002 = 66.354 m
Loop closure and loop adjustment

The error at point 10 = computed R.L. – known R.L.
= 66.354 – 66.374 = –0.020 m

Therefore correction = +0.020 m
Since there are three change points, there will be four instrument positions. Thus the total

number of points at which the corrections are to be applied is four, i.e., three C.P.s and one last
F.S. It is reasonable to assume that similar errors have occurred at each station. Therefore, the
correction for each instrument setting which has to be applied progressively, is

= + 005.0
4

0.020 = m
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i.e., the correction at station 1   0.0 m
the correction at station 2 + 0.005 m
the correction at station 6 + 0.010 m
the correction at station 8 + 0.015 m

the correction at station 10 + 0.020 m
The corrections for the intermediate sights will be same as the corrections for that instrument

stations to which they are related. Therefore,
correction for I.S.3, I.S.4, and I.S.5 = + 0.010 m

correction for I.S.7 = + 0.015 m
correction for I.S.9 = + 0.020 m

Applying the above corrections to the respective reduced levels, the corrected reduced levels
are obtained. The results have been presented in Table 3.11.

Table 3.11

Station Chainage B.S. I.S. F.S. H.I. R.L. Correction Corrected
(m) R.L.

1 0 0.597 68.830 68.233 – 68.233

2 20 2.587 3.132 68.285 65.698 + 0.005 65.703

3 40 1.565 66.720 + 0.010 66.730

4 60 1.911 66.374 + 0.010 66.384

5 80 0.376 67.909 + 0.010 67.919

6 100 2.244 1.522 69.007 66.763 + 0.010 66.773

7 120 3.771 65.236 + 0.015 65.251

8 140 1.334 1.985 68.356 67.022 + 0.015 67.037

9 160 0.601 67.755 + 0.020 67.775

10 180 2.002 66.354 + 0.020 66.374

Σ 6.762 8.641

             Check:   6.762 – 8.641 = 66.354 – 68.233 = – 1.879  (O.K.)

Gradient of the line 1-10

The difference in the level between points 1 and 10, ∆h = 66.324 – 68.233 = –1.909 m

The distance between points 1-10, D = 180 m

Gradient = –
180

909.1
 = – 0.0106

= 1 in 94.3  (falling)

Example 3.7. Determine the corrected reduced levels of the points given in Example 3.6 by
two alternative methods.
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Solution: Method-1

From Eq. (3.3), the correction        
L

l
ec −=

The total correction at point 10 (from Example 3.6) = + 0.020 m
The distance between the points 1 and 10 = 180 m

Correction at point 2 = 20
180

020.0 ×+  = + 0.002 m

Correction at point 6 = 100
180

020.0 ×+  = + 0.011 m

Correction at point 8 = 140
180

020.0 ×+  = + 0.016 m

Correction at point 10 = 180
180

020.0 ×+  = + 0.020 m

Corrections at points 3, 4, and 5 = + 0.011 m
Correction at point 7 = + 0.016 m
Correction at point 9 = + 0.020 m

The corrections and the corrected reduced levels of the points are given in Table 3.12.

Table 3.12

Station R.L. Correction Corrected R.L.

1 68.233 – 68.233

2 65.698 + 0.002 65.700

3 66.720 + 0.011 66.731

4 66.374 + 0.011 66.385

5 67.909 + 0.011 67.920

6 66.763 + 0.011 66.774

7 65.236 + 0.016 65.252

8 67.022 + 0.016 67.038

9 67.755 + 0.020 67.775

10 66.354 + 0.020 66.374

Method-2

In this method half of the total correction is applied negatively to all the back sights and half
of the total correction is applied positively to all the fore sights.

Total number of back sights = 4

Total number of fore sights = 4

Correction to each back sight = 







×
−−

42

020.0
 = + 0.0025 m
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Correction to each fore sight = 







×
−+

42

020.0
 = - 0.0025 m

The correction to each intermediate sight is also the same as for the fore sights, i.e., - 0.0025
m. The correction and the corrected values of the reduced levels are tabulated in Table 3.13.

Table 3.13

 Station     Observed       Correction        Corrected                        H.I. 
     Corrected

            B.S.       I.S.      F.S.     B.S.  I.S.       F.S.          R.L.

1 0.597 + 0.0025 0.5995 68.8325 68.233

2 2.587 3.132 + 0.0025 – 0.0025 2.5895 3.1295 68.2925 65.703

3 1.565 – 0.0025 1.5625 66.730

4 1.911 – 0.0025 1.9085 66.384

5 0.376 – 0.0025 0.3735 67.919

6 2.244 1.522 + 0.0025 – 0.0025 0.2465 1.5195 69.0195 66.773

7 3.771 – 0.0025 3.7685 65.251

8 1.334 1.985 + 0.0025 – 0.0025 1.3365 1.9825 68.3735 67.037

9 0.601 – 0.0025 0.5985 67.775

10 2.002 – 0.0025 1.9995 66.374

Example 3.8. Reciprocal levelling was conducted across a wide river to determine the difference
in level of points A and B, A situated on one bank of the river and B situated on the other. The
following results on the staff held vertically at A and B from level stations 1 and 2, respectively,
were obtained. The level station 1 was near to A and station 2 was near to B.

                              Instrument     Staff reading on
          at

A B

         1 1.485 1.725

         2 1.190 1.415

(a)  If the reduced level of B is 55.18 m above the datum, what is the reduced level of A?

(b) Assuming that the atmospheric conditions remain unchanged during the two sets of  the
observations, calculate (i) the combined curvature and refraction correction if the distance AB is
315 m, and (ii) the collimation error.

Solution:

To eliminate the errors due to collimation, curvature of the earth and atmospheric refraction
over long sights, the reciprocal levelling is performed.

From the given data, we have

a1 = 1.485 m,  a2 = 1.725 m

b1 = 1.190 m,  b2 = 1.415 m

The difference in level between A and B is given by
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( ) ( )
2

2211 baba
h

−+−
=∆

2

)415.1725.1()190.1485.1( −+−=  = 0.303 m

R.L. of B = R.L. of A + ∆h
R.L. of A = R.L. of B – ∆h

= 55.18 – 0.303 = 54.88 m.
The total error e = el + ec – er

where

                             
( ) ( )

2
 2211 abab

e
−−−

=

2

)725.1415.1()485.1190.1( −−−=  = 0.008 m

and ec – er = 0.067 d2

= 0.067 × 0.3152 = 0.007 m.
Therefore collimation error  el = e – (ec – er)

= 0.008 – 0.007 = 0.001 m.
Example 3.9. To determine difference in level between two stations A and B, reciprocal

vertical angles have been observed as + 6°32′58.3″ from A to B and – 6°33′36.7″ from B to A,
the horizontal distance AB being 1411.402 m.

Compute
  (i) the corrected vertical angle,
 (ii) the coefficient of refraction,
(iii) the correction for the earth’s curvature and atmospheric refraction, and
(iv) the elevation of B if the elevation of A is 116.73 m.
Take the mean radius of the earth equal to 6383.393 km.
Solution: (Fig. 3.10)
In Fig. 3.10, from ∆ AEO, we have

Chord AC = 2 (R + hA) sin 
2

θ

But for all practical purposes we can take

Chord AC = arc AC = 
R

hR
d A )( +

Unless hA is appreciable, chord AC = d since hA becomes negligible compared to R.
From Fig. 3.10, we get

                            
R

d

R

AC

AO

AE

2

2 chord 

2
sin ==θ

1000393.63832

402.1411

××
=

A
E

θ⁄2

d

C

θ

O

R+hA

Fig. 3.10
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                               8.22
2

′′=θ

The observed angle of elevation α = 6°32′58.3″
and the observed angle of depression β = 6°33′36.7″

(i) Correct vertical angle =
2

βα +

=
2

7.363363.58236 ′′′+ ′′′ ��

 = 6°33′17.5″

We know that

α + θ/2 – υ =
2

βα +

υ = α + θ/2 – 
2

βα +

= 6°32′58.3″ + 22.8″ – 6°33 ′17.5″
= 3.6″″″″″ .

(ii) Coefficient of refraction    K = υ
θ

=
8.222

6.3

×
 = 0.079.

Combined correction for curvature and refraction

    C d
R

cr = − 3
7

2

= − 3
7

1 411402 1000

6383 393

2

×
. ×

.
 = – 0.134 m.

(iii) The difference of level in A and B is given by

    ∆h AC= +�
�

�
�

tan
α β

2

= 




 +

2
tan

βα
d

= 1411.402 × tan 6°33′17.5″ = 162.178 m

Elevation of B hB = hA + ∆h

= 116.73 + 162.178 = 278.91 m.
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Example 3.10. The following observations were made to determine the sensitivity of two
bubble tubes. Determine which bubble tube is more sensitive.The distance of the staff from the
instrument was 80 m and the length of one division of both the bubble tubes is 2 mm.

Bubble tube
  Bubble reading Staff

L.H.S. R.H.S. reading

A (i) 13 5 1.618

(ii) 18 12 1.767

B (i) 15 3 1.635

(ii) 6 14 1.788

Solution:

Bubble tube A

The distance of the bubble from the centre of its run

(i) n1 = 
2

1
× (13 – 5) = 4 divisions

(ii) n2 = 
2

1
× (12 – 8) = 2 divisions

The total number of divisions n through which bubble has moved = n1 + n2 = 6

The staff intercept s = 1.767 – 1.618 = 0.149 m

The sensitivity of the bubble tube

Aα ′ =
nD

s×206265  seconds

=
806

149.0
206265

×
×  seconds  = 1′4″

Bubble tube B

The distance of the bubble from the centre of its run

(i) n1 = 
2

1
× (15 – 3) = 6 divisions

(ii) n2 = 
2

1
× (14 – 6) = 4 divisions

The total number of divisions n through which bubble has moved    = n1 + n2 = 10

The staff intercept s = 1.788 – 1.635 = 0.153 m

The sensitivity of the bubble tube

Bα ′ =
8010

153.0
206265

×
×  seconds = 40″

Since Aα ′  > Bα ′ , the bubble A is more sensitive than B.
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Example 3.11. If sensitivity of a bubble tube is 30″ per 2 mm division what would be the error
in staff reading on a vertically held staff at a distance of 200 m when the bubble is out of centre
by 2.5 divisions?

Solution:

The sensitivity of a bubble tube is given by

nD

s
206265=′α  seconds

where s can be taken as the error in staff reading for the error in the bubble tube.

Therefore s =
206265

α ′nD

=
206265

302005.2 ××
 = 0.073 m.

Example 3.12. Four stations C, A, B, and D were set out in a straight line such that CA =
AB = BD = 30 m. A level was set up at C and readings of 2.135 and 1.823 were observed on
vertically held staff at A and B, respectively, when bubble was at the centre of its run. The level
was then set up at D and readings of 2.026 and 1.768 were again observed at A and B, respectively.
Determine the collimation error of the level and correct difference in level of A and B.

Solution: (Fig. 3.8)

Apparent difference in level of A and B when instrument at C

∆h1 = 2.135 – 1.823 = 0.312 m

Apparent difference in level of A and B when instrument at D

∆h2 = 2.026 – 1.768 = 0.258 m

Since the two differences in level do not agree, the line of collimation is inclined to the
horizontal and not parallel to the axis of the bubble tube. Let the inclination of the line of collimation
with the horizontal be θ, directed upwards. The distance d between consecutive stations is 30 m.
If the errors in the staff readings at A and B for the instrument position at C are eA1 and eB1 and
that for the instrument position D are eA2 and eB2, respectively, then

eA1 = dθ
eB1 = 2 dθ
eA2 = 2 dθ
eB2 = dθ

The correct staff readings for the instrument position at C are (2.135 – dθ) and
(1.823 – 2 dθ) and that for the instrument position at D are (2.026 – 2 dθ) and (1.768 – dθ)

Substituting d = 30 m, the correct difference in level are

∆h1 = (2.135 – 30θ) – (1.823 – 60θ) = 0.312 + 30θ
∆h2 = (2.026 – 60θ) – (1.768 – 30θ) = 0.258 – 30θ

Since both ∆h1and ∆h2 are the correct differences in level, they must be equal.

Therefore ∆h1 = ∆h2
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        0.312 + 30θ = 0.258 – 30θ
θ = – 0.0009 radians

= – 0.0009 × 206265 seconds

= – 3′5.64″
The negative sign shows the line of collimation is inclined downwards rather upwards as

assumed.

The correct difference of level between A and B

∆h = 0.312 + 30 × (– 0.0009)

= 0.285 m.

The correct difference in level can also be obtained from Eq. (3.6) by reciprocal levelling

( ) ( )
2

2211 baba
h

−+−=∆

= half the sum of apparent difference in level

=
2

258.0312.0 +
 = 0.285 m.

Example 3.13. Fig. 3.11 shows a rectangle ABCD,
in which A, B, and C are the stations where staff readings
were obtained with a level set up at E and D. The observed
readings are given in Table 3.14.

Table 3.14

Level at
Staff reading at

A B C

E 1.856 0.809 –

 D 2.428 1.369 1.667

If A is a bench mark having elevation of 150 m, calculate the correct elevations of B and C.

Solution: Since ∠ DAB = 90°

   EB = √ (152 + 202) = 25 m

  DB = √ (482 + 202) = 52 m

Assuming the line of sight is inclined upwards by angle θ,

the correct staff reading on A when level at E = 1.856 – 15θ
the correct staff reading on B when level at E = 0.809 – 25θ
the correct staff reading on A when level at D = 2.428 – 48θ
the correct staff reading on B when level at D = 1.369 – 52θ

A

B C

D

E

48 m

20 m

15 m 33 m

Fig. 3.11



�	�	����
 ��

The correct differences in level of A and B from the two instrument positions must be equal.

Therefore

(1.856 – 15θ) – (0.809 – 25θ) = (2.428 – 48θ) – (1.369 – 52θ)

=
6
012.0

 = 0.002 radians

The correct level difference of A and B = (1.856 – 15θ) – (0.809 – 25θ)

= 1.047 + 10θ
= 1.047 + 10 × 0.002 = 1.067 m

Reduced level of B = 150 + 1.067

= 151.067 m.

The correct staff reading at C = 1.667 – 20θ
The correct level difference of A and C = (2.428 – 48θ) – (1.667 – 20θ)

= 0.761 – 28 × 0.002 = 0.705 m

Reduced level of C = 150 + 0.705 = 150.705 m.

Example 3.14. To determine the difference in level between two stations A and B, 4996.8 m
apart, the reciprocal trigonometric levelling was performed and the readings in Table 3.15,were
obtained. Assuming the mean earth’s radius as 6366.20 km and the coefficient of refraction as
0.071 for both sets of observations, compute the observed value of the vertical angle of A from
B and the difference in level between A and B.

Table 3.15

Instrument Height of Target Height of Mean vertical
at Instrument (m) at Target (m) angle

A 1.6 B  5.5 + 1°15′32″
B 1.5 A 2.5 –

Solution (Fig. 3.9):

Height of instrument at A,    hi = 1.6 m

Height of target at B,    hS = 5.5 m

Correction for eye and object to the angle α′  observed from A to B

Aε = 206265.
d

hh iS −
seconds

= 206265
8.4996

6.15.5 ×−
seconds

= 2′41″
Similarly, the correction for eye and object to the angle β′ observed from B to A

Bε = 206265
8.4996

5.15.2 ×−
seconds = 41.3″
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Length of arc at mean sea level subtending an angle of 1″ at the centre of earth

= 1000
206265

1 ×
′′×R

= 1000
206265

12.6366 ×
′′×

 = 30.86 m

Therefore angle θ subtended at the centre of earth by AB

=
86.30

8.4996

θ = 2�41.9″
Refraction υ = Kθ

= 0.071 × 2′41.9″ = 11.5″
Therefore correction for curvature and refraction

�/2 – υ = 5.11
2

5.412 ′′−
′′′

 = 1′9.5″

Corrected angle of elevation for eye and object

         α = α′ – εA

= 1°15′32″ – 2 ′41″  = 1°12′51″
Corrected angle of elevation for curvature and refraction

α + θ/2 – υ = 1°12�51″ + 1�9.5″
= 1°14�0.5″

If  b is the angle of depression at B corrected for eye and object then

α + θ/2 – υ = β – (θ/2 – υ)

or           β = 1°14�0.5″ + 1 �9.5″ = 1°15 ′10″
If the observed angle of depression is β′ then

β� = β′ – εB

or β� = β + εB

= 1°15′10″ + 41.3″ = 1°15�51.3″″″″″
Now the difference in level

                               ∆h AC= ′ + ′�
��

�
��

tan
α β

2

= ° ′ ′′ + ° ′ ′′�
�

�
�

4996 8
1 12 51 1 15 51 3

2
. × tan

.

= 108.1 m
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OBJECTIVE TYPE QUESTIONS

1. A datum surface in levelling is a

(a) horizontal surface.

(b) vertical surface.

(c) level surface.

(d) non of the above.

2. Reduced level of a point is its height or depth above or below

(a) the ground surface.

(b) the assumed datum.

(c) assumed horizontal surface.

(d) the line of collimation.

3. The correction for the atmospheric refraction is equal to

(a) + 1/7 of the correction for curvature of the earth.

(b) 1/7 of the correction for curvature of the earth.

(c) + 6/7 of the correction for curvature of the earth.

(d) 6/7 of the correction for curvature of the earth.

4. If the back sight reading at point A is greater than the fore sight reading at point B then

(a) A is higher than B.

(b) B is higher than A.

(c) height of the instrument is required to know which point is higher.

(d) instrument position is required to know which point is higher.

5. Change points in levelling are

(a) the instrument stations that are changed from one position to another.

(b) the staff stations that are changed from point to point to obtain the reduced levels of the
points.

(c) the staff stations of known elevations.

(d) the staff stations where back sight and fore sight readings are taken.

6. Balancing of sights mean

(a) making fore sight reading equal to back sight reading.

(b) making the line of collimation horizontal.

(c) making the distance of fore sight station equal to that of the back sight station from the
instrument station.

(d) taking fore sight and back sight readings at the same station.

7. The height of instrument method of reducing levels is preferred when

(a) there are large numbers of intermediate sights.

(b) there are no intermediate sights.

(c) there are large numbers of fore sights.

(d) there are no fore sights.
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8. Sensitivity of a bubble tube depends on

(a) the radius of curvature.

(b) the length of the vapour bubble.

(c) the smoothness of the inner surface of the buble tube.

(d) all the above.

9. Reciprocal levelling is employed to determine the accurate difference in level of two points which

(a) are quite apart and where it is not possible to set up the instrument midway between the
points.

(b) are quite close and where it is not possible to set up the instrument midway between
the points.

(c) have very large difference in level and two instrument settings are required to determine the
difference in level.

(d) are at almost same elevation.

10. When a level is in adjustment, the line of sight of the instrument is

(a) perpendicular to the vertical axis of the instrument and parallel to the bubble tube axis.

(b) perpendicular to the vertical axis of the instrument and bubble level axis.

(c) perpendicular to the bubble tube axis and parallel to the vertical axis.

(d) none of the above.

11. A Dumpy level is preferred to determine the elevations of points

(a) lying on hills.

(b) lying on a line.

(c) lying in moderately flat terrain.

(d) on a contour gradient.

ANSWERS

1. (c) 2. (b) 3. (a) 4. (b) 5. (d) 6. (c)

7. (a) 8. (d) 9. (a) 10. (a) 11. (c)
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Plumb bob 

Axis of plate level 

Axis of telescope 

4.1 THE THEODOLITE

A theodolite is a versatile instrument basically designed to measure horizontal and vertical angles.
It is also used to give horizontal and vertical distances using stadia hairs. Magnetic bearing of lines
can be measured by attaching a trough compass to the theodolite. It is used for horizontal and
vertical alignments and for many other purposes.

A theodolite has three important lines or axes, namely the horizontal axis or trunion axis, the
vertical axis, and the line of collimation or the line of sight. It has one horizontal circle perpendicular
to the vertical axis of the instrument for measuring horizontal angles and one vertical circle
perpendicular to the trunion axis for measuring vertical angles. For leveling the instrument there is
one plate level having its axis perpendicular to the vertical axis. The instrument also has one
telescope level having its axis parallel to the line of sight for measuring vertical angles.

The three axes of a perfectly constructed and adjusted theodolite have certain geometrical
requirements of relationship between them as shown in Fig. 4.1. The line of collimation has to be
perpendicular to the trunion axis and their point of intersection has to lie on the vertical axis. The
intersection of the horizontal axis, the vertical axis and the line of collimation, is known as the
instrumental centre. The line of sight coinciding with the line of sight describes a vertical plane
when the telescope is rotated about the trunion axis. The vertical axis defined by plumb bob or
optical plummet, has to be centered as accurately as possible over the station at which angles are
going to be measured.

Fig. 4.1
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4.2 ERRORS DUE TO MALADJUSTMENTS OF THE THEODOLITE

Errors in horizontal circle and vertical circle readings arise due to certain maladjustments of the
theodolite.

Error in the Horizontal Circle Reading

Error in the horizontal circle readings are due to the following maladjustments of the instrument:

 (i) The line of collimation not perpendicular to the trunion axis by a small amount c.

(ii) The trunion axis not perpendicular to the vertical axis by a small amount i.

The Line of Collimation Not Perpendicular to the Trunion Axis by a Small Amount c

Let us consider a sphere the centre O of which is the instrumental centre of the theodolite as
shown in Fig. 4.2. The line of sight of the theodolite is out of adjustment from the line perpendicular
to the trunion axis by a small angle c. When the theodolite is rotated about the trunion axis for the
pointing on P the line of sight sweeps along circle Z1PT1. The reading on the horizontal circle,
however, as if P were in vertical circle ZS1 (to which Z1PT1 is parallel) whereas it is actually in
vertical circle ZP1. Consequently, the error in the horizontal circle reading is S1P1 for this sighting,
and is positive on a clockwise reading circle.

Z′1 
Z1 

S 
c 

P 

h 

O 

S1 T1 P1 
T2 S2 

Path of line  
of sight 
(face right) 

Path of line 
of sight 
(face left) 

Z 

Trunion axis 
Z 

c 

Line of  
sight 

Vertical  
circle 

P 
S c 

90° 

90°−h 

Fig 4.2

Let SP be at right angles to ZS1 in the spherical triangle ZSP and the altitude of P be
h (= PP1). Then

ZP

S

SP

Z

sin

sin

sin

sin =

or    
ZP

SSP
Z

sin

sinsin
sin = .

For small angle, we can write the error in horizontal circle reading

Z
c

h

c

h
= °

° −
=sin

sin ( ) cos

90

90

= .sec hc (4.1)
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The Trunion Axis not Perpendicular to the Vertical Axis by a Small Amount i

In Fig. 4.3, it has been assumed that the left-hand support of the trunion axis is higher than
the right-hand support and, consequently, the line of sight sweeps along circle Z2PS3, making angle
i with the vertical circle ZS3. P appears to be on that circle but is in fact on vertical circle ZP2,
and therefore, the error in the horizontal circle reading is S3P2 and it is negative.

Considering the right-angled spherical triangle PP2S3 in which ∠ P2 = 90°, from Napier’s rule
we have

232 tan.tansin PPiSP = .

For small angles we can write the error in horizontal circle reading

    232 tan PPiSP =  = i tan h …(4.2)

where PP2 =  PP1 = h.

In the case of depression angles the errors in horizontal circle reading due to collimation error
c are the same since path Z1PT1 is parallel to ZS1 throughout (Fig. 4.2). However, for the error
in trunion axis, path Z2PS3 in Fig. 4.3, is inclined to ZS3, the two paths effectively crossing at S3
when moving from elevation to depression. Thus there is a change in the direction of error for
depression angles.

 
Z′2 Z2 

P 

h 

O 

S4 P2 
S3 

Z 

Trunion axis 

Line of  
sight 

Vertical  
circle 

i 
i 

Path of line 
of sight 
(face right) 

Path of line  
of sight 
(face left) 

P 

P2 
S3 

90° 

i 

Fig. 4.3

For face right observations the path of the lines of sight change from Z1 to Z1′ in Fig. 4.2,
thus giving an error of P1S2 in the horizontal circle reading. This is of similar magnitude but of
opposite sign to S1P1. Similarly, in Fig. 4.3, Z2 moves to Z2′ and S3 to S4, giving error S4P2 which
is of same magnitude but of opposite sign to error P2S3.

It may be noted that in each case taking means of face left and face right observations cancels
out the errors, and the means will be the true values of the horizontal circle readings.

Errors in Vertical Circle Reading

Errors in circle readings due to the line of collimation not being perpendicular to the trunion axis
and the trunion axis not being perpendicular to the vertical axis may be taken as negligible. When
the vertical axis is not truly vertical the angle i by which the trunion axis is not perpendicular to
the vertical axis, varies with the pointing direction of the telescope of the instrument. Its value is
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Fig. 4.5

maximum when the trunion axis lies in that plane which contains the vertical axis of the instrument
and the true vertical. However, in this case the horizontal circle, reading will be in error as the
trunion axis is inclined to the vertical axis of the instrument. The error in this case is of the form
(ii) above but i is now variable.

4.3 TRAVERSE

A traverse consists a series of straight lines of known length related one another by known angles
between the lines. The points defining the ends of the traverse lines are called the traverse stations.

Traverse survey is a method of establishing control points, their positions being determined
by measuring the distances between the traverse stations which serve as control points and the
angles subtended at the various stations by their adjacent stations. The anglers are measured with
a theodolite and the distances are measured by the methods discussed in Chapter 2 depending on
the accuracy required in the survey work. Chain and compass traverse may be run for ordinary
surveys.

Types of Traverse

There are two types of traverse, namely the open traverse and the closed traverse. An open traverse
originates at a point of known position and terminates at a point of unknown position (Fig. 4.4a),
whereas a closed traverse originates and terminates at points of known positions (Fig. 4.4b). When
closed traverse originates and terminates at the same point, it is called the closed-loop traverse
(Fig. 4.4 c). For establishing control points, a closed traverse is preferred since it provides different
checks for included angles, deflection angles and bearings for adjusting the traverse. When an open
traverse is used the work should be checked by providing cut off lines and by making observations
on some prominent points visible form as many stations as possible.
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Fig. 4.4

4.4 COORDINATES

Normally, plane rectangular coordinate system having x-axis in east-west direction and y-axis in
north-south direction, is used to define the location of the traverse stations. The y-axis is taken
as the reference axis and it can be (a) true north, (b) magnetic north,
(c) National Grid north, or (d) a chosen arbitrary direction.

Usually, the origin of the coordinate system is so placed that the
entire traverse falls in the first quadrant of the coordinate system and
all the traverse stations have positive coordinates as shown in Fig. 4.5.
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4.5 BEARING

Bearing is defined as the direction of any line with respect to a given meridian as shown in Fig.
4.6. If the bearing θ  or θ′ is measured clockwise from the north side of the meridian, it is known
as the whole-circle bearing (W.C.B.).The angle θ is known as the fore bearing (F.B.) of the line
AB and the angle θ′ as the back bearing (B.B.). If θ  and θ′ are free from errors, (θ – θ′) is always
equal to 180°.

The acute angle between the reference meridian and the line
is known as the reduced bearing (R.B.) or quadrantal bearing. In
Fig. 4.7, the reduced bearings of the lines OA, OB, OC, and OD
are NθAE, SθBE, SθCW, and NθDW, respectively.

4.6 DEPARTURE AND LATITUDE

The coordinates of points are defined as departure and latitude. The latitude is always measured
parallel to the reference meridian and the departure perpendicular to the reference meridian. In Fig.
4.8, the departure and latitude of point B with respect to the preceding point A, are

Departure = BC = l sin θ
Latitude = AC = l cos θ. …(4.3)

where l is the length of the line AB and θ its bearing. The departure and latitude take the sign
depending upon the quadrant in which the line lies. Table 4.1 gives the signs of departure and
latitude.

Table 4.1

Quadrant

N-E S-E S-W N-W

Departure + + – –

Latitude  +  –  –  +

Departure and latitude of a forward point with respect to the preceding point is known as the
consecutive coordinates.

 

      N-E  
quadrant 

      S-E  
quadrant 

      S-W  
quadrant 

      N-W  
quadrant 
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B 
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D 
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θB 

θD 

θC 

A

B

θ
l

�
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meridian

Departure

Latitudel cosθ

l sinθ
C

Fig. 4.7 Fig. 4.8
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B
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θ′

θ
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4.7 EASTING AND NORTHING

The coordinates (X,Y) given by the perpendicular distances from the two main axes are the eastings
and northings, respectively, as shown in Fig. 4.9. The easting and northing for the points P and
Q are (EP, NP,) and (EP, NP,), respectively. Thus the relative positions of the points are given by

.PQ

PQ

NNN

EEE

−=∆

−=∆
…(4.4)

P

Q

∆N

�

�

EQ

EP

NP

∆E

NQ

Fig. 4.9

4.8 BALANCING THE TRAVERSE

In a closed traverse the following conditions must be satisfied:

Σ Departure = ΣD = 0

Σ Latitude = ΣL = 0 …(4.5)

If the above conditions are not satisfied, the position A of the originating stations and its
computed position A′  will not be the same as shown in Fig. 4.10, due to the observational errors.
The distance AA′  between them is known as the closing error. The closing error is given by

22 )()( LDe Σ+Σ= ...(4.6)

and its direction or reduced bearing is given by

)(

)(
tan

L

D

Σ
Σ=θ . …(4.7)

The term balancing is generally applied to the operation of adjusting the closing error in a
closed traverse by applying corrections to departures and latitudes to satisfy the conditions given
by the Eq. (4.5).

The following methods are generally used for balancing a traverse:

(a) Bowditch’s method when the linear errors are proportional to √l and angular errors are
proportional to 1/√l, where l is the length of the line. This rule can also be applied graphically when
the angular measurements are of inferior accuracy such as in compass surveying. In this method
the total error in departure and latitude is distributed in proportion to the length of the traverse line.
Therefore,
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l

l
Lc

l

l
Dc

L

D

Σ
Σ=

Σ
Σ=

…(4.8)

where
cD and cL = the corrections to the departure and latitude of the line to which the correction

is applied,
l = the length of the line, and

Σl = the sum of the lengths of all the lines of the traverse, i.e., perimeter p.

(b) Transit rule when the angular measurements are more precise than the linear measurements.
By transit rule, we have

 c D D
D

D
T

= Σ   …(4.9)

  c L L
L

L
T

= Σ

where

D and L = the departure and latitude of the line to
which the correction is applied, and

DT and LT = the arithmetic sum of departures
   and latitudes all the lines of the
  traverse, (i.e., ignoring the
    algebraic signs).

4.9 OMITTED OBSERVATIONS

In a closed traverse if lengths and bearings of all the lines could not be measured due to certain
reasons, the omitted or the missing measurements can be computed provided the number of such
omissions is not more than two. In such cases, there can be no check on the accuracy of the field
work nor can the traverse be balanced. It is because of the fact that all the errors are thrown into
the computed values of the omitted observations.

The omitted quantities are computed using Eq. (4.5), i.e.

ΣD l l ln n= + + + =1 1 2 2 0sin sin ....... sinθ θ θ

ΣL l l ln n= + + + =1 1 2 2 0cos cos ....... sinθ θ θ …(4.10)

It may be noted that

length of the traverse lines l = D L2 2+
departure of the line D = l sin θ

latitude of the line L = l cos θ
bearing of the line q = tan–1(D/L).

D2

D1

D3

D4

L4 L3

L1

L2

B

A

ΣD

ΣLe

θ

�

A′

D

C

Fig. 4.10
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4.10 CENTERING ERROR OF THEODOLITE

If the theodolite is not correctly centered over the ground station mark at which the horizontal
angles are to be measured, its vertical angle will not pass through the station mark and the measured
horizontal angle will be in error.

In Fig. 4.11, let the true centering position of the theodolite be S. When the theodolite is not
correctly centered over station S the vertical axis of the theodolite may lie any where within a circle
of radius x from S, x being the centering error. However, there are two points S1 and S2 on the
perimeter of the circle at which the true horizontal angle PSQ will be subtended. S1 and S2 lie on
the circumference of the circle passing through P, S and Q. Accordingly ∠ PS1Q = ∠ PSQ =
∠ PS2Q, because all the three angles stand on chord PQ.

To determine the maximum angular error
due to a centering error, let us assume that the
theodolite is centered at S′  which is x distance
away from the correct position S.

Correct horizontal angle ∠ PSQ = γ = θ + φ
Measured horizontal angle ∠ PS′Q = γ′

= α + θ + φ + β
Therefore the error in measurement E = γ′ – γ

= α + β
From ∆SS′P, we have

      
sin sinα θ
SS S P′

=
′

…(4.11)

From ∆SS′Q, we have

QSSS ′
=

′
φβ sinsin

. …(4.12)

Taking S′P = y and S′Q = z, for small angles Eqs. (4.11) and (4.12) become

  y

x θα sin=

  
z

x φβ sin= .

Therfore   E = 







+

zy
x

φθ sinsin

     = 







+

′′ zy

x φθ sinsin
1sin    seconds …(4.13)

S1
S

P Q
α

S2

S′x

y z
β

γ

θ φ

γ ′

Fig. 4.11
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where      
1sin ′′

x
 = 206265.

The maximum absolute error E occurs when

(a) sin θ and cos φ are maximum, i.e., θ = φ = 90°.

(b) y and z are minimum.

For the given values if γ,  y and z, the maximum angular error can be determined as under.

For a given value of γ,

    θ = γ – φ

    E =
( )









+−

′′ zy

x φφγ sinsin
1sin …(4.14)

= 





+−

′′ zy

x φγφφγ sincossincossin

1sin

                           







+−−

′′
=

zy

x

d

dE φγφφγ
φ

coscoscossinsin
1sin  = 0

                         yz

γφφγφ coscossinsincos +=

                            ( )γφγ costansin += zy

                         γ
γφ

sin
cos

tan
z

zy −= . …(4.15)

For the given values of γ,  y and z, the maximum value of α can be determined from Eq. (4.15)
which on substitution in Eq. (4.14) will give the maximum absolute error EMax.

4.11 COMPATIBILITY OF LINEAR AND ANGULAR MEASUREMENTS

The precision achieved in a measurement depends upon the
instruments used and the methods employed. Therefore, the
instruments and methods to be employed for a particular survey
should be so chosen that the precision in linear and angular
measurements are consistent with each other. This can be achieved
by making the error in angular measurement equal to the error in
the linear measurement.

Fig. 4.12

In Fig. 4.12, a point R is located with reference to the traverse line PQ by making angular
measurement θ and linear measurement l. But due to the errors δθ  in the angular measurement R
is located at R′ and due to error δl in the linear measurement the location of R′ is further displaced
to R" from R′.

R′′

R′

R

δ l

δθ

θ

l

P Q
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The displacement due to the angular error

RR′ = l tan δθ.

The displacement due to the linear error

R′R′′ = δl .

For consistency in linear and angular errors

RR′ = R′R′′
or l tan δθ = δl

  tan δθ =
l

lδ
.

For small values of δθ, tan δθ = δθ, thus

        δθ =
l

lδ
. ...(4.16)

Example 4.1. The fore bearings and back bearings of the lines of a closed traverse ABCDA
were recorded as below:

Line Fore bearing Back bearing

AB 77°30′ 259°10′
BC 110°30′ 289°30′
CD 228°00′ 48°00′

DA 309°50′ 129°10′

Determine which of the stations are affected by local attraction and compute the values of the
corrected bearings.

Solution (Fig. 4.13):

Method-I

In this method the errors in the bearings of the lines are determined and the bearings are
corrected for the respective errors.

By observing the values of the fore bearings and
back bearing of the lines, it is found that the fore bearing
and back bearing of the line CD differ exactly by 180°,
i.e., 228° – 48° = 180°. Therefore both the stations C and
D must be free from local attraction. Since for other lines
the difference is not 180°, the stations A and B are affected
by local attraction.

Since station D is free from local attraction, the fore
bearing of DA must be correct.

Calculation of corrected bearings

Correct fore bearing of DA = 309°50′ (given)

Correct back bearing of DA = 180° + 309°50′ = 129°50′

A

�

D

C

B

�

�

�
Free from
local
attraction

Free from
local
attraction

Fig. 4.13
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Observed back bearing of DA = 129°10′
Error at A = 129°10′ – 129°50′ = – 40′

Correction at A = + 40′
Observed fore bearing of AB = 77°30′

Correct fore bearing of AB = 77°30′ + 40′ = 78°10′
Correct back bearing of AB = 180° + 78°10′ = 258°10′

Observed back bearing of AB = 259°10′
Error at B = 259°10′ – 258°10′ = 1°

Correction at B = – 1°

Observed fore bearing of BC = 110°30′
Correct fore bearing of BC = 110°30′ – 1° = 109°30′

Correct back bearing of BC = 180° + 109°30′ = 289°30′.   (Check)

Since the computed back bearing of BC is equal to its observed back bearing, the last
computation provides a check over the entire computation.

Method-II

Since all the bearings observed at a station are equally affected, the difference of bearings of
two lines originating from that station will be the correct included or interior angle between the lines
at that station. In this method, from the observed bearings included angles are computed and
starting from a correct bearing, all other bearings are computed using the included angles.

In Method-I we have found that the stations C and D are free from local attraction and
therefore, the bearings observed at these stations are the correct bearings.

Calculation of included angles

Included angle A = back bearing of DA – fore bearing of AB

= 129°10′ – 77°30′ = 51°40′.
Included angle B = back bearing of AB – fore bearing of BC

= 259°10′ – 110°30′ = 148°40′.
Included angle C = back bearing of BC – fore bearing of CD

= 289°30′ – 228°00′ = 61°30′.
Included angle D = back bearing of CD – fore bearing of DA

= (48°00′ – 309°50′) + 360° = 98°10′.
Σ Included angles = 51°40′ + 148°40′ + 61°30′ + 98°10′ = 360°

Theoretical sum = (2n – 4). 90° = (2 × 4 – 4) × 90° = 360°.     (Check)

Since the sum of the included angles is equal to their theoretical sum, all the angles are assumed
to be free from errors.

Calculation of corrected bearings

Correct back bearing of DA = 180° + 309°50′ – 360° = 129°50′
Correct fore bearing of AB = 129°50′ – ∠ A = 129°50′ – 51°40′ = 78°10′
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Correct back bearing of AB = 180° + 78°10′  = 258°10′
Correct fore bearing of BC = 258°10′ – ∠ B = 258°10′ – 148°40′ = 109°30′

Correct back bearing of BC = 180° + 109°30′ = 289°30′.   (Check)

The corrected bearings of the lines are tabulated in Table 4.2.

Table 4.2

Line
Corrected

Fore bearing Back bearing

AB 78°10′ 258°10′
BC 109°30′ 289°30′
CD 228°00′ 48°00′
DA 309°50′ 129°50′

Example 4.2. The angles at the stations of a closed traverse ABCDEFA were observed as
given below:

Traverse station Included angle

A 120°35′00′′
B 89°23′40′′
C 131°01′00′′
D 128°02′20′′
E 94°54′40′′

F 155°59′20′′

Adjust the angular error in the observations, if any, and calculate the bearings of the traverse
lines in the following systems if whole circle bearing of the line AB is 42°:

   (a) Whole circle bearing in sexagesimal system.

   (b) Quadrantal bearing in sexagesimal system.

   (c) Corresponding values in centesimal system for (a).

Solution:

Adjustment of angular error

The sum of the internal angles of a polygon having n sides is (2n - 4). 90°, therefore for six
sides polygon

Σ Internal angles = (2 × 6 – 4) × 90° = 720°

Σ Observed internal angles = 719°56′00′′
Total error = 719°56′00′′  – 720° = – 4′

Total correction = 4′ or 240′′ .
Since the error is of some magnitude, it implies that the work is of relatively low order;

therefore, the correction may be applied equally to each angle assuming that the conditions were
constant at the time of observation and the angles were measured with the same precision.
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Hence the correction to each angle = 
6

024 ′
 = 40″.

The corrected included angles are given in the following table:

Traverse station Included angle Correction Adjusted value

A 120°35′00″ + 40″ 120°35′40″
B 89°23′40″ + 40″ 89°24′20″
C 131°01′00″ + 40″ 131°01′40″
D 128°02′20″ + 40″ 128°03′00″
E 94°54′40″ + 40″ 94°55′20″
F 155°59′20″ + 40″ 156°00′00″

Σ 719°56′00″ + 240″ 720°00′00″

(a) Calculation of  W.C.B.

W.C.B. of AB = 42° (given)

W.C.B. of BA = 180° + 42° = 222°00′00″
W.C.B. of BC = W.C.B. of BA – ∠ B

= 222°00′00″ – 89°24 ′20″ = 132°35 ′40″
W.C.B. of CB = 180° + 132°35′40″ = 312°35 ′40″
W.C.B. of CD = W.C.B. of CB – ∠ C

= 312°25′40″ – 131°01’40'’ = 181°34 ′00″
W.C.B. of DC = 180° + 181°34′00″  = 361°34′00″ – 360° = 1°34 ′00″
W.C.B. of DE = W.C.B. of DC  – ∠ D

= 361°34′00″ – 128°03 ′00″ = 233°31 ′00″
W.C.B. of ED = 180° + 233°31′00″ = 413°31 ′00″ – 360° = 53°31′00″
W.C.B. of EF = W.C.B. of ED – ∠ E

= 413°31′00″ – 94°55 ′20″ = 318°35 ′40″
W.C.B. of FE = 180° + 318°35′40″ = 498°35 ′40″  – 360° = 138°35′40″
W.C.B. of FA = W.C.B. of FE  – ∠ F

= 498°35′40″ – 156°00 ′00″ = 342°35 ′40″
W.C.B. of AF = 180° + 342°35′40″ = 522°35 ′40″  – 360° = 162°35′40″
W.C.B. of AB = W.C.B. of AF – ∠ A

= 162°35′40″  – 120°35′40″  = 42°00′00″.    (Check)

(b) Computation of Quadrantal bearings (R.B.)

W.C.B. of AB = 42°

AB being N-E quadrant, R.B. = N42°E

W.C.B. of BC = 132°35′40″
BC being S-E quadrant, R.B. = S (180° – 132°35′40″) E = S47°24 ′20″E

W.C.B. of CD = 181°34′00″



��� �����	
��

CD being S-W quadrant, R.B. = S(181°34′00″ – 180°)W = S1°34′00″W
W.C.B. of DE = 233°31′00″

DE being S-W quadrant, R.B. = S(233°31′00″ – 180°)W = S53°31 ′00″W
W.C.B. of EF = 318°35’40″

EF being N-W quadrant, R.B. = N(360° – 318°35’40″)W = N41°24 ′20″W

W.C.B. of FA = 342°35′40″
FA being N-W quadrant, R.B. = N(360° – 342°35′40″)W = N17°24′20″W.

W.C.B. in centesimal system

In the centesimal system a circle is divided equally in 400 gon, as against 360° in the sexagesimal
system as shown in Fig. 4.14.

Thus 1 degree =
100
90

gon= 10
9

1 minute =
10

60
gon

×
=

9
1

54

1 second =
1

60
gon

×
=

54
1

3240

Hence for the line BC its bearing 132°35′40″ in centesimal system is

132° = 132 × 
9

10
 = 146.6667 gon

35′ = 35 × 
54

1
 = 0.6481 gon

40² = 40 × 
3240

1
 = 0.0123 gon

Total  = 147.327 gon

Making similar calculations other bearings can be converted into centesimal system. All the
results are given in Table 4.3.

Table 4.3

               Bearing

Line Sexagesimal system Centesimal
system

W.C.B. R.B. W.C.B.

AB 42°00′00″ N42°00′00″E 46.6667 gon

BC 132°35′40″ S47°24′20″E 147.3271 gon

CD 181°34′00″ S1°34′00″W 201.7407 gon

DE 233°31′00″ S53°31′00″W 259.4630 gon

EF 318°35′40″ S41°24′20″W 353.9938 gon

FA 342°35′40″ N17°24′20″W 380.6605 gon

360°

90°

180°

270° 100 gon

200 gon

300 gon

400 gon

Sexagesimal system Centesimal system

Fig. 4.14
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Example 4.3. A closed-loop traverse ABCDA was run around an area and the following
observations were made:

          Station Length Included
W.C.B.

at to (m) angle

A
187.4 86°30′02″ 140°11′40″

B

B
382.7 80°59′34″

C

C
106.1 91°31′29″

D

D
364.8 100°59′15″

A

 Adjust the angular error, if any, and calculate the coordinates of other stations if the coordinates
of the station A are E1000 m and N1000 m.

Solution:

For systematic computations, the observations are recorded in a tabular form suggested by
Gale. The Gale’s traverse table is given in Table 4.4 and all results of various computations have
been entered in the appropriate columns of the table.

Adjustment of angular error

Σ Included angles = 86°30′02″ + 80°59 ′34″ + 91°31 ′29″  + 100°59′15″  = 360°00′2040″

Theoretical sum of the included angles = (2n – 4). 90° = (2 × 4 – 4) × 90° = 360°

Total error = 360°00′2040″ – 360° = + 20″

Total correction = – 20″ .

Assuming the conditions of observation at different stations constant, the total correction can
be distributed equally to each angle.

Thus the correction to individual angle =
4

20
 = – 5″.

Therefore the corrected included angles are

∠ A = 86°30′02″ – 5″ = 86°29 ′57″

∠ B = 80°59′34″ – 5″ = 80°59 ′29″

∠ C = 91°31′29″ – 5″ = 91°31 ′24″

∠ D = 100°59′15″ – 5″ = 100°59 ′10″

Total      = 360°00′00'’.    (Check)
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Table 4.4 Gale’s traverse table

Station
Length Included  Correction Corrected   W.C.B.

Consecutive       Independent

(m) angle angle
coordinates

a t t o Departure Latitude Easting Northing
(E) (N)

A 187.4 86°30′ 02″ –5″ 86°29′57″ 140°11′ 40″ 120.0 –144.0 1000 1000

B

B 382.7 80°59′ 34″ –5″ 80°59′29″ 41°11′ 09″ 252.0 288.0 1120.0 856.0

C

C 106.1 91°31′ 29″ –5″ 91°31′24″ 312°42′ 33″ – 78.0 72.0 1370.0 1144.0

D

D 364.8 100°59′ 15″ –5″ 100°59′ 10″ 233°41′ 43″ – 294.0 – 216.0 1294.0 1216.0

A

Σ 360°00′ 20″ –20″ 360°00′ 00″ 0.0 0.0

Computation of  W.C.B.

W.C.B. of AB = 140°11′40″ (given)

W.C.B. of BA = 180° + 140°11′40″  = 320°11 ′40″
W.C.B. of BC = W.C.B. of BA + ∠ B

= 320°11′40″ + 80°59 ′29″ – 360° = 41°11′09″
W.C.B. of BA = 180° + 40°11′09″  = 221°11 ′09″
W.C.B. of CD = W.C.B. of CB + ∠ C

= 221°11′09″ + 91°31 ′24″ = 312°42 ′33″
W.C.B. of DC = 180° + 312°42′33″ – 360° = 132°42′33″
W.C.B. of DA = W.C.B. of DC + ∠ D

= 132°42′33″ + 100°59 ′10″ = 233°41 ′43″
W.C.B. of AD = 180° + 233°41′43″ – 360° = 53°41′43″
W.C.B. of AB = W.C.B. of AD + ∠ A

= 53°41′43″  + 86°29′57″ = 140°11 ′40″.    (Check)

Computation of consecutive coordinates
Departure of a line D = l sin θ

Latitude of a line L = l cos θ.

Line AB

DAB = 187.4 × sin 140°11′40″ = + 120.0 m
LAB = 187.4 × cos 140°11′40″ = – 144.0 m.

Line BC

DBC = 382.7 × sin 41°11′09″ = +252.0 m
LBC = 382.7 × cos 41°11′09″ = − 288.0 m.
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Line CD

DCD = 106.1 × sin 312°42′33″ = – 78.0 m

LCD = 106.1 × cos 312°42′33″ = + 72.0 m.

Line DA

DDA = 364.8 × sin 233°41′43″ = –294.0 m

LDA = 364.8 × cos 233°41′43″ = –216.0 m.

∑D = 120.0 + 252.0 – 78.0 – 294.0 = 0.0    (Check)

∑L = – 144.0 + 288.0 + 72.0 – 216.0 = 0.0    (Check)

Computation of independent coordinates (Easting and Northing)

Coordinates of A

EA = 1000.0 m (given)

NA = 1000.0 m (given)

Coordinates of B

EB = EA + DAB = 1000.0 + 120.0 = 1120.0 m

NB = NA + LAB = 1000.0 – 144.0  =  856.0 m.

Coordinates of C

EC = EB + DBC = 1120.0 + 252.0 = 1370.0 m

NC = NB + LBC = 856.0 + 288.0  =  1144.0 m

Coordinates of D

ED = EC + DCD = 1370.0 – 78.0 = 1294.0 m

ND = NC + LCD = 1144.0 + 72.0 =  1216.0 m

Coordinates of A

EA = ED + DDA = 1294.0 – 294.0 = 1000.0 m    (Check)

NA = NA + LDA  = 1216.0 – 216.0  = 1000.0 m.    (Check)

Example 4.4. The data given in Table 4.5, were obtained for an anti-clockwise closed-loop
traverse. The coordinates of the station A are E1500 m and N1500 m. Determine the correct
coordinates of all the traverse stations after adjusting the traverse by

(i)  Bowditch’s method

(ii) Transit rule.

Table 4.5

Internal angles Length (m) Bearing

∠ A = 130°18′45″ AB = 17.098 AF = 136°25′12″
∠ B = 110°18′23″ BC = 102.925

∠ C = 99°32′35″ CD = 92.782

∠ D = 116°18′02″ DE = 33.866

∠ E = 119°46′07″ EF = 63.719

∠ F = 143°46′20″ FA = 79.097
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Solution (Fig. 4.15):

(i) Adjusting the traverse by Bowditch’s method

Adjustment of angular errors

∑ Internal angles = 720°00′12″
Expected ∑ Internal angles = (2n – 4). 90° = (2 × 6 – 4) × 90° = 720°

Total error = + 12″
Total correction = – 12″.

Thus, assuming that all the angles have been measured
with same precision, the correction to the individual angles

= 
6

12
−  =  – 2″ .

The corrected internal angles are given in Table 4.5.

Computation of bearings

Since the traverse is an anti-clockwise traverse, the measured bearing of the line AF is the
back bearing (B.B.) of FA. The computation of bearings of other lines can be done in anti-clockwise
direction by using the B.B. of AF or in clockwise direction using the fore bearing (F.B.) of FA,
and the adjusted internal angles. Here the first approach has been used.

F.B.FA = B.B.AF = 136°25′12″ (given)

F.B.AB = B.B.AF + ∠ A

= 136°25′12″ + 130°18 ′43″ = 266°43 ′55″
B.B.AB = 180° + 266°43′55″ = 86°43 ′55″
F.B.BC = B.B.AB + ∠ B

= 86°43′55″ + 110°18 ′21″ = 197°02 ′16″
B.B.BC = 180° + 197°02′16² = 17°02′16″
F.B.CD = B.B.BC + ∠ C

= 17°02′16″ + 99°32 ′33″ = 116°34 ′49″
B.B.CD = 180° + 116°34′49″ = 296°34 ′49″
F.B.DE = B.B.CD + ∠ D

= 296°34′49″ + 116°18 ′00″ = 52°52 ′49″
B.B.DE = 180° + 52°52′49″ = 232°52 ′49″
F.B.EF = B.B.DE + ∠ E

= 232°52′49″ + 119°46 ′05″ = 352°38 ′54″
B.B.EF = 180° + 352°38′54″ = 172°38 ′54″
F.B.FA = B.B.EF + ∠ F

= 172°38′54″ + 143°46 ′18″ = 316°25 ′12″
B.B.FA = 180° + 316°25′12″ = 136°25 ′12″.    (Check)

A
B

C

D

E

F

�

Fig. 4.15
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Computation of consecutive coordinates

Line AB

DAB = lAB sin θAB  = 17.098 × sin 266°43′55″  = – 17.070 m

LAB = lAB cos θAB  = 17.098 × cos 266°43′55″ = – 0.975 m.

Line BC

DBC = lBC sin θBC  = 102.925 × sin 197°02′16″ = – 30.157 m

LBC = lBC cos θBC  = 102.925 × cos 197°02′16″ = – 98.408 m.

Line CD

DCD = lCD sin θCD  = 92.782 × sin 116°34′49″ = + 82.976 m

LCD = lCD cos θCD  = 92.782 × cos 116°34′49″ = – 41.515 m.

Line DE

DDE = lDE sin θDE  = 33.866 × sin 52°52′49″ = + 27.004  m

LDE = lDE cos θDE  = 33.866 × cos 52°52′49″ = + 20.438 m.

Line EF

DEF = lEF sin θEF  = 63.719 × sin 352°38′54″ = – 8.153 m

LEF = lEF cos θEF  = 63.719 × cos 352°38′54″ = + 63.195 m.

Line FA

DFA = lFA sin θFA  = 79.097 × sin 316°25′12″  = – 54.527 m

LFA = lFA cos θFA  = 79.097 × cos 316°25′12″ = + 57.299 m.

Algebraic sum of departures = total error in departure = ΣD = + 0.073 m

Algebraic sum of latitudes = total error in latitude = ΣL = + 0.034 m

Arithmetic sum of departures DT = 219.887 m

Arithmetic sum of latitudes LT = 281.830 m

Balancing the traverse

(i) By Bowditch’s method

Correction to (departure/latitude) of a line

= – Algebraic sum of (departure/latitude)  traverse theofperimeter  

line that oflength 

Dc = −Σ
Σ

D l
l

Lc = −Σ
Σ

L l
l

ABDc , =
487.389

098.17
073.0 ×−  = – 0.003 m
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BCDc , =
487.389

925.102
073.0 ×−  = – 0.019 m

CDDc , =
487.389

782.92
073.0 ×−  = – 0.017 m

DEDc , =
487.389

866.33
073.0 ×−  = – 0.006 m

EFDc , =
487.389

719.63
073.0 ×−  = – 0.013 m

FADc , = 
487.389

097.79
073.0 ×−  = – 0.015 m

Total  = – 0.073 m    (Check)

ABLc , =
487.389

098.17
034.0 ×−  = – 0.001 m

BCLc , =
487.389

925.102
034.0 ×−  = – 0.009 m

CDLc , =
487.389

782.92
034.0 ×−  = – 0.008 m

DELc , =
487.389

866.33
034.0 ×−  = – 0.003 m

EFLc , =
487.389

719.63
034.0 ×−  = – 0.006 m

FALc , = 
487.389

097.79
034.0 ×−  = – 0.007 m

Total  = – 0.034 m    (Check)

Corrected consecutive coordinates

D′AB = – 17.070 – 0.003 =  – 17.073 m, L′AB = –  0.975  – 0.001 =  – 0.976 m

D′BC = – 30.157 – 0.019 =  – 30.176 m, L′BC = – 98.408  – 0.009 =  – 98.417 m

D′CD = + 82.976 – 0.017 =  + 82.959 m, L′CD = – 41.515  – 0.008 =  – 41.523 m

D′DE = + 27.004 – 0.006 =  + 26.998 m, L′DE = + 20.438  – 0.003 =  + 20.435 m

D′EF = – 8.153  – 0.013 =  – 8.166 m, L′EF = + 63.195  – 0.006 =  + 63.189 m
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D′FA = – 54.527 – 0.015 =  – 54.542 m, L′FA = + 57.299  – 0.007 =  + 57.292 m

ΣD′ =  0.000 m    (Check) ΣL′ =  0.000 m    (Check)

Independent coordinates

EA = 1500 m (given), NA = 1500 m (given)

EB = EA  + D′AB  = 1500 – 17.073 = 1482.927 m
NB = NA  + L′AB = 1500 – 0.976 =  1499.024 m
EC = EB  + D′BC  = 1482.927 – 30.176 = 1452.751 m

NC = NB  + L′BC  = 1499.024 – 98.417 = 1400.607 m
ED = EC  + D′CD  = 1452.751 + 82.959  = 1535.710 m
ND = NC  + L′CD  = 1400.607 – 41.523 = 1379.519 m

EE = ED  + D′DE  = 1535.710 + 26.998 = 1562.708 m
ND = ND  + L′DE = 1359.084 + 20.435 = 1379.519 m
EF = EE  + D′EF  = 1562.708 – 8.166 = 1554.542 m

NF = NF  + L′EF  = 1379.519 + 63.189 = 1442.708 m
EA = EF  + D′FA  = 1554.542 – 54.542 = 1500 m    (Check)

NA = NF  + L′FA  = 1442.708 + 57.292 = 1500m.     (Check)

The results of all the computations are given in Table 4.6.

(ii) By Transit rule

   Correction to (departure/latitude) of a line

                = – Algebraic sum of departure/latitude) /latitude)(departure of sum arithmetic 

line that of /latitude)(departure

Dc =
TD

D
DΣ−

Lc =
TL

L
LΣ−

Table 4.6

Station Length Internal Correction Corrected Bearing
           Consecutive

(m) angle               Int. angle
           coordinates

                    Departure   Latitude

A 17.098 130°18′45″ – 2″ 130°18′43″ 266°43′55″ – 17.070 – 0.975

B 102.925 110°18′23″ – 2″ 110°18′21″ 197°02′16″ – 30.157 – 98.408

C 92.782 99°32′35″ – 2″ 99°32′33″ 116°34′49″ + 82.976 – 41.515

D 33.866 116°18′02″ – 2″ 116°18′00″ 52°52′49″ + 27.004 + 20.438

E 63.719 119°46′07″ – 2″ 119°46′05″ 352°38′54″ – 8.153 + 63.195

F 79.097 143°46′20″ – 2″ 143°46′18″ 316°25′12″ – 54.527 + 57.299

∑ 389.487 720°00′12″ – 12″ 720°00′00″ + 0.073 – 0.034
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Table 4.6 (continued)

Correction by Corrected consecutive Independent
Bowditch’s method coordinates coordinates

Departure Latitude Departure Latitude Easting (m) Northing (m)

– 0.003 – 0.001 – 17.073 – 0.976 1500 1500

– 0.019 – 0.009 – 30.176 – 98.417 1482.927 1499.024

– 0.017 – 0.008 + 82.959 – 41.523 1452.751 1400.607

– 0.006 – 0.003 + 26.998 + 20.435 1535.710 1359.084

– 0.013 – 0.006 – 8.166 + 63.189 1562.708 1379.519

– 0.015 – 0.007 – 54.542 + 57.292 1554.542 1442.708

– 0.073 – 0.034 0.000 0.000

ABDc , =
219.887

070.17
073.0 ×−  = – 0.006 m

BCDc , =
219.887

157.30
073.0 ×−  = – 0.010 m

CDDc , =
219.887

976.82
073.0 ×−  = – 0.027 m

DEDc , =
219.887

004.27
073.0 ×−  = – 0.009 m

EFDc , =
219.887

153.8
073.0 ×−  = – 0.003 m

FADc , =
219.887

527.54
073.0 ×−  = – 0.018 m

Total  = – 0.073 m    (Check)

ABLc , =
281.830

957.0
034.0 ×−  = – 0.000 m

BCLc , =
281.830

408.98
034.0 ×−  = – 0.012 m

CDLc , =
281.830

515.41
034.0 ×−  = – 0.005 m

DELc , =
281.830

438.20
034.0 ×−  = – 0.002 m

EFLc , =
281.830

195.63
034.0 ×−  = – 0.008 m
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FALc , = 
281.830

299.57
034.0 ×−  = – 0.007 m

       Total   = – 0.034 m    (Check)

Corrected consecutive coordinates

D′AB = – 17.070 – 0.006 =  – 17.076 m, L′AB = – 0.975  – 0.000 =  – 0.975 m
D′BC = – 30.157 – 0.010 =  – 30.167 m, L′BC = – 98.408 – 0.012 =  – 98.420 m
D′CD = + 82.976 – 0.027 =  + 82.949 m, L′CD = – 41.515 – 0.005 =  – 41.520 m
D′DE = + 27.004 – 0.009 =  + 26.995 m, L′DE = + 20.438 – 0.002 =  + 20.436 m
D′EF = – 8.153 – 0.003 =  – 8.156 m, L′EF = + 63.195 – 0.008 =  + 63.187 m
D′FA = – 54.527 – 0.018 =  – 54.545 m, L′FA = + 57.299 – 0.007 =  + 57.292 m
  ΣD′ =  0.000 m    (Check)   ΣL′ =  0.000 m    (Check)

Independent coordinates

EA = 1500 m (given), NA = 1500 m (given)

EB = EA  + D′AB  = 1500 – 17.076 = 1482.924 m

NB = NA  + L′AB = 1500 – 0.975 = 1499.025 m

EC = EB  + D′BC  = 1482.924 – 30.167 = 1452.757 m

NC = NB  + L′BC  = 1499.025 –  98.420 = 1400.605 m

ED = EC  + D′CD  = 1452.757 + 82.949 = 1535.706 m

ND = NC  + L′CD  = 1400.605 – 41.520 = 1359.085 m

EE = ED  + D′DE  = 1535.706 + 26.995 = 1562.701 m

ND = ND  + L′DE = 1359.085 + 20.436 = 1379.521 m

EF = EE  + D′EF  = 1562.701 – 8.156 = 1554.545 m

NF = NF  + L′EF  = 1379.521 + 63.187 = 1442.708 m

EA = EF  + D′FA  = 1554.545 – 54.545 = 1500 m    (Check)

NA = NF  + L′FA  = 1442.708 + 57.292 = 1500 m.     (Check)

The results of all the computations for Transit rule are given in Table 4.7.

Table 4.7

Correction by Corrected consecutive Independent
Transit rule coordinated coordinates

Departure Latitude Departure Latitude Easting Northing
(m) (m)

– 0.006 – 0.000 – 17.076 – 0.975 1500 1500

– 0.010 – 0.012 – 30.167 – 98.420 1482.924 1499.025

– 0.027 – 0.005 + 82.949 – 41.520 1452.757 1400.605

– 0.009 – 0.002 + 26.995 + 20.436 1535.706 1359.085

– 0.003 – 0.008 – 8.156 + 63.187 1562.701 1379.521

– 0.018 – 0.007 – 54.545 + 57.292 1554.545 1442.708

– 0.073 – 0.034 0.000 0.000
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Example 4.5. The following data were collected while running a closed traverse ABCDA.
Calculate the missing data.

Line Length (m) Bearing

AB 330 181°25′
BC ? 89°50′
CD 411 355°00′

DA 827 ?

Solution (Fig. 4.16):

Let the length of BC be l and the bearing of DA be θ  then the consecutive coordinates of
the lines are

DAB = lAB sin θAB = 330 × sin 181°25′ = – 8.159 m

LAB = lAB cos θAB = 330 × cos 181°25′ =  – 329.899 m

DBC = lBC sin θBC = l × sin 89°50′

LBC = lBC cos θBC = l × cos 89°50′

DCD = lCD sin θCD = 411 × sin 355°00′ = – 35.821 m

LCD = lCD cos θCD = 411 × cos 355°00′ = + 409.436 m

DDA = lDA sin θDA = 827 × sin θ

LDA = lDA cos θDA = 827 × cos θ

�

A

D

B
C

Fig. 4.16

In the closed traverse ABCDA

ΣD = 0.0

ΣL = 0.0

– 8.159 + l × sin 89°50 – 35.821 = 827 × sin θ

– 329.899 + l × cos (89°50′) + 409.436 = 827 × cos θ

827 × sin θ =  − 43.980 + 0.999 l …(a)

827 × cos θ = + 79.537 + 0.003 l …(b)

D
N
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A 

D 

B 
C 

A′  α 
β 

γ 

Taking  0.003 l = 0 in Eq. (a), we get

cos θ =
827

537.79

θ = 84°29′.

Substituting the value of θ  in Eq. (a), we get

l =
999.0

9284sin872980.43 ′×+ �

= 867.15 m.

Now substituting the value of l = 867.15 m in Eq. (b), we get the value of θ in the second
iteration as

cos θ =
827

15.867003.0537.79 ×+

= 84°18′

and the value of l as

l =
999.0

8184sin827980.43 ′×+ �

= 867.78 m.

Taking the value of θ  and l  for the third iteration, we get

cos θ =
827

78.867003.0537.79 ×+

      θ = 84°18¢.

Since the value of θ  has not changed, the value of l will be same as in the second iteration,
and therefore, the length of BC = 867.78 m and the bearing of DA = 84°18′′′′′.

Alternative solution Fig. (4.17):

In this method, the two sides BC and DA with omitted
measurements, are made adjacent lines by drawing parallel
lines. In this way the lines DA and DA′ are the adjacent
lines in the traverse ADA′BA. To achieve this, draw DA′
from D parallel to and equal to BC and BA′ from B parallel
to and equal to CD.

Fig. 4.17

Considering the length and bearing of the line AA′  in the closed traverse ABA′A as l and θ,
respectively, we get
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DAB  + DBA′ + DA′A = 0

LAB  + LBA′ + LA′A = 0

DA′A = l sin θ  = – 330 × sin 181°25′ – 411 × sin 355° = + 43.980

LA′A = l cos θ = – 33 × cos 181°25′ – 411 × cos 355° = – 79.537

tan θ =
537.79

980.43

cos

sin =
θ
θ

l

l

      θ = 28°56′26″
(in S-E quadrant, since departure is positive and latitude is negative)

or W.C.B. of AA′ = 180° – 28°56′26″ = 151°03 ′34″

and                  AA′ = l = 2222 537.79980.43 +=+ ′′ AAAA LD  = 90.887 m.

In ∆AA′D, we have

                         γαβ sinsinsin

ADAAAD =
′

=

γ = bearing of  A′A – bearing of A′D
= bearing of A′A – bearing of BC

= 51°03′34″ – 89°50 ′
= 61°13′34″ .

sin α =
AD

AA γsin′

=
827

433161sin887.90 ′′′× �

 = 0.09633

                α = 5°31′40″ .

In ∆AA′D, we have

β = 180° – (α + γ)

= 180° – (5°31′40″  + 61°13′34″)
= 113°14′46″.

                          γ
β

sin
sinAD

DA =′

or                             
433161sin

6441113sin827

′′′

′′′×=
�

�

BC

= 866.90 m.
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Bearing of DA = bearing of DA′ – α
= (180° + 89°50′) – 5°31′40″
= 264°18′′′′′20″″″″″ .

Example 4.6. P, Q, R, and S are four stations whose coordinates are as below:

Station
Easting Northing

(m) (m)

P 1000.00 1000.00

Q 1180.94 1075.18

R 1021.98 1215.62

S 939.70 1102.36

Another station X is to be fixed at the intersection of the lines PR and QS. What are the
coordinates of X ?

Solution Fig. (4.18):

PQ = 2222 )00.100094.1180()00.100018.1075( −+−=+PBQB  = 195.937 m

QR = 2222 )98.102194.1180()18.107562.1215( −+−=+CRQC  = 212.112 m

PR = 2222 )00.100098.1021()00.100062.1215( −+−=+DRPD  = 216.737 m

SQ = 2222 )70.93994.1180()18.107536.1102( −+−=+EQSE  = 242.766 m

SP = 2222 )70.93900.1000()00.100036.1102( −+−=+ APSA  = 118.801 m

From ∆PRQ, we have

cos α = PQPR

RQPQPR

.2

222 −+

=
937.195373.2162

112.212937.195373.216 222

××
−+

α = 61°37′00″ .

From ∆SPQ, we have

cos β =
PQSQ

SPPQSQ

.2

222 −+

=
937.195766.2422

801.118937.195766.242 222

××
−+

= 28°59′28″ .
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A 

D 

B 

C 

α 

β 

γ 

θ 

S 

P 

Q 

R 

E 

F 
X 

Fig. 4.18

From ∆PQB, we have

tan ω =
PB

QB

=
)00.1000940.1180(

)00.1000180.1075(

−
−

ω = 22°23′46″ .

From ∆PQX, we have

= 180° – (α + β) = 180° – (61°37′00″ + 28°59 ′28″)

= 89°23′32″ .

From sin law in ∆PQX, we get

                        γβ sinsin

PQPX =

                          γ
β

sin

sin.PQ
PX =

=
195 937 28 59 28

89 23 32

. × sin ( )

sin ( )

° ′ ′′
° ′ ′′

 = 94.971 m.

Let bearing of PX be θ then

            θ = 90° – (α + ω)

θ = 90° – (61°37′00″  + 22°23′46″) = 5°59 ′14″.
Departure of PX = PX sin θ  = 94.971 × sin (5°59′14″) = + 9.91 m

Latitude of PX = PX cos θ  = 94.971 × cos (5°59′14″) = 94.45 m
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Coordinates of X

Easting of X = easting of P + departure of PX = 1000.00  + 9.91 = 1009.91 m

Northing of X = northing of P + latitude of PX = 1000.00  + 94.45 = 1094.45 m

Therefore the coordinates of X are E1009.91 m and N1094.45 m.

Alternative solution-I (Fig. 4.19):

Let the coordinates of X be (X, Y) and

XD = m,   DQ  = n

XB = x,   BR  = y

From ∆s RBX, and RAP, we have

                            
PA

RA

x

y =

or                    
98.21
62.215

00.100098.1021
00.100062.1215

98.1021
62.1215 =

−
−=

−
−

X

Y

Y = + 9.810 X – 8809.827. …(a)

From ∆s XDQ, and QSC, we have

                            CQ

SC

n

m =

or                    
24.241

18.27

70.93994.1180

18.107536.1102

94.1180

18.1075 =
−
−=

−
−

X

Y

Y
= – 0.113 X + 1208.234. …(b)

Equating Eqs. (a) and (b), we get

9.810 X – 8809.827 = – 0.113 X + 1208.234

90.923 X = 10018.061

               X = 1009.58 m.

Substituting the value of X in (a), we get

Y = 9.810 × 1009.58 – 8809.827

= 1094.15 m

Thus the coordinates of X are E 1009.58 m, N 1094.15 m.

Alternative solution-II (Fig. 4.19):

Since PR and QS are two straight lines, their intersection can be determined if their equations
are known.

Equation of a straight line is

y = ax + b.

Equation of  the line PR

y1 = a1x1 + b1

A

B

C

S

P

Q

R

X

n

m

y

x

D

Fig. 4.19
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a1 =
98.21

62.215
=

PA

RA
 = 9.801

At the point P, x1 = 1000.00 and y1 = 1000.00

therefore, 1000.0 = 9.801 × 1000.00 + b1

b1 = – 8801

Similarly, equation of  the line SQ

y2 = a2x2 + b2

a2 =
24.241

18.27−
=

CQ

SC
 = – 0.113

At the point S, x2 = 939.70 and y2 = 1102.36

therefore, 1102.36 = – 0.113 × 939.70 + b2

b2 = 1208.55.

Thus the equations of the lines PR and SQ are

y1 = 9.801 x1 – 8801

y2 = – 0.113 x2 + 1208.55.

At the intersection X of the two lines y1 = y2 = y and x1 = x2 = x, we have

 9.801 X – 8801 = – 0.113 X  + 1208.55

X = 1009.64 m

Y = 9.801 × 1009.64 – 8801 = 1094.48 m.

Thus the coordinates of X are E 1009.64 m, N 1094.48 m.

Example 4.7. A theodolite was set up at station PO and horizontal and vertical angles were
observed as given in the following table:

Station Face
Horizontal Vertical

circle reading circle reading

P L 26°36′22″ – 40°17′18″
Q L 113°25′50″ + 26°14′32″

Calculate the true value of angle POQ when the line of collimation is inclined to the trunion
axis by (90° – c) and the trunion axis is not perpendicular to the vertical axis by (90° – i) where
c = 22″ and i = 16″ down at right.

Solution (Figs. 4.2 and 4.3):

The error ec in horizontal circle reading for face left for the line of collimation to the trunion
axis, is given by

hczec sec==

For the sighting OP
ecOP = + 22″ sec 40°17′18″ = + 28.9″
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Correction = – 28.9″
and for the sighting OQ

ecOQ = + 22″ sec 26°14 ′32″ = + 24.5″
    Correction = – 24.5″

It may be noted that the error in the horizontal circle readings remains same for the angles of
elevation and depression. It changes sign only when the face is changed.

The error in the horizontal circle reading for the trunion axis not perpendicular to the vertical
axis, is given by

                             hiei tan=

and for the sighting OP

eiOP = + 16″ tan 40°17 ′18″  = + 13.6″  (for depression angle)

    Correction = – 13.6″.
For the sighting OQ

eiOQ = – 16″ tan 26°14 ′32″ = – 7.9″  (for elevation angle)

    Correction = + 7.9″.
It may be noted that for this error in horizontal circle readings the signs are different for the

angles of depression and elevation.

Total correction for the sighting OP = – 28.9″ – 13.6″ = – 42.5″
Total correction for the sighting OQ = – 24.5″ + 7.9″ = – 16.6″
Therefore,

the correct horizontal circle reading for OP = 26°36′22″ – 42.5″
= 26°35′39.5″

the correct horizontal circle reading for OQ = 113°25′50″ – 16.6″
= 113°25′33.4″

Therefore

the correct horizontal angle POQ = 113°25′3.4″ – 26°35 ′39.5″
= 86°49′53.9″ .

OBJECTIVE TYPE QUESTIONS

1. A theodolite can measure

(a) difference in level.

(b) bearing of a line.

(c) zenith angle.

(d) all the above.



��� �����	
��

2. The error in the horizontal circle readings, is due to

(a) the late axis bubble not being parallel to the line of collimation.

(b) the line of sight not being parallel to the telescope axis.

(c) the line of collimation not being perpendicular to the trunion axis.

(d) none of the above.

3. The error in the horizontal circle readings due the line of collimation not being perpendicular to
the trunion axis is eliminated by

(a) taking readings on the different parts of the horizontal circle.

(b) taking readings on both the faces.

(c) removing the parallax.

(d) transiting the telescope.

4. Quadrantal bearing is always measured from

(a) the north end of the magnetic meridian only.

(b) the south end of the magnetic meridian only.

(c) the north end or the south end of the magnetic meridian.

(d) either the north end or the south end of the magnetic meridian as the case may be.

5. If the departure and latitude of a line are + 78.0 m and – 135.1 m, respectively, the whole circle
bearing of the line is

(a) 150°.

(b) 30°.

(c) 60°.

(d) 120°.

6. If the departure and latitude of a line are + 78.0 m and – 135.1 m, respectively, the length of the
line is

(a) 213.1 m.

(b) 57.1 m.

(c) 156.0 m.

(d) non of the above.

7. Transit rule of balancing a traverse is applied when

(a) the linear and angular measurements are of same precision.

(b) the linear measurements are more precise than the angular measurements.

(c) the angular measurements are more precise than the linear measurements.

(d) the linear measurements are proportional to l and the angular measurements are proportional
to (1/l) where l is the length of the line.

8. The error due to the non-verticality of the vertical axis of a theodolite

(a) is eliminated in the method of repetition only.

(b) is eliminated in the method of reiteration only.

(c) is eliminated in the method of repetition as well as in reiteration.

(d) cannot be eliminated by any method.
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9. Random method of running a line between two points A and B is employed when

(a) A and B are not intervisible even from an intermediate point.

(b) A and B are only intervisible from an intermediate point.

(c) the difference of level between the points is large.

(d) it is not a method at all for running a line.

10. The error in the horizontal circle reading of 41°59′13.96″ and vertical circle reading of  + 36°52′11.63″
for any pointing due to the trunion axis not being perpendicular to the vertical axis by
(90° – i) where i is 20″, is

(a) + 15″.

(b) + 18″.

(c) – 15″.

(d) – 18″.

ANSWERS

1. (d) 2. (c) 3. (b) 4. (d) 5. (a) 6. (c)

7. (c) 8. (d) 9. (a) 10. (a)
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5.1 ADJUSTMENT OF OBSERVATIONS

While making a measurement, certain amount of error is bound to creep into the measurements and
hence, no observation is free from error. Gross errors are checked by designing the field procedures
of observations. Systematic errors are expressed by functional relationships and therefore, they can
be completely eliminated from the observations. The remaining error in the observations is the
accidental or random error. The random errors use probability model and can only be minimized
or adjusted, and the adjusted value of a quantity is known as the most probable value of the
measured quantity. It is the most probable value of a measured quantity which is used for computing
other quantities related to it by mathematical relationships.

5.2 METHOD OF LEAST SQUARES

It is a general practice in surveying to always have redundant observations as they help in detection
of mistakes or blunders. Redundant observations require a method which can yield a unique solution
of the model for which the observations have been made. The least squares method provides a
general and systematic procedure which yields a unique solution in all situations.

Assuming that all the observations are uncorrelated then the least squares method of adjustment
is based upon the following criterion:

“The sum of the weighted squares of the residuals must be a minimum”.
If υ1, υ2, υ3, etc., are the residuals and ω1, ω2, ω3, etc., are the weights then

φ = ω1υ1
2 + ω2υ2

2 + ω3υ3
2 +……+ ωnυn

2 = a minimum …(5.1)

= Σω νi i

i

n

=
∑ =

1

a minimum.

The above condition which the residuals have to satisfy is in addition to the conditions which
the adjusted values have to satisfy for a given model.

5.3 OBSERVATION EQUATIONS AND CONDITION EQUATIONS

The relation between the observed quantities is known as observation equation. For example, if α
and β are the angles observed at a station then α  + β = d is the observation equation.

A condition equation expresses the relation existing between several dependent quantities. For
example, the three angles α, β and γ of a plane triangle are related to each other through the
condition equation  α + β  + γ = 180°.

���

�
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5.4 NORMAL EQUATION

Normal equations are the equations which are formed from the observation equations using the
criterion of least squares. The solution of normal equations yields the most probable values or the
adjusted values of the unknowns in the equations.

A normal equation of an unknown is formed by multiplying each observation equation by the
coefficient of that unknown in the observation equation and the weight of the equation, and by
adding the equations thus formed. The number of normal equations is same as the number of
unknowns.

For example, let there be three unknowns x, y, and z having n observation equations as
below:

01111 =−++ dzcybxa

02222 =−++ dzcybxa

.       .   .    .     .

.       .   .    .     .

.       .   .    .     .

0=−++ nnnn dzcybxa

The normal equations of x, y, and z are respectively

( ) ( ) ( ) ( ) 02 =Σ−Σ+Σ+Σ adzacyabxa

( ) ( ) ( ) ( ) 02 =Σ−Σ+Σ+Σ bdzbcybxab

( ) ( ) ( ) ( ) 02 =Σ−Σ+Σ+Σ cdzcybcxac

In matrix form, the above equations are written as

0
2

2

2

=
Σ
Σ
Σ

−

ΣΣΣ

ΣΣΣ

ΣΣΣ

cd

bd

ad

z

y

x

cbcac

bcbab

acaba

…(5.2)

or                                        CX = D …(5.3)

where

C = the coefficient matrix of normal equations

X = the column vector of unknowns, and

D = the column vector of constants.

The normal equations given by Eq. (5.2), have the following characteristics:
(i) The number of normal equations is equal to the number of unknowns.
(ii) The matrix coefficients of the unknowns is a symmetric matrix, i.e., the elements of ith

row are the same as the elements of ith column.
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5.5 LEAST SQUARES METHOD OF CORRELATES

Correlates are the unknown multipliers used to determine the most probable values of unknown
parameters which are the errors (or the corrections) considered directly. The number of correlates
is equal to the number of condition equations, excluding the one imposed by the least squares
principle. The method of determining the most probable values has been explained in Example 5.6.

5.6 METHOD OF DIFFERENCES

If the normal equations involve large numbers, the solution of simultaneous equations becomes very
laborious. The method of differences simplifies the computations. In this method, the observation
equations are written in terms of the quantity whose most probable values is to be determined by
least squares method. The solution of Example 5.8 is based on this method.

5.7 METHOD OF VARIATION OF COORDINATES

In the method of variation of coordinates, provisional coordinates are allocated to points requiring
adjustment. The amount of displacement for the adjustment is determined by the method of least
squares.

In Fig 5.1, there are two points A and B having coordinates (xA, yA) and (xB, yB), respectively,
from where the observations were made on the point C, whose coordinates are to be determined.
Let the provisional coordinates assigned to C be (xC′, yC′ ) and

the bearing of AC = θAC

the bearing of BC = θBC

the length of AC = lAC

the length of BC = lBC

the angle ACB = α
The length of AC is given by

222 )()(
ACACAC yyxxl −′+−′=

By differentiating the above equation, we get

[ ]AACAACACCAC
AC

AC
dyyydxxxcdyyydxxx

l
dl )()()()(

1 −′−−′−−′+−′= …(5.4)

where dlAC is the displacement in lAC due to small displacements dxC, dxA, dyC, and dyA in C and
A, respectively.

The bearing of AC  is given by

AC

AC
AC

yy

xx

−′
−′

=θtan …(5.5)

The change dθAC in the bearing due to the displacements dxC, dxA, dyC, and dyA, is

[ ]AACAACACCAC
AC

AC
dyxxdxyycdyxxdxyy

l
d )()()()(

1
2

−′+−′−−′−−′=θ ...(5.6)

α
lAC

θ1

A

�

B

�

C

lBCθ2

Fig. 5.1
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Similar expressions can be obtained for BC and then the change in the angle ACB can be
related to dθAC and dθBC. Using the method of least squares, the displacements dx and dy in the
points can be determined. Residuals υ can be derived in the form

υ = O – C – dγ
where

 O = the observed value of quantity, i.e., length, bearing, or angle,

 C = the calculated value of that quantity from the coordinates, and

  dγ = the change in that quantity due the displacements of the respective points.

The best value of the quantity will be C + dγ.

5.8 GENERAL METHOD OF ADJUSTING A POLYGON WITH A CENTRAL
       STATION (By The Author)

Let a polygon with a central station O has n sides and the observed angles be θ1, θ2, …., θ3n as
shown in Fig. 5.2. The total number of angles observed in this polygon will be 3n with n angles
around the central station.

The computations are done step-wise as explained below.

Step-1: Determine the total corrections for (i) each triangle, (ii) the central station and (iii)
the side conditions

(i) C1 = 180° – (θ1 + θ2 + θ2n+1)

C2 = 180° – (θ3 + θ4 + θ2n+2)

C3 = 180° – (θ5 + θ6 + θ2n+3)

   .   .             .

   .   .             .

Cn = 180° – (θ2n–1 + θ2n + θ3n)

(ii) Cn+1 = 360° – (θ2n+1 + θ2n+2 +…..+ θ3n)

(iii) Cn+2 = – [log sin(odd angles) – log sin(even angles)] × 106 for angles (θ1, θ2…θ2n).

Calculate log sin of the angles using pocket calculator and ignore the negative sign of the
values.

Step-2:  Framing the normal equations of the correlates

There will be (n + 2) correlates and the normal equations for the correlates will be written in
matrix form. The size of the coefficient matrix will be (n + 2) × (n + 2). The column vectors of
correlates and constants will have (n + 2) elements.

Let f1, f2, f3, etc., = the differences for 1″ of log sin of the angles × 106

F12 = f1 – f2
F34 = f3 – f4
F56 = f5 – f6

    . .

    . .

θ1

θ2

θ3

θ4
θ5 θ6

θ2n-1

θ2n

θ3n

θ2n+1

θ2n+2

θ2n+3

   Fig. 5.2
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F(2n–1)2n = f2n–1 – f2n

F2 = f1
2 + f2

2 +……..+ f2n
2

The coefficient matrix of normal equations is formed as below.

(i) Write the diagonal elements from (1,1) to (n + 2, n + 2) as 3, 3, 3,…..,3, n, and F2.

The  (n + 2, n + 2)th element is F2 and (n + 1, n + 1)th element is n.

(ii) Write F12, F34, F56,….., F(2n–1)2n, and 0 in the (n + 2)th column from 1st row to (n + 1)th
row and in the (n + 2)th row from 1st column to (n + 1)th column. It may be noted that
the values of the (n + 2, n + 1)th element and (n + 1, n + 2)th element are zero.

1 2 3 4 n+2

31

2

3

4

n+2

n+1

n+1

3

3

3

3

n

F2

F12

0

0

F12 F34

F34

F56

F56 F78

F78

F(2n-1) 2n

F(2n-1) 2n

.

.

.

. . .

.

.

. .

(iii) Write 1 as the value of the remaining elements of the (n+1)th column and the (n+1)th row,
and zero for all the remaining elements of the matrix.

1 2 3 4 n+2

31

2

3

4

n+2

n+1

n+1

3

3

3

3

n

F2

F12

0

0

F12 F34

F34

F56

F56 F78

F78

F(2n-1) 2n

F(2n-1) 2n

1

1

1

1

1

1111 1

0

0

0 0

0

0 0 0

0 0

0

0

0

0

0

0 0 0 0

0

.

.

.

. . .

. .

.

.

..

. .

. .

. .

1 2 3 4 . . . n+1 n+2

1 3

2 3

3 3

4 3

.

.

. 3

n+1 n

n+2 F2
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(iv) Write the elements of column vectors of the unknown correlates and the constants as
shown below and this is the final form of the matrix of the normal equations.

1 2 3 4 n+2

31

2

3

4

n+2

n+1

n+1

3

3

3

3

n

F2

F12

0

0

F12 F34

F34

F56

F56 F78

F78

F(2n-1) 2n

F(2n-1) 2n

1

1

1

1

1

1111 1

0

0

0 0

0

0 0 0

0 0

0

0

0

0

0

0 0 0 0

0

.

.

.

. . .

. .

.

.

..

. .

. .

. .

λ1

λ2

λ3

λ4

λn

λn+1

λn+2

C1

C2

C3

C4

.

. .

.
− =  0

Cn+1

Cn+2

Cn

Now the normal equations can be solved directly using the matrix for the values of the
correlates. For small values of n, the equations can be written as under and can be solved for λ1,
λ2, λ3, etc.

           03 121211 =−++ ++ CF nn λλλ

          03 223412 =−++ ++ CF nn λλλ

          03 325613 =−++ ++ CF nn λλλ

03 22)12(1 =−++ +−+ nnnnnn CF λλλ

0.... 1121 =−++++ ++ nnn Cnλλλλ

  0.... 22
2

2)12(234112 =−++++ ++− nnnnn CFFFF λλλλ

Step-3: Calculate the values of the corrections e1, e2, e3,… e3n to the angles using the following
expressions which can be framed up to the desired numbers by noticing their pattern and similarity
in Type-1 and Type-2 equations.

      Type-1   Type-2

e1 = λ1 + f1λn+2 e2n+1 = λ1 + λn+1

e2 = λ1 – f2λn+2 e2n+2 = λ2 + λn+1

e2n+3 = λ3 + λn+1

e3 = λ2 + f3λn+2 .    .

e4 = λ2 – f4λn+2 .    .

e3n–2 = λn–2 + λn+1

e5 = λ3 + f5λn+2 e3n–1 = λn–1 + λn+1

e6 = λ3 – f6λn+2   e3n = λn + λn+1

  .          .

  .          .
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e2n–3 = λn–1 + f2n–3λn+2

e2n–2 = λn–1 – f2n–2λn+2

e2n–1 = λn + f2n–1λn+2

e2n  = λn – f2nλn+2

Step-4: The most probable values of the angles are

θ1 + e1

θ2 + e2

θ3 + e3

. .

. .

θ3n–1 + e3n–1

θ3n + e3n

Example 5.15 has been solved by this method to help the students understand the method more
clearly.

Example 5.1. A distance is measured six times with following results:

74.31 m, 74.28 m, 74.32 m, 74.33 m, 74.30 m, 74.31 m.

Determine the most probable value of the distance by least square method.

Solution:

Let the most probable value of the distance be l̂ . If the six observed values of the distance
are l1, l2, l3, l4, l5, and l6 and the respective residuals are υ1, υ2, υ3, υ4, υ5, and υ6 then

υ1 = l̂ – l1; υ2 = l̂ – l2;     υ3 = l̂ – l3

υ4 = l̂ – l4; υ5 = l̂ – l5;     υ6 = l̂ – l6.

From the least squares principle, we have

φ = 2
6

2
5

2
4

2
3

2
2

2
1 υυυυυυ +++++ = a minimum

                  = 2
6

2
5

2
4

2
3

2
2

2
1 )ˆ()ˆ()ˆ()ˆ()ˆ()ˆ( llllllllllll −+−+−+−+−+− = a minimum.

For φ to be a minimum

             
ld

d
ˆ
φ

 = )ˆ(2)ˆ(2)ˆ(2)ˆ(2)ˆ(2)ˆ(2 654321 llllllllllll −+−+−+−+−+− = 0

l̂6 = 654321 llllll +++++

l̂ =
6

654321 llllll +++++
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=
6

31.7430.7433.7432.7428.7431.74 +++++

= 74.31 m.

Example 5.2. An angle was measured six times by different observers and the following values
were obtained:

42°25′10″ (2), 42°25 ′08″  (1), 42°25′09″ (3), 42°25 ′07″  (2), 42°25′11″ (3), 42°25 ′09″ (2).

The values given in the parentheses are the weights of the observations. Determine the most
probable value of the angle using least squares.

Solution:

Let the observations be α1, α2, α3, α4, α5, and α6 and their respective weights are ω1, ω2,

ω3, ω4, ω5, and ω6. If the most probable value of the angle is α̂ and the respective residuals are
υ1, υ2, υ3, υ4, υ5, and υ6 then

υ1 = α̂ – α1; υ2 = α̂ – α2; υ3 = α̂ – α3

υ4 = α̂ – α4; υ5 = α̂ – α5; υ6 = α̂ – α6.

From the least squares principle, we get

φ = 2
66

2
55

2
44

2
33

2
22

2
11 υωυωυωυωυωυω +++++ = a minimum

= 2
6

2
5

2
4

2
3

2
2

2
1 )ˆ()ˆ()ˆ()ˆ()ˆ()ˆ( αααααααααααα −+−+−+−+−+−

= a minimum.

For φ to be a minimum

α
φ
ˆd

d
= 








−+−+

−+−+−+−
)ˆ(2)ˆ(2

)ˆ(2)ˆ(2)ˆ(2)ˆ(2

6655

44332211

ααωααω
ααωααωααωααω

 = 0

  α̂ = ( )654321

665544332211

ωωωωωω
αωαωαωαωαωαω

+++++
+++++

= 42°25′ + ( )232312
92113729381012

+++++
′′×+′′×+′′×+′′×+′′×+′′×

= 42°25′′′′′9.2″″″″″ .

Example 5.3. Three angles of a plane triangle were measured and the following values were
obtained:

θ1 = 52°33′ ; θ2 = 64°45′; θ3 = 62°39′.
Determine the least squares estimates of the angles.

Solution:

Let the most probable values of the angle = � , � , �θ θ θ1 2 3

the respective residuals = υ1, υ2, υ3.
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We can write now that

�θ1 = θ1 + υ1

�θ2 = θ2 + υ2

�θ3 = θ3+ υ3.

In a plane triangle, we have

� � �θ θ θ1 2 3+ + = 180°

or (θ1 + υ1) + (θ2 + υ2) + (θ3+ υ3) = 180°

υ1 + υ2 + υ3 = 180° – (θ1 + θ2 + θ3)

= 180° – (52°33′ + 64°45′ + 62°39′)
= 180° – 179°57′ = + 3′

or υ3 = 3′ – (υ1 + υ2).

From the least squares principle, we have

= 2
3

2
2

2
1 υυυ ++ = a minimum

= 2
21

2
2

2
1 )3( υυυυ −−′++ = a minimum.

Therefore,
1υ

φ
∂
∂

= )3(22 211 υυυ −−′− = 0

2υ
φ

∂
∂

= )3(22 212 υυυ −−′− = 0

or              212 υυ + = 3′

21 2υυ + = 3′ .

The above equations are the normal equations for υ1 and υ2. The solution of these equations
yields

υ1 = 1�

υ2 = 1�

υ3 = 3� – 1� – 1� = 1�.

Thus the most probable values of the angles are

�θ1 = 52°33� + 1� = 52°34�

�θ2 = 64°45� +1� = 64°46�

�θ3 = 62°39� + 1� = 62°40�

Total = 180°     (Check).
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Example 5.4. The angles for the figure of a triangulation scheme shown in Fig. 5.3 were
measured as under.

θ1 = 44°42′00″; θ3 = 43°48′00″; θ5 = 42°06′00″
θ2 = 46°00′00″; θ4 = 44°31′12″; θ6 = 48°52′48″

 

B 

θ2 

θ1 

C 

A 

θ3 θ4 
θ5 

θ6 

D 

Fig. 5.3

Solution (Fig. 5.3):

For the most probable values of the angles from ∆′s ABC and BCD, we get

� � � �θ θ θ θ1 2 3 4+ + + = 180°

� � � �θ θ θ θ3 4 5 6+ + + = 180°.

Therefore for the respective residuals υ1, υ2, υ3. etc., we have

υ1 + υ2 + υ3 + υ4 = 180° – (θ1 + θ2 + θ3 + θ4)

= 180° – 179°01′12�

= 58′48�

= 0.98°

υ3 + υ4 + υ5 + υ6 = 180° – (θ3 + θ4 + θ5 + θ6)

= 180° – 179°18′00�

= 42′00�

= 0.70°.

The above two condition equations can be used to have four independent unknowns. Thus

υ1 = 0.98° – (υ2 + υ3 + υ4) …(a)

υ6 = 0.70° – (υ3 + υ4 + υ5). …(b)

From the least squares theory, we have

φ = 2
6

2
5

2
4

2
3

2
2

2
1 υυυυυυ +++++ = a minimum …(c)

Now using Eqs. (a) and (b), Eq. (c) becomes

                φ = 0 98 0 702 3 3 4
2

2
2

3
2

4
2

5
2

3 4 5
2

. .− − − − + + + + + − − −υ υ υ υ υ υ υ υ υ υ υ� � � �

                  = a minimum.
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Differentiating φ partially, we get

2υ
φ

∂
∂

= ( ) 2432 2)1(80.92 υυυυ +−×−−−  = 0

3υ
φ

∂
∂

= ( ) ( ) )1(70.022)1(80.92 5433432 −×−−−++−×−−− υυυυυυυ  = 0

4υ
φ

∂
∂

= ( ) ( ) )1(70.022)1(80.92 5434432 −×−−−++−×−−− υυυυυυυ  = 0

5υ
φ

∂
∂

= ( ) )1(70.022 5435 −×−−−+ υυυυ  = 0.

By clearing and rearranging, we get

2υ2 + υ3 + υ4 = 0.98

  υ2 + 3υ3 + 2υ4 + υ5 = 1.68

  υ2 + 2υ3 + 3υ4 + υ5 = 1.68

            υ3 + υ4 + 2υ5 = 0.70

The above equations solve for

υ2 = 12′36″
υ3 = 16′48″
υ4 = 16′48″
υ5 = 4′12″

and from Eqs. (a) and (b), we have

υ1 = 12′36″
υ6 = 4′12″ .

Therefore the most probable values of the angles are

�θ1 = 44°42′00″ + 12 ′36″ = 44°54 ′36″

�θ2 = 46°00′00″ + 12 ′36″ = 46°12 ′36″

�θ3 = 43°48′00″ + 16 ′48″ = 44°04 ′48″

�θ4 = 44°31′12″ + 16 ′48″ = 44°48 ′00″

  Total = 180°  (Check).

�θ3 = 43°04�48″

�θ4 = 44°48′00″
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�θ5 = 42°06′00″ + 04 ′12″ = 42°10 ′12″

6θ̂ = 48°52′48″ + 04 ′12″ = 48°57 ′00″

Total   = 180°  (Check).

Example 5.5. In Fig. 5.4, the observed values of the distances AB, BC, CD, AC, and BD are
as 50.000 m, 50.070 m, 50.050 m, 100.090 m, and 100.010 m, respectively. Determine the adjusted
values of AD assuming that all the observations are of equal reliability and uncorrelated.

B CA D

Fig. 5.4

Solution (Fig. 5.4):

Let the distances AB, BC, CD, AC, and BD be l1, l2, l3, l4, and l5, respectively. Since to
determine AD minimum of three distances are l1, l2, and l3 are required, let their most probable

values be 
1l̂ , 

2l̂  and
3l̂ , respectively. Assuming the residuals of the five observations as υ1, υ2, υ3,

υ4, and υ5, we have

υ1 =
1l̂  – l1

υ2 =
2l̂  – l2

υ3 =
3l̂  – l3

υ4 =
1l̂ + 

2l̂ – l4

υ5 =
2l̂ + 

3l̂  – l5.

From the theory of least squares, we have

                 = 2
5

2
4

2
3

2
2

2
1 υυυυυ ++++ = a minimum

                 = 2
532

2
421

2
33

2
22

2
11 )ˆˆ()ˆˆ()ˆ()ˆ()ˆ( llllllllllll −++−++−+−+−  = a minimum.

Differentiating the above equation partially, we get

1l̂∂
∂φ

= )ˆˆ(2)ˆ(2 42111 lllll −++−  = 0

2l̂∂
∂φ

= )ˆˆ(2)ˆˆ(2)ˆ(2 53242122 llllllll −++−++−  = 0

3l̂∂
∂φ

= )ˆˆ(2)ˆ(2 53233 lllll −++−  = 0

or                                 4121
ˆˆ2 llll +=+
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                          542321
ˆˆ3ˆ llllll ++=++

                             5332
ˆˆ2 llll +=+

or
21
ˆˆ2 ll + = 50.000 + 100.090 = 150.090 …(a)

321
ˆˆ3ˆ lll ++ = 50.070 + 100.090 + 10.010 = 250.170 …(b)

32
ˆˆ2 ll + = 50.050 + 100.010 = 150.060 …(c)

From Eq. (c), we get
3l̂ =

2

ˆ060.150 2l−
…(d)

From Eq. (a), we get
2l̂ = 1

ˆ2090.150 l− …(e)

Now substituting the values of 
2l̂ and 

3l̂  in Eq. (b), we get

170.250)]ˆ2090.150(060.150[
2
1

)ˆ2090.150(3ˆ
111 =−−×+−×+ lll

4
1l̂ = 200.085

1l̂ = 50.022 m

From Eq. (e), we get
2l̂ = 150.090 – 2 × 50.022

= 50.046 m

From Eq. (d), we get
3l̂ =

2
046.5060150.0 −

= 50.007 m

Thus the adjusted distance AD = 50.022 + 50.046 + 50.007

= 150.075 m.

Example 5.6. Find the least square estimate of the quantity x from the following data:

x (m) Weight

2x = 292.500 ω1 = 1

3x = 438.690 ω2 = 2

4x = 585.140 ω3 = 3

Solution:

Let x̂  = the least square estimate of x and
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υ1, υ2, υ3 = the residuals of the three observations.

Therefore υ1 = 2 x̂  – 292.500

υ2 = 3 x̂  – 438.690

υ3 = 4 x̂  – 585.140.

From the theory of least squares, we have

φ= ω1υ
2
1 + ω2υ

2
2 + ω3υ

2
3 = a minimum

= 1×(2 x̂  – 292.500)2 + 2×(3 x̂  – 438.690)2 + 3´(4 x̂  – 585.140)2 = a minimum.

Therefore

=
xd

d
ˆ
φ

2×1×(2 x̂  – 292.500)×2 + 2×2×(3 x̂  – 438.690)×3 + 2×3×(4 x̂  – 585.140)×4 = 0

4 x̂  – 2 × 292.500 + 18 x̂  – 6 × 438.690 + 48 x̂  – 12 × 585.140 = 0

70 x̂ = 10238.830

  x̂ = 146.269 m.

Example 5.7. Adjust the following angles of a triangle ABC by the method of correlates.

∠  A = 86°35′11.1″ ω1 = 2

∠  B = 42°15′17.0″ ω2 = 1

∠  C = 51°09′34.0″ ω3 = 3

Solution:

For a triangle, we have

A + B + C = 180°

(A + B + C – 180°) = Error = E.

Therefore

E = (86°35′11.1″ + 42°15′17.0″  + 51°09′34.0″) – 180°

= 180°00′2.1″ – 180°

= + 2.1″
or Correction = – 2.1″ .

Let the corrections to the angles A, B and C be e1, e2 and e3, respectively, then

e1 + e2 + e3 = – 2.1″ …(a)

From the least squares criterion, we have

φ= ω1e
2

1 + ω2e2
2 + ω3e2

3 = a minimum. …(b)

Differentiating Eqs. (a) and (b), we get

                                 0321 =∂+∂+∂=∂ eeee …(c)

                                 0332211 =∂+∂+∂=∂ eee ωωωφ …(d)
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Multiplying Eq. (c) by –λ and adding the result to Eq. (d), we get

                –λ × ( )321 eee ∂+∂+∂ + 0332211 =∂+∂+∂ eee ωωω

or                       ( ) ( ) ( ) 0333222111 =∂−+∂−+∂− eeeeee λωλωλω

Therefore

( ) 011 =−λω e  or  
1

1 ω
λ=e

( ) 022 =−λω e  or  
2

2 ω
λ=e …(e)

( ) 033 =−λω e  or  
3

3 ω
λ=e

Substituting the values of e1, e2 and e3 in Eq. (a), we get

1.2
321

−=++
ω
λ

ω
λ

ω
λ






 ++

−=

3
1

1
1

2
1

1.2λ  = – 1.15″.

Now from Eqs. (e), we get

75.0
2

15.1
1 ′′−=−=e

51.1
1

15.1
2 ′′−=−=e 83.0

3

15.1
3 ′′−=−=e .

Therefore, the most probable values of the angles are

∠  A = 86°35′11.1″ – 0.57″ = 86°35′′′′′10.53″″″″″
∠  B = 42°15′17.0″ – 1.15″ = 42°15′′′′′15.85″″″″″
∠  C = 51°09′34.0″ – 0.38″ = 51°09′′′′′33.62″″″″″

 Total = 180°  (Check).

Example 5.8. Determine the adjusted values of the angles of the angles A, B and C from the
following observed values by the method of differences.

A = 39°14′15.3″
B = 31°15′26.4″
C = 42°18′18.4″
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A + B = 70°29′45.2″
B + C = 73°33′48.3″

Solution:

If k1, k2 and k3 are the corrections to the angles A, B and C, respectively, then

A = 39°14′15.3″ + k1

      B = 31°15′26.4″ + k2

      C = 42°18′18.4″ + k3 …(a)

A + B = (39°14′15.3″ + 31°15 ′26.4″) + k1 + k2

= 70°29′41.7″ + k1 + k2

B + C = (31°15′26.4″ + 42°18 ′18.4″) + k2 + k3

= 73°33′44.8″ + k2 + k3

Equating Eq. (a) to the respective observed values, i.e.,

39°14′15.3″ + k1 = 39°14′15.3″
31°15′26.4″ + k2 = 31°15′26.4″
42°18′18.4″ + k3 = 42°18′18.4″ …(b)

70°29′41.7″ + k1 + k2 = 70°29′45.2″
73°33′44.8″ + k2 + k3 = 73°33′48.3″

Eq. (b) reduce to

k1 = 0

k2 = 0

k3 = 0 …(b)

k1 + k2 = 3.5

k2 + k3 = 3.5

Forming the normal equations for k1, k2 and k3, we get

2k1 + k2 = 3.5

  k1 + 3k2 +  k3 = 7.0

          k2 + 2k3 = 3.5

The solution of the above normal equations gives

k1 = 0.88″
k2 = 1.75″

             k3 = 0.88″ .

Therefore, the most probable values or the adjusted values of the angles are

A = 39°14′15.3″ + 0.88″ = 39°14′′′′′16.18″″″″″
B = 31°15′26.4″ + 1.75″ = 31°15′′′′′28.15″″″″″
C = 42°18′18.4″ + 0.88″ = 42°18′′′′′19.28″″″″″.
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Example 5.9. The observed differences in level for the points in a level net shown in Fig. 5.5
are given below:

From To Level
(Lower point) (Higher point) difference (m)

Q P h1 = 6.226

S Q h2 = 5.133

S P h3 = 11.368

Q R h4 = 23.521

S R h5 = 28.639

P R h6 = 17.275

Determine the most probable values of the elevations of Q, R and S if the observations are
uncorrelated and of equal reliability.

Solution (Fig. 5.5):

    Let 
1ĥ , 

2ĥ ,…,
6ĥ  = the most probable values of the differences in level, and

 υ1, υ2, …, υ6 = the respective residuals.

Designating the elevation of the point by its own name, we can write

Q – P + 
1ĥ = Q – 150.020 + h1 + υ1 = 0

S – Q + 
2ĥ = S – Q + h2 + υ2 = 0

S – P + 
3ĥ = S – 150.020 + h3 + υ3 = 0 …(a)

Q – R + 
4ĥ = Q – R + h4 + υ4 = 0

S – R + 
5ĥ = S – R + h5 + υ5 = 0

P – R + 
6ĥ = 150.020 – R + h6 + υ6 = 0

Substituting the values of h1, h2, h3, etc., in Eq. (a), we get

υ1 = 143.794 – Q

υ2 = Q – S – 5.133

υ3 = 138.652 – S …(b)

υ4 = R – Q – 23.521

υ5 = R – S + 28.639

υ6 = R – 167.295

Applying the least squares criterion, we get

φ = 2
6

2
5

2
4

2
3

2
2

2
1 υυυυυυ +++++ = a minimum …(c)

P

Q

R

S

h1

h2

h3

h4

h5

h6

(B.M. = 150.020 m)

Fig. 5.5
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= (143.794 – Q)2 + (Q – S – 5.133)2 + (138.652 – S)2

+ (R – Q – 23.521)2 + (R – S + 28.639)2 + (R – 167.295)2

= a minimum.

To minimize φ

Q∂
∂φ

 = – 2(143.794 – Q) + 2(Q – S – 5.133) – 2(R – Q – 23.521) = 0

R∂
∂φ

 = 2(R – Q – 23.521) + 2(R – S + 28.639) + 2(R – 167.295) = 0

S∂
∂φ

 = – 2(Q – S – 5.133) – 2(138.652 – S) – 2(R – S + 28.639) = 0

By clearing and collecting terms, we get

3Q – R – S = 125.406

           – Q + 3R – S = 219.455 …(d)

– Q – R + 3S = 104.880

The solution of the above equations yields

Q = 143.786 m

R = 167.298 m

S = 138.654 m.

Alternative solution:

The normal equations given by Eqs. (d) can directly be formed as given in Sec. 5.4. Let us
write the coefficients of the unknowns Q, R and S and the constants of Eqs. (b) in the tabular form
as given in below:

Coefficients Constant

Q R S

– 1 0 0 143.794

+ 1 0 – 1 – 5.133

0 0 – 1 138.652

– 1 + 1 0 – 23.521

0 + 1 – 1 – 28.639

0 + 1 0 – 167.295

To obtain the normal equation for Q

The coefficients of Q appear in first, second and fourth lines. Multiply the first line by (–1),
the second line by (+ 1) and the fourth line by (– 1), and add them. The result is
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[(– 1) × (– 1)Q + (– 1) × (0)R + (– 1) × (0)S + (– 1) × 143.794] + [(+ 1) × (+ 1)Q

+ (+ 1) × (0)R + (+ 1) × (–1)S + (+ 1) × (– 5.133)] + [(– 1) × (– 1)Q + (– 1) × (+ 1)

R + (– 1) × (0)S + (– 1) × (– 23.521)] = 0

or   3Q – R – S = 125.406 …(e)

To obtain the normal equation for R

The coefficients of R appear in fourth, fifth and sixth lines. Multiply the fourth line by (+ 1),
the fifth line by (+ 1) and the sixth line by (+ 1), and add them. The result is

[(+ 1) × (– 1)Q + (+ 1) × (+ 1)R + (+ 1) × (0)S + (+ 1) × (–23.521)] + [(+ 1) × (0)Q

+ (+ 1) × (+ 1)R + (+ 1) × (–1)S + (+ 1) × (– 28.639)] + [(+ 1) × (0)Q + (+ 1) × (+ 1)

R + (+ 1) × (0)S + (+ 1) × (– 167.295)] = 0

or   – Q +3R – S = 219.455 …(f)

To obtain the normal equation for S

The coefficients of S appear in second, third and fifth lines. Multiply the second line by (– 1),
the third line by (– 1) and the fifth line by (– 1), and add them. The result is

[(– 1) × (+ 1)Q + (– 1) × (0)R + (– 1) × (– 1)S + (– 1) × (– 5.133)] + [(– 1) × (0)Q

+ (– 1) × (0)R + (– 1) × (–1)S + (– 1) × 138.652] + [(– 1) × (0)Q + (– 1) × (+ 1)

R + (– 1) × (– 1)S + (– 1) × (– 28.639)] = 0

or  – Q – R + 3S = 104.880. …(g)

Comparing the Eqs. (e), (f) and (g) with Eqs. (d), we find that they are same. It will be realized
that we have automatically carried out the partial differentiation of φ demanded by the principle of
least squares.

Example 5.10. Determine the least square estimates of the levels of B, C, and D from the
following data for the level net shown in Fig. 5.6. The level difference for the line A to B is the
mean of the two runs, all other lines being observed once only.

Line
Length  Level difference (m)

(km) Rise (+) Fall (–)

A to B 22 42.919 –

B to C 12 – 12.196

B to D 25 – 20.544

C to D 22 – 8.236

D to A 32 – 22.557

Solution (Fig. 5.6):

Assuming the distance being equal for the back sights and fore sights, the accidental errors may
be taken as proportional to (number of instrument stations )  and hence proportional to

(length of line ) . Accordingly, the weights of the observations can be taken as inversely proportional
to the square of the errors and, therefore, can be taken as the reciprocal of the length of the line, i.e.,
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∝ 2

1

e

∝ ( )2
1

l

∝
l

1

From Fig. 5.6, we find that there are three closed circuits of level runs, namely ABCDA,
ABDA, and BCDB. Only two out of three are needed to determine the most probable values of
differences in level. In choosing the two out of three, the compatibility of the level nets must be
ensured through the directions of levelling. The level nets shown in Fig. 5.7a are compatible but
the level nets shown in Fig. 5.7b are not compatible as to maintain conformity along BD in the two
nets ABDA and BCDB, the second net has to be considered as BDCB. In doing so the falls from
B to C and C to D are to be taken as rises from C to B and D to C, respectively. Therefore, the
level nets in Fig. 5.7 a will be used to avoid any confusion.

In each of the closed circuit the following condition must be satisfied:

Σ Rise = Σ Fall.

Let the corrections to be applied to the differences in level be e1, e2, e3, e4, and e5.

In circuit ABCDA

Error = + 42.919 – 12.196 – 8.236 – 22.557 = – 0.070 m

     Correction = + 0.070 m.

B

A

C

D

+ 42.919
− 12.196

− 8.236
− 22.557

B

A

D

+ 42.919

− 22.557

− 20.544

(a)

Fig. 5.7

In circuit ABDA

Error = + 42.919 – 20.544 – 22.557

= – 0.182 m

Correction = + 0.182 m.

B

A

C

D

+ 42.919
− 12.196

− 8.236

− 22.557

− 20.544

Fig. 5.6
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B

C

D

− 12.196

− 8.236

B

A

D

+ 42.919

− 20.544
− 20.544

− 22.557

(b)

Fig. 5.7

Thus we have the following condition equations.

e1 + e2 + e3 + e4 = 0.070 …(a)

       e1 + e4 + e5 = 0.182.

From the least squares principle, we have

               φ = ω1e2
1 + ω2e

2
2 + ω3e

2
3 + ω4e

2
4 + w5e2

5 = a minimum …(b)

Differentiating partially Eqs. (a) and (b), we get

          04321 =∂+∂+∂+∂ eeee …(c)

                0541 =∂+∂+∂ eee …(d)

05544332211 =∂+∂+∂+∂+∂ eeeee ωωωωω ...(e)

Multiplying Eq. (c) by –λ1, Eq. (d) by –λ2, and adding the results to Eq. (e), we get

–λ1( 4321 eeee ∂+∂+∂+∂ ) – λ2( 541 eee ∂+∂+∂ ) + 05544332211 =∂+∂+∂+∂+∂ eeeee ωωωωω

or

0)()(

)()()(

525542144

3133212212111

=∂−+∂−−+
∂−+∂−+∂−−

eeee

eeeeee

λωλλω
λωλωλλω

Since 1e∂ , 2e∂ , etc., are independent quantities, we have

0)( 2111 =−− λλω e or
1

21
1 ω

λλ +
=e

0)( 122 =−λω e or
2

1
2 ω

λ
=e

0)( 133 =−λω e or
3

1
3 ω

λ
=e

0)( 2144 =−− λλω e or
4

21
4 ω

λλ +
=e
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0)( 255 =−λω e or
5

2
5 ω

λ
=e

Now taking weights inversely proportional to the length of run, we have

ω2 = 
12

1
, ω3 = 

25
1

, ω4 = 
22

1
, ω5 = 

32

1
.

Two runs were made on the line AB and the mean value of level difference is given. We know
that

n
m

σσ =

and     22 ωσσω =mm

therefore, ω
σ

ωσω n
m

m == 2

2

. …(f)

Eq. (f) relates the weight of the mean of n observations to that of the single observation.
Hence, for the observation made for the line AB, which is mean of two observations

n = 2

ω =
20

11 =
l

                        
11

1

22

2
1 ==== ωωω nm .

Therefore

e1 1 211= +( ),λ λ   e2 112= λ ,  e3 122= λ , e4 1 232= +( ),λ λ  e5 225= λ .

Substituting the values of e1, e2, e3, e4, and e5 in Eq. (a), we get

77λ1 + 43λ2 = 0.070

43λ1 + 68λ2 = 0.182

λ1 =  – 0.0009

λ2 =  + 0.0032.

Therefore

)00032.00009.0(111 +−×=e = + 0.025 m

)0009.0(122 −×=e = – 0.012 m

)0009.0(223 −×=e = – 0.020 m

)0032.00009.0(324 +−×=e = + 0.074 m

0032.0255 ×=e = + 0.080 m.
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Therefore the most probable values of the level differences are

A to B = 42.919 + 0.025 = + 42.944 m

B to C = – 12.196 – 0.012 = – 12.208 m

B to D = – 20.544 + 0.080 = – 20.464 m

C to D = – 8.236 – 0.020 = – 8.256 m

D to A = – 22.557 + 0.074 = – 22.483 m.

If the level nets shown in Fig. 5.7b are considered, the falls from B to C and from C to D
in the net BCDA are to be taken as rises from C to B and from D to C, respectively.

Error in ABDA = + 42.919 – 20.544 – 22.557 = – 0.182 m

Error in BCDB = + 12.196 – 20.544 + 8.236 = – 0.112 m

Therefore,

 e1 + e5 + e4 = – (– 0.179) = 0.182 m

e2 + e5 + e3 = – (– 0.112) = 0.110 m.

Following the steps as given above for Fig. 5.7a, the values of the corrections would be

e1 = + 0.025 m

e2 = + 0.012 m

e3 = + 0.020 m

e4 = + 0.074 m

e5 = + 0.080 m

and the most probable values would be

A to B = 42.919 + 0.025 = + 42.309 m

C to B = + 12.196 + 0.012 = + 12.025 m

B to D = – 20.544 + 0.080 = – 20.157 m

D to C = + 8.236 + 0.020 = + 8.132 m

D to A = – 22.557 + 0.074 = – 22.152 m.

Now taking rises from C to B and from D to C as falls from B to C and from C to D,
respectively, we get the same values of the most probable values of the level differences as obtained
considering the nets shown in Fig. 5.7a, i.e.,

A to B = + 42.309 m  B to C = – 12.025 m

B to D = – 20.157 m C to D = – 8.132 m

D to A = – 22.152 m.

Example 5.11. The mean observed values of a spherical triangle ABC are as follows:

α = 55°18′24.45�     ω1 = 1

β = 62°23′34.24�     ω2 = 2

γ = 62°18′10.34�     ω3 = 3

The length of the side BC was also measured as 59035.6 m. If the mean earth’s radius is 6370
km, determine the most probable values of the spherical angles.
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Solution (Fig. 5.8):

In a Spherical triangle ABC, we have

A + B + C – 180° = Spherical excess = ε.

Thus for the given angles

ε = α + β + γ – 180°

= 55°18′24.45″  + 62°23′34.24″  + 62°18′10.34″  – 180°

= 180°00′9.03″  – 180°

= 9.03″.
The spherical excess is given by

ε =
1sin2

0

′′R

A
   seconds

where

                            α
γβ

sin

sinsin

2

1 2
0 aA = ,

R = the mean radius of earth, and

a = the measured length of BC.

In determination of A0, spherical excess being a small quantity, taking the observed angles
directly would not cause appreciable error in ε. Therefore,

                           A 0
21

2
59035 6

62 23 34 24 62 18 10 34

55 18 24 45
= ° ′ ′′ ° ′ ′′

° ′ ′′
× .

sin( . ) sin( . )

sin( . )

= 1665.5940 sq km

and   ε = 206265
6370

5940.1665
2

×  = 8.47″.

Theoretical sum of the angles = 180° + ε  = 180° + 8.47″ = 180°00 ′8.47″
Thus the total error in the angles = 180°00′9.03″  – 180°00′8.47″

= 0.56″
       Correction = – 0.56″.

If the corrections to the angles α, β, and γ are e1, e2, and e3, respectively, then

e1 + e2 + e3 = – 0.56″ …(a)

From theory of least squares, we have

φ = ω1e2
1 + ω2e2

2 + ω3e2
3 = a minimum. …(b)

Differentiating Eqs. (a) and (b), we get

                  0321 =∂+∂+∂ eee …(c)

          0332211 =∂+∂+∂ eee ωωω …(d)

A

B
C

α

a

bc

β γ

Fig. 5.8
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Multiplying Eq (c) by –λ and adding the result to Eq. (d), we get

           0)()()( 333222111 =∂−+∂−+∂− eeeeee λωλωλω

or 0)( 11 =−λω e or
1

1 ω
λ=e λ=

0)( 22 =−λω e or
2

2 ω
λ=e

2
λ=

0)( 33 =−λω e or
3

3 ω
λ=e

3

λ=

Now substituting the values of e1, e2, and e3 in Eq. (a), we get

                     65.0
32

′′−=++ λλλ

   
11

56.06×−=λ

λ = – 0.305″.
Thus e1 = – 0.305″

e2 = – 0.153″
e3 = – 0.102″.

Therefore, the most probable values of the spherical angles are

α = 55°18′24.45″ – 0.305″ = 55°18′′′′′24.14″″″″″
β = 62°23′34.24″ – 0.153″ = 62°23′′′′′34.09″″″″″
γ = 62°18′10.34″ – 0.102″ = 62°18′′′′′10.24″″″″″

Total = 80°00′08.47″    (Check).

Alternative solution:

The corrections to the individual angles can be taken as inversely proportion to their weights,
i.e.,

  
3

1
:

2

1
:

1

1
:: 321 =eee

Therefore    12 2

1
ee =

   13 3

1
ee = .
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Substituting the values of e2, and e3 in Eq. (a), we get

  
11

56.06
1

×−=e

e1 = – 0.305″
and e2 = – 0.153″

e3 = – 0.102″.
These corrections are the same as obtained from the least squares principle and, therefore, the

most probable values by applying these corrections will be the same as obtained above.

Example 5.12. A braced quadrilateral ABCD as shown in Fig. 5.8, was set out to determine
the distance between A and B. The mean observed angles are given below:

θ1 = 43°48′22″; θ5 = 49°20′43″;
θ2 = 38°36′57″; θ6 = 33°04′56″;
θ3 = 33°52′55″; θ7 = 50°10′43″;
θ4 = 63°41′24″; θ8 = 47°23′28″;

Adjust the quadrilateral by

(a) Approximate method

(b) Rigorous method.

Solution (Fig. 5.8):

A braced quadrilateral has the following four
conditions to be satisfied:

(i) θ1 + θ2 + θ3 + θ4 + θ5 + θ6 + θ7 + θ8 = 360°

or Σθ = 360°

(ii) θ1 + θ2  = θ5 + θ6

(iii) θ3 + θ4 = θ7 + θ8

(iv) log sin θ1 + log sin θ3 + log sin θ5 + log sin θ7

= log sin θ2 + log sin θ4 + log sin θ6 + log sin θ8

or      Σ log sin (odd angle) = Σ log sin (even angle).

(a) Approximate method

Satisfying the condition (i)

Σθ = 359°59′28″
Total error = 359°59′28″ – 360° = – 32″

Correction C1 = + 32″.
If the corrections to the angles be e1, e2, e3, etc., then

e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 = + 32″
Distributing the total correction to each angle equally, we get

B
θ2 C

A

θ3

θ4 θ5

θ6
D

θ1 θ7θ8

Fig. 5.8
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e1 = e2 = e3 = e4 = e5 = e6 = e7 = e8 =
8

32+  = 4″

Therefore the corrected angles are

θ1 = 43°48′22″ + 4″ = 43°48 ′26″
θ2 = 38°36′57″ + 4″ = 38°37 ′01″
θ3 = 33°52′55″ + 4″ = 33°52 ′59″
θ4 = 63°41′24″ + 4″ = 63°41 ′28″
θ5 = 49°20′43″ + 4″ = 49°20 ′47″
θ6 = 33°04′56″ + 4″ = 33°05 ′00″
θ7 = 50°10′43″ + 4″ = 50°10 ′47″
θ8 = 47°23′28″ + 4″ = 47°23 ′32″

Total = 360°00′00″  (Check).

Satisfying the condition (ii)

θ1 + θ2 = θ5 + θ6

θ1 + θ2 = 43°48′26″ + 38°37 ′01″ = 82°25 ′27″
θ5 + θ6 = 49°20′47″ + 33°05 ′00″ = 82°25 ′47″

         Difference = 20″

Correction to each angle =
4
20

 = 5″

The signs of the corrections C2 to angles θ1, θ2, θ5, and θ6 are determined as below.

Since the sum of θ1 and θ2 is less than the sum of θ5 and θ6, the correction to each θ1 and
θ2+, is + 5″ and the correction to each θ5 and θ6+, is – 5″.

Therefore the corrected angles are

θ1 = 43°48′26″ + 5″ = 43°48 ′31″
θ2 = 38°37′01″ + 5″ = 38°37 ′06″
θ5 = 49°20′47″ – 5″ = 49°20 ′42″
θ6 = 33°05′00″ – 5″ = 33°04 ′55″

θ1 + θ2 = 82°25′37″ = θ5 + θ6  (Check).

Satisfying the condition (iii)

θ3 + θ4 = θ7 + θ8

θ3 + θ4 = 33°52′59″ + 63°41 ′28″ = 97°34 ′27″
θ7 + θ8 = 50°10′47″ + 47°23′32″= 97°34′19″

         Difference = 8″

Correction to each angle =
4
8

 = 2″
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The signs of the corrections C3 to angles θ3, θ4, θ7, and θ8 are determined as below:

Since the sum of θ3 and θ4 is more than the sum of θ7 and θ8, the correction to each θ3 and
θ4, is – 2″ and the correction to each θ7 and θ8, is +2″.

Therefore the corrected angles are

θ3 = 33°52′59″ – 2″ = 33°52 ′57″
θ4 = 63°41′28″ – 2″ = 63°41 ′26″
θ7 = 50°10′47″ + 2″ = 50°10 ′49″
θ8 = 47°23′32″ + 2″ = 47°23 ′34″

θ3 + θ4 = 97°34′23″ = θ7 + θ8 (Check).

Satisfying the condition (iv)

The following computations involve the values of (log sin) of the angles which were determined
using a log table before the inception of digital calculators. As the students now, will be using the
calculators, the method of determining the values of (log sin θ) and other quantities using a
calculator has been used here.

The corrections to the individual angles for satisfying the condition (iv), is given as

cn = 2f

fn

∑
δ

 seconds …(a)

where

fn = the difference 1″ for log sinθn multiplied by 106, i.e.,

[log sin(θn + 1″) – log sin θn] × 106,

d = [Σ log sin(odd angle) – Σ log sin(even angle)]

  × 106 ignoring the signs of Σ log sin(odd angle)

  and Σ log sin (even angle), and

Σf 2 = the sum of squares of f1, f2, f3, etc., i.e.,

                   22
3

2
2

2
1 ....... nffff ++++ .

The sign of the corrections Cn is decided as below.

If  Σ log sin(odd angle) > Σ log sin(even angle), the corrections for odd angles will be positive
and  for the even angles negative and vice-versa.

Calculating the values of log sin(odd angle)’s, ignoring the signs

log sin θ1 = log sin (43°48′31″) = 0.1597360, f1 = 22

log sin θ3 = log sin (33°52′57″) = 0.2537617, f3 = 31

log sin θ5 = log sin (49°20′42″) = 0.1199607, f5 = 18

log sin θ7 = log sin (50°10′49″) = 0.1146031, f7 = 18

  Σ log sin(odd angle) = 0.6480615
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Calculating the values of log sin(even angle)’s, ignoring the signs

log sin θ2 = log sin (38°37′06″) = 0.2047252, f2 = 26

log sin θ4 = log sin (63°41′26″) = 0.0474917, f4 = 10

log sin θ6 = log sin (33°04′55″) = 0.2629363, f6 = 32

log sin θ8 = log sin (47°23′34″) = 0.1331152, f8 = 19

Σ log sin (even angle) = 0.6482684

Therefore,   δ = [Σ log sin (odd angle) – Σ log sin (even angle)] × 106

= (0.6480615 – 0.6482684) × 106

= 2069 (ignoring the sign)

and Σf 2 = 222 + 262+ 312 + 102 + 182 + 322 + 182 + 192 = 4254.

Since Σ log sin (odd angle) < Σ log sin (even angle) the corrections c1, c3, c5, and c7 will be
negative, and c2, c4, c6, and c8 will be positive.

Thus c1 = 22 × 
4254

2069
 = – 10.7″; c5 = 18 × 

4254

2069
 = –  8.8″

c2 = 26 × 
4254

2069
 = + 12.6″; c6 = 32 × 

4254

2069
 = + 15.6″

c3 = 31 × 
4254

2069
 = – 15.1″; c7 = 18 × 

4254

2069
 = –  8.8″

c4 = 10 × 
4254

2069
 = +  4.9″; c8 = 19 × 

4254

2069
 = +  9.2″.

Therefore the adjusted values of the angles are

θ1 = 43°48′31″ – 10.7″= 43°48 ′′′′′20.3″″″″″
θ2 = 38°37′06″ + 12.6″ = 38°37′′′′′18.4″″″″″
θ3 = 33°52′57″ – 15.1″= 33°52 ′′′′′41.9″″″″″
θ4 = 63°41′26″ + 4.9″ = 63°41 ′′′′′30.9″″″″″
θ5 = 49°20′42″ – 8.8″ = 49°20 ′′′′′33.2″″″″″
θ6 = 33°04′55″ + 15.6″ = 33°05′′′′′10.6″″″″″
θ7 = 50°10′49″ – 8.8″ = 50°10 ′′′′′40.2″″″″″
θ8 = 47°23′34″ + 9.2″ = 47°23 ′′′′′43.2″″″″″

Total = 359°59′58.7″ (Check).

Since there is still an error of 1.3″, if need be one more iteration of all the steps can be done
to get better most probable values of the angles. Alternatively, since the method is approximate, one

can add 
8

3.1 ′′
 = 0.163″ to each angle and take the resulting values as the most probable values.
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Thus, θ1 = 43°48′20.3″ + 0.163″ = 43°48′20.463″
θ2 = 38°37′18.6″ + 0.163″ = 38°37′18.763″
θ3 = 33°52′41.9″ + 0.163″ = 33°52′42.063″
θ4 = 63°41′30.9″ + 0.163″ = 63°41′31.063″
θ5 = 49°20′33.2″ + 0.163″ = 49°20′33.363″
θ6 = 33°05′10.6″ + 0.163″ = 33°05′10.763″
θ7 = 50°10′40.2″ + 0.163″ = 50°10′40.363″
θ8 = 47°23′43.2″ + 0.163″ = 47°23′43.363″

           Total = 360°00′00.204″  (Check).

For systematic computations, the computations may be done in tabular form as given in
Table 5.1.

(b) Rigorous method

Let the corrections to the angles be e1, e2,......, e8 then from the conditions to be satisfied, we
get

                 e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 = + 32″ …(a)

e1 + e2 – e5 – e6 = 82°25′27″ – 82°25 ′47″ = + 20″ …(b)

e3 + e4 – e7 – e8 = 97°34′27″ – 97°34 ′19″ = – 8″ …(c)

     f1e1 – f2e2 + f3e3 – f4e4 + f5e5 – f6e6 + f7e7 – f8e8 = –δ  = –2069 …(d)

where δ = [Σ log sin (odd angle) – Σ log sin (even angle)] × 106.

Another condition to be satisfied from least squares theory is

φ = 2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1 eeeeeeee +++++++ = a minimum. …(e)

Differentiating the Eq. (a) to (e), we get

87654321 eeeeeeee ∂+∂+∂+∂+∂+∂+∂+∂ = 0 …(f)

6521 eeee ∂−∂−∂+∂ = 0 …(g)

8743 eeee ∂−∂−∂+∂ = 0 …(h)

8877665544332211 efefefefefefefef ∂−∂+∂−∂+∂−∂+∂−∂ = 0 ...(i)

        8877665544332211 eeeeeeeeeeeeeeee ∂+∂+∂+∂+∂+∂+∂+∂  = 0 …(j)

Multiplying Eqs. (f), (g), (h) and (i) by –λ1, –λ2, –λ3, and –λ4, respectively, and adding to

Eq. (j), and equating the coefficients of 321 ,, eee ∂∂∂ , etc., in the resulting equation, to zero, we

get

(e1 – λ1 – λ2 – f1λ4) = 0 or e1 = λ1 + λ2 + f1λ4

(e2 – λ1 – λ2 + f2λ4) = 0 or e2 = λ1 + λ2 – f2λ4

(e3 – λ1 – λ3 – f3λ4) = 0 or e3 = λ1 + λ3 + f3λ4

(e4 – λ1 – λ3 + f4λ4) = 0 or e4 = λ1 + λ3 – f4λ4
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Table 5.1

    Angle C1
  Corrtd. C2,3

 Corrtd.   Log sin  Log sin f f 2    C4
  Corrtd.

   angle   angle    (odd)   (even)    angle

θ1 = 43°48′22″ +4″ 43°48′26″ +5″ 43°48′26″ 0.1597360 22 484 – 10.7″ 43°48′20.3″

θ2 = 38°36′57″ +4″ 38°37′01″ +5″ 38°37′01″ 0.2047252 26 676 + 12.6″ 38°37′18.6″

θ3 = 33°52′55″ +4″ 33°52′59″ –2″ 33°52′59″ 0.2537617 31 961 – 15.1″ 33°52′41.9″

θ4 = 63°41′24″ +4″ 63°41′28″ –2″ 63°41′28″ 0.0474917 10 100 +  4.9″ 63°41′30.9″

θ5 = 49°20′43″ +4″ 49°20′47″ –5″ 49°20′47″ 0.1199607 18 324 –  8.8″ 49°20′33.2″

θ6 = 33°04′56″ +4″ 33°05′00″ –5″ 33°05′00″ 0.2629363 32 1024 + 15.6″ 33°05′10.6″

θ7 = 50°10′43″ +4″ 50°10′47″ +2″ 50°10′47″ 0.1146031 18 324 –  8.8″ 50°10′40.2″

θ8 = 47°23′28″ +4″ 47°23′32″ +2″ 47°23′32″ 0.1331152 19 361 +  9.2″ 47°23′43.2″

Σ = 359°59′28″ +32″ 360°00′00″ 360°00′00″ 0.6480615 0.6482684 4254 359°59′58.9″
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(e5 – λ1 + λ2 – f5λ4) = 0 or e5 = λ1 – λ2 + f5λ4

(e6 – λ1 + λ2 + f6λ4) = 0 or e6 = λ1 – λ2 – f6λ4

(e7 – λ1 + λ3 – f7λ4) = 0 or e7 = λ1 – λ3 + f7λ4

(e8 – l1 + λ3 + f8λ4) = 0 or e8 = λ1 – λ3 – f8λ4.

Substituting the values of the corrections e1, e2,......, e8 in Eq. (a) to (e), we get

8λ1 + Fλ4 = 32″
4λ2 + (F12 – F56)λ4 = 20�

4λ3 + (F34 – F78)λ4 = – 8″
(F12 + F34 + F56 + F78)λ1 + (F12 – F56)λ2 + (F34 – F78)λ3 + F2 λ4 = – 2069

where F = Σ fodd – Σfeven = (22 + 31 + 18 + 18) – (26 + 10 + 32 + 19) = 2

F12 = f1 – f2 = 22 – 26 = – 4

F34 = f3 – f4 = 31 – 10 = 21

F56 = f5 – f6 = 18 – 32 = – 14

F78 = f7 – f8 = 18 – 19 = – 1

 F 2 = 4254.

Therefore

8λ1 + 2λ4 = 32″
4λ2 + 10λ4 = 20″
4λ3 + 22λ4 = – 8″ …(k)

2λ1 + 10λ2 + 22λ3 + 4254λ4 = – 2069

or λ1 =
1
8

32 24 4( )− λ

λ2 =
1
4

20 10 4( )− λ

λ3 =
1
4

8 22 4( ).− − λ .

Substituting the values of λ1, λ2 and λ3 in Eq. (k), we get

λ4 = – 0.507

and then λ1 = + 4.127

λ2 = + 6.268

λ3 = + 0.789.

Thus,

e1 = + 4.127 + 6.268 – 22 × (– 0.507) = – 0.759″
e2 = + 4.127 + 6.268 + 26 × (− 0.507) = + 23.577″
e3 = + 4.127 + 0.789 − 31 × (− 0.507) = − 10.801″
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e4 = + 4.127 + 0.789 + 10 × (− 0.507) = + 9.986″
e5 = + 4.127 − 6.268 − 18 × (− 0.507) =  − 11.267″
e6 = + 4.127 − 6.268 + 32 × (− 0.507) = + 14.083″
e7 = + 4.127 − 0.789 − 18 × (− 0.507) = − 5.788″
e8 = + 4.127 − 0.789 + 19 × (− 0.507) = + 12.971″

Total = 32.002″ ≈ 32″ (Check).
In view of the Eqs. (a) to (d), the following checks may be applied on the calculated values

of the corrections:
e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 = + 32.002″ ≈ + 32″

e1 + e2 − e5 − e6 = + 20.002″ ≈ + 20″
e3 + e4 − e7 − e8 = − 7.998″ ≈ − 8″

f1e1 − f2e2 + f3e3 − f4e4 + f5e5 − f6e6 + f7e7 − f8e8 = −δ = −2068.486 ≈ −2069
Applying the corrections to the observed values, the adjusted values of the angles are

θ1 = 43°48′22″ − 0.759″ = 43°°°°°48 ′′′′′21.241″″″″″
θ2 = 38°36′57″ + 23.577″ = 38°°°°°37 ′′′′′20.577″″″″″

        θ3 = 33°52′55″ − 10.801″ = 33°°°°°52 ′′′′′44.199″″″″″
θ4 = 63°41′24″ + 9.986″ = 63°°°°°41 ′′′′′33.986″″″″″
θ5 = 49°20′43″ − 11.267″ = 49°°°°°20 ′′′′′31.733″″″″″
θ6 = 33°04′56″ + 14.083″ = 33°°°°°05 ′′′′′10.083″″″″″
θ7 = 50°10′43″ − 5.788″ = 50°°°°°10 ′′′′′37.212″″″″″
θ8 = 47°23′28″ + 12.971″ = 47°°°°°23 ′′′′′40.971″″″″″

Total = 360°00′00.002″ (Check).

Example 5.13. Fig. 5.9 shows a quadrilateral ABCD with a central station O. The angles
measured are as below:

θ1 = 29°17′00″; θ2 = 28°42′00″
θ3 = 62°59′49″; θ4 = 56°28′01″
θ5 = 29°32′06″; θ6 = 32°03′54″
θ7 = 59°56′06″; θ8 = 61°00′54″
θ9 = 122°00′55″; θ10 = 60°32′05″

θ11 = 118°23′50″; θ12 = 59°03′10″
Determine the most probable values of the angles assuming

that the angles are of same reliability and have been adjusted for
station adjustment and spherical excess.

Solution (Fig. 5.9):

There are four triangles in which the following conditions are to be satisfied:

θ1 + θ2 + θ9 = 180°

θ3 + θ4 + θ10 = 180°
θ5 + θ6 + θ11 = 180°
θ7 + θ8 + θ12 = 180°

At station O, the condition to be satisfied is

B

θ2
C

A

θ3
θ4

θ5

θ6

D

θ1 θ7θ8

O
θ9

θ10

θ11

θ12

 Fig. 5.9
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θ9 + θ10 + θ11 + θ12 = 360°

and the side condition to be satisfied is

∑ log sin (odd angle) = ∑ log sin (even angle)

or            log sin θ1 + log sin θ3 + log sin θ5 + log sin θ7

= log sin θ2 + log sin θ4 + log sin θ6 + log sin θ8.

For the various notations used here and in other problems, Example 5.12 may be referred.

29°17′00″ + 28°42 ′00″ + 122°00 ′55″ – 180° = E1 = – 5″
e1 + e2 + e9 = C1 = + 5″

62°59′49″ + 56°28 ′01″ + 60°32 ′05″ – 180° = E2 = – 5″
e3 + e4 + e10 = C2 = + 5″

29°32′06″ + 32°03 ′54″ + 118°23 ′50″ – 180° = E3 = – 10″
e5 + e6 + e11 = C3 = + 10″

59°56′06″ + 61°00 ′54″ + 59°03 ′10″ – 180° = E4 = + 10″
e7 + e8 + e12 = C4 = – 10″

122°00′55″ + 60°32 ′05″ + 118°23′50″ + 59°03′10″  – 360° = E5 = 0″
e9 + e10 + e11 + e12 = C5 = 0″

Calculating the values of log sin (odd angle)’s, ignoring the signs

       log sin θ1 =  log sin (29°17′00″) = 0.3105768, f1 = 38

log sin θ3 = log sin (62°59′49″) = 0.0501309, f3 = 11

log sin θ5 = log sin (29°32′06″) = 0.3071926, f5 = 37

log sin θ7 = log sin (59°56′06″) = 0.0627542, f7 = 12

       Σ log sin (odd angle) = 0.7306545

Calculating the values of log sin(even angle)’s, ignoring the signs

log sin θ2 = log sin (28°42′00″) = 0.3185566, f2 = 38

log sin θ4 = log sin (56°28′01″) = 0.0790594, f4 = 14

log sin θ6 = log sin (32°03′54″) = 0.2750028, f6 = 34

log sin θ8 = log sin (61°00′54″) = 0.0581177, f8 = 12

       Σ log sin (even angle) = 0.7307365

Therefore δ = [Σ log sin (odd angle) – Σ log sin (even angle)] × 106

= (0.7306545 – 0.7307365) × 106 = E6

= – 820

or f1e1 – f2e2 + f3e3 – f4e4 + f5e5 – f6e6 + f7e7 – f8e8 = C6 = + 820.

Since there are six condition equations, there will be six correlates and the equations to
determine them using the theory of least squares, will be
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3λ1 + λ5 + F12λ6 = 5

3λ2 + λ5 + F34λ6 = 5

3λ3 + λ5 + F56λ6 = 10

3λ4 + λ5 + F78λ6 = – 10 …(a)

λ1 + λ2 + λ3 + λ4 + 4λ5 = 0

          F12λ1 + F34λ2 + F56λ3 + F78λ4 + F2λ6 = 820

From the values of  f1, f2, f3, etc., we have

F12 = 0,    F34 = – 3,    F56 = 3,    F78 = 0,    F2 = 6018.

Substituting the above values in Eqs. (a) and solving them, we get

λ1 = + 2.083, λ4 = – 2.917

λ2 = + 2.219, λ5 = – 1.250

λ3 = + 3.614, λ6 = + 0.136.

Now the corrections to the angles are

e1 = λ1 + f1λ6  = 2.083 + 38 × 0.136 = + 7.251″
e2 = λ1 – f2λ6  = 2.083 – 38 × 0.136 = – 3.085″
e3 = λ2 + f3λ6  = 2.219 + 11 × 0.136 = + 3.715″
e4 = λ2 – f4λ6  = 2.219 – 14 × 0.136 = + 0.315″
e5 = λ3 + f5λ6  = 3.614 + 37 × 0.136 = + 8.646″
e6 = λ3 – f6λ6  = 3.614 – 34 × 0.136 = – 1.010″
e7 = λ4 + f7λ6  = – 2.917 + 12 × 0.136 = – 1.285″
e8 = λ4 – f8λ6  = – 2.917 – 12 × 0.136 = – 4.549″

Total = 9.998″ ≈ 10″
Check:

Total correction = (2n – 4) 90° – (θ1 + θ2 + θ3 + θ4 + θ5 + θ6 +θ7 +θ8)

= 360° – 359°59′50″
= 10″ (Okay).

e9 = λ1 + λ5 = 2.083 – 1.250 = 0.833″
e10 = λ2 + λ5 = 2.219 – 1.250 = 0.969″
e11 = λ3 + λ5 = 3.614 – 1.250 = 2.364″
e12 = λ4 + λ5 = 2.917 – 1.250 = – 4.167″

Total = – 0.001″ ≈ 0

Check:

Total correction = 360° – (θ9 + θ10 + θ11 + θ12)

= 360° – 360°

= 0 (Okay).

Applying the above corrections to the observed angles, we get the most probable values as
under:



�
������
�����������������������	�
� ���

θ1 + e1 = 29°17′00″ + 7.251″ = 29°17′′′′′07.25″″″″″
θ2 + e2 = 28°42′00″ – 3.085″ = 28°41′′′′′56.92″″″″″
θ9 + e9 = 122°00′55″ +  0.833″ = 122°01′′′′′55.83″″″″″

Total = 180°00′00″        (Check).

θ3 + e3 = 62°59′49″ + 3.715″ = 62°59′′′′′52.71″″″″″
θ4 + e4 = 56°28′01″ + 0.315″ = 56°28′′′′′01.31″″″″″

θ10 + e10 = 60°32′05″ + 0.969″ = 60°32′′′′′05.97″″″″″
Total = 180°00′00″        (Check).

θ5 + e5 = 29°32′06″ + 8.646″ = 29°32′′′′′14.65″″″″″
θ6 + e6 = 32°03′54″ – 1.010″ = 32°03′′′′′52.99″″″″″

θ11 + e11 = 118°23′50″ + 2.364″ = 118°23′′′′′52.36″″″″″
Total = 180°00′00″        (Check).

θ7 + e7 = 59°56′06″ – 1.285″ = 59°56′′′′′04.72″″″″″
θ8 + e8 = 61°00′54″ – 4.549″ = 61°00′′′′′49.45″″″″″

θ12 + e12 = 59°03′10″ – 4.167″ = 59°03′′′′′05.83″″″″″
Total = 180°00′00″        (Check).

Example 5.14. For two stations A ( E 4006.99 m, N 11064.76 m) and B ( E 7582.46 m, N
8483.29 m), the following observations were made on station C.

Line Length (m) Bearing Angle

AC 4663.08 ± 0.05 76°06′29″ ± 4.0″ ACB = 61°41′57″ ± 5.6″
BC 3821.21 ± 0.05 14°24′27″ ± 4.0″

If the provisional coordinates of C have been taken as E 8533.38 m, N 12184.52 m, determine
the coordinates of C by the method of variation of coordinates.

Solution (Fig. 5.1):

(i) Calculation of (O – C) values

For θAC

xC – xA = 8533.38 – 4006.99 = 4526.39 m

yC – yA = 12184.52 – 11064.76 = 1119.76 m

tan .
.

θ AC = 4526 39
1119 76

= 4.0422858

Computed value of θAC = 76°06′17.5″ = C

Observed value of θAC = 76°06′29″ = O

(O – C) = 76°06′29″ – 76°06 ′17.5″ = + 11.5″

=
206265

5.11+  =  + 5.57535210 × 10–5 radians.



��� ������	
�

For θBC

xC – xB = 8533.38 – 7582.46 = 950.92 m

yC – yB = 12184.52 – 8483.29 = 3701.23 m

23.3701
92.950

tan =BCθ = 0.2569200

Computed value of θBC = 14°24′31.7″ = C

Observed value of θBC = 14°24′27″ = O

(O – C) = 14°24′27″ – 14°24′31.7″ = – 4.7″

= 
206265

7.4−  = – 2.27862216 × 10–5 radians.

For lAC

lAC = [( ) ( ) ]x x y yC A C A− − −2 2

= [( . . )]4526 39 1119 762 2−
Computed value of  lAC = 4662.84 m = C

 Observed value of lAC = 4663.08 m = O

(O – C) = 4663.08 – 4662.84 = + 0.24 m.

For lBC

lBC = [( ) ( ) ]x x y yC B C B− − −2 2

= [( . . )]950 92 3701 232 2−
Computed value of  lBC = 3821.43 m = C

Observed value of lBC = 3821.21 m = O

(O – C) = 3821.21 – 3821.43 = – 0.22 m.

For angle ACB

∠ ACB = Back bearing of AC – back bearing of BC

= (180° + 76°06′17.5″) – (180° + 14°24 ′31.7″)
Computed value of  ∠ ACB = 61°41′45.8″ = C

Observed value of ∠ ACB = 61°41′57″ = O

(O – C) = 61°41′57″ – 61°41 ′45.8″ = + 11.2″.

=
206265

2.11+  =  + 5.42990813 × 10–5 radians.

(ii) Calculation of residuals υ
Since A and B are fixed points

dxA = dxB = dyA = dyB = 0.
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Therefore, from Eq. (5.4), we have

                             dl
l

x x dx y y dyAC
AC

C A c c A c= − + −1 ( ) ( )

                             dl dx dyAC c c= +1
4662 84

4526 39 1119 76
.

× . .� �

= 0 70736718 10 2 40145491 101 1. × . ×− −+dx dyc c .

                             dl dx dyBC c c= +1
3821 43

950 92 3701 23
.

× ( . . )

= 2 48838785 10 9 68545806 101 1. × . × .− −+dx dyc c .

From Eq. (5.6), we have

                           d ACθ =
1

2l AC
y y dx x x dyc A c c A c( ) ( )− − −

=
1

4662 84
1119 76 4526 39

2.
× ( . . )dx dyc c−

= 5 15019796 10 2 08185723 105 4. × . × .− −−dx dyc c

                           d BCθ =
1

3821 43
3701 23 950 92

2.
× ( . . )dx dyc c−

= 2 53451144 10 6 51166672 104 5. × . × .− −−dx dyc c

 dα = dθAC – dθBC

= −− −( . × . × )5 15019796 10 2 53451144 105 4 dxc

  − −− −( . × . × )2 08185723 10 6 51166672 104 5 dyc

= − −− −2 01949164 10 1 43069056 104 4. × . × .dx dyc c .

Now the residuals can be computed as below:

           υθAC = (O – C)  – dθAC

= + − +− − −5 57535210 10 5 15019796 10 2 08185723 105 5 4. × . × . ×dx dyc c

  υ1 = d1 + a1X  + b1Y

υθBC = υ2 = (O – C) – BC
dθ

= − − +− − −2 27862216 10 2 53451144 10 6 51166672 105 4 5. × . × . ×dx dyc c

υ2 = d2 + a2X  + b2Y

υlAC = υ3 = (O – C)  – dlAC

= + − −− −0 24 9 70736718 10 2 4014591 101 1. . × . ×dx dyc c
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υ3 = d3 + a3X + b3Y

υlAC = υ4 = (O – C) – dlBC

= − − −− −0 22 2 48838785 10 9 68545806 101 1. . × . ×dx dyc c

              υ4 =  d4 + a4X  + b4Y

                υα = υ5 = (O – C) – αd

       = + + +− − −5 42990813 10 2 01949164 10 1 43069056 105 4 4. × . × . ×dx dyc c

υ5 = d5 + a5X  + b5Y

where in the above equations

X = dxc,

Y = dyc,

          a, b = the coefficients of terms, and

d = the constant term.

Since the standard errors of the observations are given, the weights of the observations can

be computed taking 2

1

σ
ω ∝ .

For lengths    ωl = 1

0 052.
or ωl = 200

For bearings   ωθ = 1
4 206265 2( / )

or ωθ = 51566 25.

For angle   ωα = 1
5 6 206265 2( . / )

or ωα = 36833 04. .

From the least squares principle, we have

  φ = ( ) ( ) ( ) ( ) ( )ω υ ω υ ω υ ω υ ω υθ θ α1
2

2
2

3
2

4
2

5
2+ + + + =l l a minimum

   = ωθ (d1 + a1X + b1Y)2 + ωθ (d2 + a2X + b2Y)2 + ωl (d3 + a3X + b3Y)2

       + ωl (d4 + a4X  + b4Y)2 + ωα (d5 + a5X  + b5Y)2 = a minimum.

Differentiating the above equation, we get

X∂
∂φ

= 2ωθ (d1 + a1X  + b1Y)a1 + 2ωθ (d2 + a2X  + b2Y) a2

+ 2ωl (d3 + a3X  + b3Y) a3 + 2ωl (d4 + a4X  + b4Y) a4

+ 2ωα (d5 + a5X  + b5Y) a5 = 0
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Y∂
∂φ

= 2ωθ (d1 + a1X + b1Y)b1 + 2ωθ (d2 + a2X  + b2Y)b2 + 2ωl

(d3 + a3X  + b3Y)b3 + 2ωl (d4 + a4X  + b4Y)b4 + 2ωα

(d5 + a5X  + b5Y)b5 = 0

By rearranging the terms, we get

[ωθ(a2
1 + a2

2) +  ωl(a
2
3 + a2

4) + ωαa2
5]X + [ωθ(b1a1 + b2a2) +  ωl(b3a3 + b4a4) + ωαb5a5]Y

= – [ωθ(d1a1 + d2a2) + ωl(d3a3 + d4a4) + ωαd5a5]

[ωθ(b1a1 + b2a2) + ωl(b3a3 + b4a4) + ωab5a5]X + [ωθ(b2
1 + b2

2) +  ωl(b
2
3 + b2

4) + ωαb2
5]Y

= – [ωθ(d1b1 + d2b2) + ωl(d3b3 + d4b4) + ωαd5b5].

The above two equations are the normal equations in X  (i.e., dxC) and  Y  (i.e., dyc). Now
Substituting the values of a, b, d, ωθ, ωl; and ωα, we get

634.895456 dxc + 156.454114 dyc – 48.6944390 = 0

156.454114 dxc + 552.592599 dyc + 99.6361111 = 0

The above equations solve for

dxc = + 1.30213821 × 10–1 = + 0.13 m

dyc = – 2.17173736 × 10–1 = – 0.22 m.

Hence the most probable values of the coordinates of C are

Easting of C = E 8533.38 + 0.13 = E 8533.51 m

Northing of C = N 12184.52 – 0.22 = N 12184.30 m.

Example 5.15. A quadrilateral ABCD with a central station O is a part of a triangulation survey.
The following angles were measured, all have equal weight.

θ1 = 57°55′08″; θ2 = 38°37′27″
θ3 = 62°36′16″; θ4 = 34°15′39″
θ5 = 36°50′25″; θ6 = 51°54′24″
θ7 = 27°57′23″; θ8 = 49°52′50″
θ9 = 83°27′17″; θ10 = 83°08′06″
θ11 = 91°15′09″; θ12 = 102°09′32″.

Adjust the quadrilateral by the method of least squares.

Solution (Fig. 5.9):

This example has been solved by the general method of adjusting a polygon with a central
station discussed in Sec. 5.8.

For the given polygon

n = 4

(n + 2) = 6.

Therefore, the matrix of coefficients of normal equations will be a 6 × 6 matrix.

Step-1: Total corrections
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  (i) C1 = 180° – (θ1 + θ2 + θ9) = + 8″
C2 = 180° – (θ3 + θ4 + θ10) = – 1″
C3 = 180° – (θ5 + θ6 + θ11) = + 2″
C4 = 180° – (θ7 + θ8 + θ12) = +15″

 (ii) C5 = 360° – (θ9 + θ10 + θ11 + θ12) = – 4″
(iii) C6 = – [log sin(odd angles) – log sin(even angles)] × 106

(for angles (θ1, θ2…θ2n).

= – [(0.071964298 + 0.051659872 + 0.222148263

+ 0.329012985) – (0.20466985 + 0.24952153 + 0.104021508

+ 0.116507341)] × 106

= – 651.9″.
Step-2: Normal equations

f1 = 13,  f2 = 26,  f3 = 11,  f4 = 31,  f5 = 28,  f6 = 17,  f7 = 40,  f8 = 18

F12 = 13 – 26 = –13,  F34 = 11 – 31 = – 20

F56 = 28 – 17 = 11,   F78 = 40 – 18 = 22

F 2 = 4924.

Coefficient matrix of normal equations

1 2 3 4

31

2

3

4

3

3

3

0

1

0

0

0 0

0

0 0 0

0 0

0

0

5 6

−13

−20

11

22

1

1

4

1

0 4924−13 −20 11 22

5

6

1 1 1 1

Matrix of normal equations

1 2 3 4

31

2

3

4

3

3

3

0

1

0

0

0 0

0

0 0 0

0 0

0

0

5 6

−13

−20

11

22

1

1

4

1

0 4924−13 −20 11 22

5

6

1 1 1 1

λ1

λ2

λ3

λ4

8

−1

2

+15
− =  0

λ5

λ6

−4

−651.9

Normal equations

3λ1 + λ5 – 13λ6 – 8 = 0

3λ2 + λ5 – 20λ6 + 1 = 0
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3λ3 + λ5 + 11λ6 – 2 = 0

3λ4 + λ5 + 22λ6 – 15 = 0

λ1 + λ2 + λ3 + λ4 + 4λ5  + 4 = 0

– 13λ1 – 20λ2 + 11λ3 + 22λ4 + 4924λ6 + 651.9 = 0

The above equations solve for

λ1 = + 3.456, λ4 = + 7.703

λ2 = + 0.073, λ5 = – 4.500

λ3 = + 2.768, λ6 = – 0.164.

Now the corrections to the angles are

e1 = λ1 + f1λ6 = 3.456 + 13 × ( – 0.164) = + 1.324″
e2 = λ1 – f2λ6 = 3.456 – 26 × ( – 0.164) = + 7.720″
e3 = λ2 + f3λ6 = 0.073 + 11 × ( – 0.164) = – 1.731″
e4 = λ2 – f4λ6 = 0.073 – 31 × ( – 0.164) = + 5.157″
e5 = λ3 + f5λ6 = 2.768 + 28 × ( – 0.164) = - 1.824″
e6 = λ3 – f6λ6 = 2.768 – 17 × ( – 0.164) = + 5.556″
e7 = λ4 + f7λ6 = 7.703 + 40 × ( – 0.164) = + 1.143″
e8 = λ4 – f8λ6 = 7.703 – 18 × ( – 0.164) = + 10.655″

e9 = λ1 + λ5 = 3.456 – 4.500 = – 1.044″
e10 = λ2 + λ5 = 0.073 – 4.500 = – 4.427″
e11 = λ3 + λ5 = 2.768 – 4.500 = – 1.732″
e12 = λ4 + λ5 = 7.703 – 4.500 = + 3.203″.

Checks:

C1 = e1 + e2 + e9 = + 8″
C2 = e3 + e4 + e10 = – 1″
C3 = e5 + e6 + e11 = + 2″
C4 = e7 + e8 + e12 = +15″
C5 = e9 + e10 + e11 + e12 = – 4″

Applying the above corrections to the observed angles, we get the most probable values as
under:

θ1 + e1 = 57°55′08″ + 1.324″  = 57°55′′′′′09.3″″″″″
θ2 + e2 = 38°37′27″ + 7.720″  = 38°37′′′′′34.7″″″″″
θ9 + e9 = 83°27′17″ – 1.044″ = 83°27′′′′′16.0″″″″″

Total = 180°00′00″ (Check).

θ3 + e3 = 62°36′16″ – 1.731″ = 62°36′′′′′14.0″″″″″
θ4 + e4 = 34°15′39″ + 5.157″  = 34°15′′′′′44.0″″″″″
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θ10 + e10 = 83°08′06″ – 4.427″  = 83°08′′′′′02.0″″″″″
Total = 180°00′00″  (Check).

θ5 + e5 = 36°50′25″ – 1.824″  = 36°50′′′′′23.0″″″″″
θ6 + e6 = 51°54′24″ + 5.556″ = 51°54′′′′′30.0″″″″″

θ11 + e11 = 91°15′09″ – 1.732″  = 91°15′′′′′07.0″″″″″
Total = 180°00′00″  (Check).

θ7 + e7 = 27°57′23″ + 1.143″ = 27°57′′′′′24.0″″″″″
θ8 + e8 = 49°52′50″ + 10.655″ = 49°53 ′′′′′01.0″″″″″

θ12 + e12 = 102°09′32″ + 3.203″ = 102°09′′′′′35.0″″″″″
Total = 180°00′00″  (Check).

OBJECTIVE TYPE QUESTIONS

1. Theory of errors is applied to minimize

(a) the gross errors.

(b) the systematic errors.

(c) the random errors.

(d) all the above.

2. Most probable value of a quantity is equal to

(a) observed value + correction.

(b) the observed value – correction.

(c) the true value + correction.

(d) the true value – correction.

3. The method of least squares of determining the most probable value of a quantity is based upon
the criterion that

(a) Σ Correction2 = a minimum.

(b) Σ Error2 = a minimum.

(c) Σ (Weight × correction)2 = a minimum.

(d) Σ Residual2 = a minimum.

4. If the observations of a quantity contains systematic and random errors, the most probable value
of the quantity is obtained by

(a) removing the systematic and random errors from the observations.

(b) removing the systematic errors and minimizing the residuals from the observations.

(c) removing the random errors and minimizing the systematic errors from  the observations.

(d) minimizing the systematic and random errors from the observations.

5. The most probable value of a quantity is the quantity which is  nearest to

(a) the true value of the quantity.

(b) the true value of the quantity ± standard deviation.

(c) the true value of the quantity ± probable error.

(d) the observed value of the quantity ± weight of the observation.
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6. The theory of least squares is used in

(a) the method of differences.

(b) in the normal equation method.

(c) the method of correlates.

(d) all the above.

7. In a braced quadrilateral the number of conditions required to be satisfied for adjustment
excluding the condition imposed by least squares theory, is

(a) 2.

(b) 3.

(c) 4.

(d) 5.

8. The spherical excess for a triangle of area 200 sq km is approximately

(a) 0.5″.

(b) 1.0″.

(c) 1.5″.

(d) 2.0″.

9. Correlate is the unknown multiplier used to determine the most probable values by multiplying
it with

(a) normal equation.

(b) observation equation.

(c) condition equation.

(d) condition imposed by the least squares theory .

10. Station adjustment of observation means

(a) making sum of the angles observed around a station equal to 360°.

(b) checking the permanent adjustment of the instrument at every station.

(c) adjusting the instrument so that it is exactly over the station.

(d) shifting the station location to make it intervisible from other stations.

ANSWERS

1. (c) 2. (a) 3. (d) 4. (b) 5. (a) 6. (d)

7. (c) 8. (b) 9. (c) 10. (a)
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6.1 TRIANGULATION SURVEYS

Triangulation is one of the methods of fixing accurate controls. It is based on the trigonometric
proposition that if one side and two angles of a triangle are known, the remaining sides can be
computed. A triangulation system consists of a series of joined or overlapping triangles in which
an occasional side called as base line, is measured and remaining sides are calculated from the
angles measured at the vertices of the triangles, vertices being the control points are called as
triangulation stations.

Triangulation surveys are carried out

1. to establish accurate control  for plane and geodetic surveys covering large areas,

2. to establish accurate control for photogrammetric surveys for large areas,

3. to assist in the determination of the size and shape of the earth,

4. to determine accurate locations for setting out of civil engineering works such as piers and
abutments of long span bridges, fixing centre line, terminal points and shafts for long
tunnels, measurement of the deformation of dams, etc.

When all the sides of a triangulation system are measured it is known as the trilateration system.
However, the angular measurements define the shape of the triangulation system better than wholly
linear measurements and so it is preferred that a number of angles are included in trilateration system.

A combined triangulation and trilateration system in which all the angles and all the sides are
measured, represents the strongest network for creating horizontal control.

6.2 STRENGTH OF FIGURE

The strength of figure is a factor considered in establishing a triangulation system to maintain the
computations within a desired degree of precision. It plays an important role in deciding the layout
of a triangulation system.The expression given by the U.S. Coast and Geodetic Survey for evaluation
of strength of figure is

RdL 22

3

4= …(6.1)

where L2 = the square of the probable error that would occur in the sixth place of

the logarithm of any side,
d = the probable error of an observed direction in seconds of arc,
R = a term which represents the shape of a figure
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=
D C

D
A A B B

− + +∑ δ δ δ δ2 2� � …(6.2)

D = the number of directions observed excluding the known side of the figure,

CBA δδδ ,, = the difference in the sixth place of logarithm of the sine of the distance

angles A, B, C, etc., respectively,

C = ( ) ( )321 +−++′−′ SnSn …(6.3)

            n′ = the total number of sides including the known side of the figure,

n = the total number of sides observed in both directions including the
known side,

S′ = the number of stations occupied, and

S = the total number of stations.

6.3 DISTANCE OF VISIBLE HORIZON

If there is no obstruction due to intervening ground between two stations A and B, the distance
D of visible horizon as shown in Fig. 6.1 from a station A of known elevation h above mean sea
level, is calculated from the following expression:

( )m
R

D
h 21

2

2

−= …(6.4)

where  h = the elevation of the station above mean sea level,

D = the distance of visible horizon,

R = the mean earth’s radius ( −~ 6373 km), and

m = the mean coefficient of refraction (taken as 0.07 for sights over land, 0.08
for sights over sea).

A
B

B′
D

T

h

A′

Fig. 6.1

For the sights over land

h D= 0 6735 2.  metres …(6.5)

where D is in kilometers.

The expression given by Eqs. (6.4) or (6.5), is used to determine the intervisibility between
two triangulation stations.

6.4 PHASE OF A SIGNAL

When cylindrical opaque signals are used they require a correction in the observed horizontal angles
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due to an error known as the phase. When sunlight falls on a cylindrical opaque signal it is partly
illuminated, and the remaining part being in shadow as shown in Fig. 6.2 becomes invisible to the
observer. While making the observations the observations may be made on the bright portion (Fig.
6.2a) or the bright line (Fig. 6.2b). Since the observations are not being made on the centre of the
signal, an error due to incorrect bisection is introduced in the measured horizontal angles at O.

Observations Made on Bright Portion (Fig. 6.2a)

When the observations are made on the two extremities A and B of the bright portion AB then the
phase correction β is given by the following expression:

β θ= 206265 22

D
r cos ( / ) seconds …(6.6)

where θ = the angle between the sun and the line OP,

D = the distance OP, and

r = the radius of the cylindrical signal.

Observations Made on Bright Line (Fig. 6.2b)

In the case of the observations made on the bright line at C, the phase correction is computed from
the following expression:

β θ= 20625 2
D

r cos ( / ) seconds …(6.7)

While applying the correction, the directions of the phase correction and the observed stations
with respect to the line OP must be noted carefully.

Fig. 6.2

6.5 SATELLITE STATION, REDUCTION TO CENTRE, AND ECCENTRICITY OF
      SIGNAL

In triangulation surveys there can be two types of problems as under:

(a) It is not possible to set up the instrument over the triangulation station.

(b) The target or signal is out of centre.
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The first type of problem arises when chimneys, church spires, flag poles, towers, light
houses, etc., are selected as triangulation stations because of their good visibility and forming well-
conditioned triangles. Such stations can be sighted from other stations but it is not possible to
occupy them directly below such excellent stations for making observations on other stations. The
problem is solved as shown in Fig. 6.3, by taking another station S in the vicinity of the main
triangulation station C from where the other stations A and B are visible. Such stations are called
the satellite stations, and determining the unobserved angle ACB from the observations made is
known as the reduction to centre.

In the second type of problem, signals are blown out of position.
Since the signal S is out of centre as shown in Fig. 6.3, i.e., not over the
true position of the station, the observations made from other stations A
and B will be in error, but  the angle φ observed at C will be correct.
Therefore the observed angles at A and B are to be corrected. Such type
of problem is known as the eccentricity of signal.

The problems reduction to centre and eccentricity of signal are solved by determining the
corrections α and β. It may be noted that if the instrument is not centered over the true position
of the station it will also introduce error in the angles measured at that station but it cannot be
corrected since the observer has unknowingly made the centering error and therefore, the displacement
of the instrument from the correct position of the station is not known.

The observations made on the station C from the stations A and B, are θA, θB, respectively.
At the satellite station S the measured angles are θ and γ.If the line AS is moved to AC by an angle
α, and the line BS is moved to BC by an angle β, the satellite station S moves to the main station
C by amount d, and the angle θ becomes φ by getting corrections  α and β. The values of the
corrections α and β are given by

 α θ γ= +206265 d

b
sin ( ) seconds …(6.8)

γβ sin206265
a

d= seconds …(6.9)

From ∆’s AOS and BOC, we have

BOCAOS ∠=∠

 βφαθ +=+

     βαθφ −+= …(6.10)

Eq. (6.10) gives the value of φ when the satellite station S is in S1 position shown in Fig. 6.4a.
In general, depending upon the field conditions the following four cases may occur as shown in
Fig. 6.4.

Case-1: S1 position of the satellite station (Fig. 6.4a)

φ θ α β= + −
Case-2: S2 position of the satellite station (Fig. 6.4b)

φ θ α β= − + …(6.11)

θA θB

α β

θ γ φ

A B

C

a

S

b

d

O

Fig. 6.3
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A B

C S2

S3

S4

S1

θA θB

α β

θγφ

a

b

d

A B

C S2

θA θB

α β
θ

γφ

A B

C

a

S3b
d

θA θB

α β

θ
γ

φ

A B

C

a

S4

b

d

(a) (b)

(c) (d)

Fig. 6.4

Case-3: S3 position of the satellite station (Fig. 6.4c)

βαθφ −−= …(6.12)

Case-4: S4 position of the satellite station (Fig. 6.4d)

φ θ α β= + + . …(6.13)

6.6 LOCATION OF POINTS BY INTERSECTION AND RESECTION
The points located by observing directions from the points of known locations, are known as the
intersected points (Fig. 6.5a). When a point is established by taking observations from the point to
the points of known locations, such points are known as the resected points (Fig. 6.5b). Generally
the intersected points are located for subsequent use at the time of plane tabling to determine the
plane-table station by solving three-point problem. Therefore, their locations are such that they are
visible from most of the places in the survey area. The resected points are the additional stations
which are established when the main triangulation stations have been completed and it is found
necessary to locate some additional stations for subsequent use as instrument stations as in topographic
surveys. This problem also arises in hydrographic surveys where it is required to locate on plan the
position of observer in boat.

In Fig. 6.6a, let A, B, and C be the main triangulation stations whose locations are known.
P is the point whose location is to be determined.

α
β

θ φ

A

B

C

P

x
zy

α
β

θ φ

A

B

C

P

x
zy

γ γ

(a) (b)
Resected pointIntersected point

Fig. 6.5
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Since the coordinates of A, B, and C are known, the lengths a, b, and the angle β are known.
The angle α and γ are observed at A and C.

Let θ=∠ APB

φ=∠ BPC

   xAP =

   yBP =

   zCP =
From ∆’s ABP and BCP, we get

θα sinsin

ay =

and φγ sinsin

by =

or φ
γ

θ
α

sin

sin

sin

sin
bay == . …(6.14)

Also for the quadrilateral ABCP, we have

α β γ φ θ+ + + + = °360 . …(6.15)

There are two unknowns θ and φ in two equations (6.14) and (6.15). The solution of these
equations gives the values of θ  and φ, and then the values of x, y, and z can be calculated by sine
law. Knowing the distances x, y, and z, the point P can be plotted by intersection.

If the coordinates of P, A and B are (XP, YP), (XA, YA), and (XB, YB), the reduced bearings
θ1 and θ2 of AP and BP are respectively given by

tan θ1 = −
−

X X

Y Y
P A

P A
…(6.16)

tan θ2 = −
−

X X

Y Y
P B

P B
. …(6.17)

Since θ1 and θ2 are now known, by solving the simultaneous equations (6.16) and (6.17) the
coordinates XP are YP are determined, and the point P is located. The check on the computations
is provided by computing the distance CP.

In the case of resected points shown in Fig. 6.6b, the angles α and γ are unknowns, and
the angles θ  and φ are measured by occupying the station P. The Eqs. (6.14) and (6.15) solve
for α  and γ, and then x, y, and z are computed by sine law. The point P can be located now by
intersection. Since in this case the angles α and γ are not measured, the solution of Eqs. (6.14) and
(6.15) is obtained as explained below.
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From Eq. (6.15), we get

)(360 φθβγα ++−=+ �

or   )(
2
1

180)(
2
1 φθβγα ++−=+ �

…(6.18)

From Eq. (6.14), we have

θ
φ

α
γ

sin

sin

sin

sin

b

a= .

Let
sin

sin
tan .

γ
α

λ=

Therefore      
a

b

sin

sin
tan .

φ
θ

λ= …(6.19)

We can also write

 1tan1
sin

sin +=+ λ
α
γ

    λ
α
γ

tan1
sin

sin
1 −=−

or
�45tantan

sin

sinsin +=+ λ
α

γα

and
�45tantan1

sin

sinsin λ
α

γα −=−

or
�

�

45tantan

45tantan1

sinsin

sinsin

+
−=

+
−

λ
λ

γα
γα

    

2 1
2

1
2

2 1
2

1
2

1
45

cos ( ) sin ( )

sin ( ) cos ( ) tan ( )

α γ α γ

α γ α γ λ

+ −

+ −
=

°+

 cot tan cot ( )α γ α γ λ+�
�

�
�

−�
�

�
� = ° +

2 2
45

 tan cot ( ) tan .α γ λ α γ+�
�

�
� = ° + +�

�
�
�2

45
2

…(6.20)
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Substituting the values of 
α γ+�
�

�
�2

from Eq. (6.18) and the value of λ from Eq. (6.19) in

Eq. (6.20), we get the value of 
α γ−�
�

�
�2

. Now the values of α and γ can be obtained from the

values of 
α γ+�
�

�
�2

 and 
α γ−�
�

�
�2

.

Obviously, α =
α γ+�
�

�
�2

 + 
α γ−�
�

�
�2

         γ =
α γ+�
�

�
�2

 – 
α γ−�
�

�
�2

.

Now the lengths x, y, and z are obtained by applying sine law in the triangles APB and BPC.
The length y of the common side BP gives a check on the computations. The azimuths of the three
sides AP, BP, and CP are computed, and the coordinates of P are determined from the azimuths
and lengths of the lines.

The following points should be noted:

(a) Due regard must be given to the algebraic sign of tan 
α γ+�
�

�
�2

 and cot (45° + λ) to get

the correct sign of 
α γ−�
�

�
�2

.

(b) If 
α γ+�
�

�
�2

 is equal to 90°, the point P lies on the circle passing through A, B, and C, and

the problem is indeterminate.

(c) Mathematical checks do not provide any check on the field work.

(d) The angles θ and φ measured in the field can be checked by measuring the exterior angle
at P. The sum of all the angles should be 360°.

(e) A fourth control station may be sighted to check the accuracy of a three-point resection.
The two independent solutions should give the same position of the point P. It checks both
the field work and computation.

(f) The least squares method can be used to adjust the overdetermined resection, and for the
determination of the most probable values.

6.7 REDUCTION OF SLOPE DISTANCES

In trilateration system, the lengths of the sides of the figures are obtained by measuring the slope
distances between the stations using EDM equipment, and reducing them to equivalent mean sea
level distances. There are the two following methods of reducing the slope distances:

1. Reduction by vertical angles

2. Reduction by station elevations.



��� ������	
�

υ

α

O

E

A

���

Mean sea level

R

hA

90°+���

M

V

N

B

L

F

S

���

β

90°−α

υ

B’

�

Fig. 6.6

Reduction by Vertical Angles

Fig. 6.6 shows two stations A and B established by trilateration. α is the angle of elevation at A,
and β is the angle of depression at B. The angle υ is the refraction angle assumed to be the same
at both stations. For simplicity in computations it is further assumed that the height of instrument
above the ground and the height of the signal above the ground at both stations are same. Thus
the axis-signal correction is zero.

The angle subtended at the centre of the earth O, between the vertical lines through A and B,
is θ. The angle OVB is (90° – θ) as the angle VBO in triangle VBO, is 90°. The distance L between
A and B, is measured along the refracted line (curved) from A to B by the EDM. The distance L
within the range of the instrument can be taken as the straight-line slope distance AB. The difference
between the two distances in 100 km is less than 20 cm.

In ∆VAB,

                ∠ VAB + ∠ ABV + ∠ BVA = 180°

     ( ) ( ) ( )90 90 180° − + + + + ° − = °α υ β υ θ
2υ = α + θ – β

 ( )βθαυ −+=
2
1

…(6.21)

In ∆BAB′,
∠ BAB′ = α – υ + θ/2 …(6.22)

Substituting the value of υ from Eq. (6.21) in Eq. (6.22), we get

∠  BAB′ = ( )
22

1 θβθαα −−+−

( )βα +=
2

1
  …(6.23)

Taking ∠ AB′B approximately equal to 90° in the triangle
ABB′, the distance AB′ is very nearly given by

AB′  −~ AB cos BAB′ …(6.24)

With approximate value of AB′, the value of θ can be
computed with sufficient accuracy from the following
relationship.

In ∆AOE,

R

BA

OE

AE

22
sin

′
==θ

…(6.25)

taking OE = R which the radius of earth for the latitude of the
area in the direction of the line.
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In ∆ABB′ ,
∠ ABB′ = 180° – (∠ BAB′ + ∠ AB′B)

= 180° – 
2

1
(α + β) − ° +�

�
�
�90

2
θ

= 90 1
2

° − + +( )α β θ

The triangle ABB′ can now be solved by the sine law to give a more exact value of AB′.
Thus

                          
AB AB

AB ABB
′ = ′

° +�
�

�
�

sin

sin 90
2
θ …(6.26)

The points M and N are the sea level positions of the stations A and B, respectively. The chord
length MN which is less than the chord length AB′, is given by

                          
R

h
BABAMN A′−′=

                               = ′ −��
�
�AB h

R
A1 …(6.27)

where hA is the elevation of the station A.

The sea level distance S which is greater than the chord length MN, is given by

                            2

3

24R

MN
MNS += …(6.28)

or                               MNSl −=δ

                                   2

3

24R

MN= …(6.29)

The difference δl is added to the chord distance MN to obtain the sea level distance S of the
line. The value of δl is about 250 cm in a distance of 100 km, and decreases to 1 ppm of the
measured length at about 30 km. Thus, for distances less than 30 km, the chord-to-arc distance
correction is negligible.

Reduction by Station Elevation

If the difference in elevation ∆h of the two stations A and B as shown in Fig. 6.7 is known, the
measured slope distance L between the stations can be reduced to its equivalent sea level distance
without making any further observations. Assuming the distance AB as the straight-line distance,
the difference between the slope distance and the horizontal distance AC can be written as



��� ������	
�

O 

E 

A 

��� 

R 

hA 

M 
N 

B 

L 

S 

��� 

B’ 

D 
C 

∆h 

� 

Fig. 6.7

AB

h
ACABCD

2

2∆=−= ,

since the slope of the line AB is small.

From ∆CBB′, we have

2
sin

θ
hCB ∆=′ .

The value of θ/2 is determined from Eq. (6.25) by calculating the approximate value of AB′
as below.

AB −~ AB h

AB
− ∆ 2

2
…(6.30)

We have  AB AD B D′ = − ′

     = − ′ +AD B C CD( )

     = − +�
��

�
��AB h h

AB
∆ ∆sin θ

2 2

2

…(6.31)

Now the value of S is determined from Eq. (6.28) by substituting the value of MN from
Eq. (6.27).

6.8 SPHERICAL TRIANGLE

The theodolite measures horizontal angles in the horizontal plane, but when the area becomes large,
such as in the case of primary triangulation, the curvature of the earthmeans that such planes in
large triangles called as spherical triangles or geodetic triangles are not parallel at the apices as
shown in Fig. 6.8. Accordingly, the three angles of a large triangle do not total 180°, as in the case
of plane triangles, but to 180° + ε, where ε is known as spherical excess. The spherical excess
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depends upon the area of the triangle, and it is given by

1sin2
0

′′
=

R

A
ε  seconds …(6.32)

where 0A = the area of the triangle in sq km, and

 R = the mean radius of the earth in km (−~ 6373 km).

The triangular error is given by

ε = Σ Observed angles – (180° + ε)

  = A + B + C – (180° – ε) …(6.33)

6.9 EFFECT OF EARTH’S CURVATURE

Due to the curvature of the earth causes the azimuth or bearing of a straight line to constantly
changes resulting into the bearing of X from Y being not equal to the bearing of Y from X ± 180°.
As shown in Fig. 6.9, let XY be the line in question, and φ1 and φ2 be the latitudes of its two ends
X and Y, respectively. N and S are the terrestrial north and south poles, and the meridians of X and
Y are SXN and SYN, respectively. At the equator these meridians are parallel, but this changes with
progress towards the poles. Let the angles between the meridians at the poles be θ, which is equal
to the difference in longitude of X and Y. The bearings of XY at X and Y are α and α + δα,
respectively. Here δα indicates the convergence of the meridians, i.e., the angle between the
meridians at X and Y.

We have

   XN = 90° – φ1

   YN = 90° – φ2

   2
cot

2
cos

2
cos

2
tan

θ
yx

yx
YX

+

−

=+

2

180
tan




 −−+ δααα �

 = 

cos

cos
cot

90 90

2
90 90

2
2

2 1

2 1

° − − ° −

° − + ° −

φ φ

φ φ
θ

	 
 	 


	 
 	 


    
tan

cos

sin
cot90

2
2

2
2

1 2

1 2
°−�

�
�
� =

−

+
δα

φ φ

φ φ
θ

      tan
sin

cos
tanδα

φ φ

φ φ
θ

2
2

2
2

1 2

1 2
=

+

−

A

B

C

Fig. 6.8
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90°−φ2
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θ

φ1

S

N

Y
X

y x
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α+δα

Fig. 6.9
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For survey purposes, taking (φ1 – φ2) and θ small, we have

δα θ φ φ

θ φ

= −

=

sin

sin

1 2

2

where φ is the mean latitude of X and Y.

Within the limits of calculations it is quite adequate to assume that the meridians at X and
Y are parallel when the two points are relatively close together (say < 40 km apart). With this
assumption a rectangular grid can be established as in Fig. 6.10, in which the lines are spaced apart
at mid-latitude distances. Thus λ represents the length of 1″ of latitude, and µ represents the length

of 1″ of longitude at the mean latitude φ of X and Y  in each case. l is the length of XY which

is actually part of a great circle, and α δα+�
�

�
�2

 is the average bearing of XY.

Thus

λδφ α δα= +�
�

�
�l cos

2
…(6.34)

µδφ α δα= +�
�

�
�l sin

2
…(6.35)

and  δα δθ φ= sin …(6.36)

If X and Y are widely separated, the triangle XNY is solved

for angle X and Y using standard expressions for tan
X Y+

2

and tan .
X Y−

2

6.10 CONVERGENCE

The Grid North has its direction of the central meridian but elsewhere a meridian does not align with
Grid North. Thus, in general, the grid bearing of a line will not equal the true bearing of that line
if measured at a station by an astronomical method or by gyro-theodolite. To convert the former
to the latter a convergence factor has to be applied.

Example 6.1. In a triangulation survey, four triangulation stations A, B, C, and D were tied
using a braced quadrilateral ABCD shown in Fig. 6.12. The length of the diagonal AC was measured
and found to be 1116.40 m long. The measured angles are as below:

α = 44°40′59″ γ = 63°19′28″
β = 67°43′55″ δ = 29°38′50″.

Calculate the length of BD.

α

X µδ

α+δα

λδ

Y
l

α+δα/2

Fig. 6.10
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Solution (Fig. 6.11):

In ∆ABD, we have

∠ BAD = θ = 180° – (α  + γ)

= 180° – (44°40′59″  + 63°19′28″)
= 71°59′33″ .

In ∆BCD, we have

∠ BCD = φ = 180° – (β + δ)

     = 180° – (67°43′55″ + 29°38′50″)
     = 82°37′15″.

By sine rule in ∆ABD, we have

AB BD
sin sinγ θ

=

AB BD= sin

sin

γ
θ  …(a)

By sine rule in ∆BCD, we have

 
BC BD

sin sinδ φ
=

BC BD= sin
sin

δ
φ …(b)

By cosine rule in ∆ABC, we have

AC AB BC AB BC ABC2 2 2 2= + − cos …(c)

Substituting the values of AB and BC from (a) and (b), respectively, in (c), we get

 ABCBDBDBDBDAC cos
sin
sin

sin
sin

2
sin

sin

sin

sin
2

2
2

2

2
22

φ
δ

θ
γ

φ
δ

θ
γ ++=







++= ABCBD cos

sin
sin

sin
sin

2
sin

sin

sin

sin
2

2

2

2
2

φ
δ

θ
γ

φ
δ

θ
γ

( ) 

















′′′+′′′
′′′
′′′

×

′′′
′′′

+
′′′
′′′

+
′′′
′′′

=
553467950444cos

517382sin

058329sin

339571sin

829163sin
2

517382sin

058329sin

339571sin

829163sin

40.1116
2

2

2

2

22

��

�

�

�

�

�

�

�

�

BD

   489025.12 ×= BD

α

δ

θ
φ

A

B

C

y

β

D

Fig. 6.11
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489025.1

40.1116 2

=BD  = 914.89 m.

Example 6.2. Compute the value of R for the desired maximum probable error of 1 in 25000
if the probable error of direction measurement is 1.20″.

Solution:

L being the probable error that would occur in the sixth place of logarithm of any side, we
have

log . × .1 1
25000

17 37 10 6±��
�
� = −

The sixth place in log of 




 ±

25000

1
1 = 17.

Thus      L = 17.

It is given that

    d = 1.20″.

From Eq. (6.1), we have    RdL 22

3

4= .

Therefore    

2

4

3





=

d

L
R

2

20.1

17

4

3





= = 151.

Example 6.3. Compute the value of 
D

CD −
for the triangulation figures shown in Fig. 6.13.

The broken lines indicate that the observation has been taken in only one direction.

Fig. 6.12

Solution (Fig. 6.12):

Figure (a) n = 6

n′ = 6

 S = 4

S ′ = 4

D = 2(n – 1) = ( )162 −× = 10
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C = ( ) ( )321 +−++′−′ SnSn

( ) ( )3426146 +×−++−=

= 3 + 1 = 4.

Therefore
D C

D
− = − =10 4

10
0 6.

Figure (b)  n = 8

n′ = 8

 S = 5

S ′ = 5

D = 2(n – 1)

= ( )182 −× = 14

C = ( ) ( )321 +−++′−′ SnSn

( ) ( )3528158 +×−++−=

= 4 + 1 = 5.

Therefore
D C

D
− = − =14 5

14
0 64.

Figure (c)

n = 20

n′ = 18

 S = 10

S′ = 10

D = 2(n – 1) – 2

= ( )1202 −×  – 2 = 36

C = ( ) ( )321 +−++′−′ SnSn

( ) ( )31022011018 +×−++−=

= 9 + 3 = 12.

Therefore
D C

D
− = −36 12

36

= 0.67.

Example 6.4. Compute the strength of figure ABCD (Fig. 6.13) for all the routes by which
the length CD can be determined from the known side AB assuming that all the stations have been
occupied, and find the strongest route.
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Solution (Fig. 6:13):

There are four routes by which the length of CD can be computed. These are

Route-1: ∆ABD and ∆BDC having common side BD

Route-2: ∆ABD and ∆ADC having common side AD

Route-3: ∆ABC and ∆ADC having common side AC

Route-4: ∆ABC and ∆BCD having common side BC.

The relative strength of figures can be computed quantitatively
in terms of the factor R given by Eq. (6.2). By means of computed
values of R alternative routes of computations can be compared, and
hence, the best or strongest route can be selected. As strength of a figure is approximately equal
to the strength of the strongest chain, the lowest value of R is a measure of the strongest route.

For a braced quadrilateral, the value of 
D

CD −
 has been calculated in Example 6.3, and

therefore

D

CD −
= 0.60.

For each route the value of ( )22
BBAA δδδδ ++∑  is calculated as below.

Let ∆ = ( )22
BBAA δδδδ ++∑ .

Route-1:

In ∆ABD, the distance angles for the sides AB and BD are 28° and
(54° + 46° = 100°), respectively.

   28δ = sixth place of decimal of log sin log sin .28 1 28 3 96° + ′′ − ° =	 
 	 


   100δ = sixth place of decimal of log sin log sin .100 1 100 0 37° + ′′ − ° = −	 
 	 

2

10010028
2
28 δδδδ ++  = ( ) 22 37.037.096.396.3 +−×+  = 14.34 −~  14.

In ∆BDC the distance angles for the sides BD and CD are (70° + 42° = 112°) and 40°,
respectively.

   112δ = Sixth place of decimal of log sin log sin .112 1 112 0 85° + ′′ − ° = −	 
 	 


   40δ = Sixth place of decimal of log sin log sin .40 1 40 2 51° + ′′ − ° = −	 
 	 

2
4040112

2
112 δδδδ ++  = ( ) 22 51.251.285.085.0 +×−+ = 5.

Therefore                ∆1 = 14 + 5 = 19.

In the similar manner ∆2, ∆3, and ∆4 for the remaining routes are calculated.

A

B

C

54°

D

52°

42°

46°

70°

28°

28°
40°

 Fig. 6.13
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Route-2:

In ∆ABD the distance angles for the sides AB and AD are 28° and 52°, respectively.

28δ = 3.96

52δ = 1.65

In ∆ADC the distance angles for the sides AD and CD are 70°and 54°, respectively.

70δ = 0.77

54δ = 1.53

∆2 = 29.

Route-3:

In ∆ABC the distance angles for the sides AB and AC are 42° and (52° + 40° = 92°),
respectively.

42δ = 2.34

92δ = – 0.07

In ∆ADC the distance angles for the sides AC and CD are (28° + 28° = 56°) and 54°,
respectively.

56δ = 1.42

54δ = 1.53

 ∆3 = 12.

Route-4:

In ∆ABC the distance angles for the sides AB and BC are 42° and 46°, respectively.

42δ = 2.34

46δ = 2.03

In ∆BCD the distance angles for the sides BC and CD are 28° and 40°, respectively.

28δ = 3.96

40δ = 2.51

∆4 = 46.

Thus R1 = 0.6 × ∆1 = 0.6 × 19 = 11

R2 = 0.6 × ∆2 = 0.6 × 29 = 17

R3 = 0.6 × ∆3 = 0.6 × 12 = 7

R4 = 0.6 × ∆4 = 0.6 × 46 = 28.

The route-3 has the minimum value of R = 7, therefore the strongest route.
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Example 6.5. In a triangulation survey, the altitudes of two stations A and B, 110 km apart,
are respectively 440 m and 725 m. The elevation of a peak P situated at 65 km from A has an
elevation of 410 m. Ascertain if A and B are intervisible, and if necessary, find by how much B
should be raised so that the line of sight nowhere be less than 3 m above the surface of ground.
Take earth’s mean radius as 6400 km and the mean coefficient of refraction as 0.07.

Solution (Fig.6:15):

The distance of visible horizon given by Eq. (6.4), is

 ( )m
R

D
h 21

2

2

−=

D Rh

m
2 2

1 2
=

−( )

   D
h=

−
2 6400

1 2 0 07 1000

×

( × . ) ×

    h85794.3=  kilometre

    = =3 85794 440 80 92. . km.

Therefore                    PT D A P0 0 0= −

                                 = 80.92 – 65 = 15.92 km.

         P P PT
0 1

0
2

3 85794
= ���

�
��.

       = ���
�
�� =15 92

3 85794
17 03

2
.

.
. m.

        TB A B A T0 0 0 0= −

= 110 – 80.92 = 29.08 km.

  B B TB
0 1

0
2

3 85794
= ���

�
��.

= ���
�
�� =29 08

3 85794
56 82

2
.

.
.  m.

  BB B B B B1 0 0 1= −

= 725 – 56.82 = 668.18 m.

A

B

B0

P

P
T

B2

B1
P1

P2

440 m

410 + 3 m

65 km D 110  km

725 m

A0

Fig. 6.15
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From similar ∆’s AP2P1 and ABB1, we get

00

1

00

12

BA

BB

PA

PP
=

00

100
12 BA

BBPA
PP =

110

18.66865×=  = 394.83 m.

Therefore 011202 PPPPPP −=

      = 394.83 + 17.03 = 411.86 m.

Since the line of sight has to be 3 m above the ground surface at P, the elevation of P may
be taken as 410 + 3 = 413 m, or PP0 = 413 m. The line of sight fails to clear P by PP2 = 413
– 411.86 = 1.14 m. Thus the amount of raising required at B is BB2.

From similar ∆’s APP2 and AB2B, we get

00

2

00

2

PA

PP

BA

BB
=

 
00

200
2 PA

PPBA
BB =

65

14.1110×=  = 1.93 m −~  2 m.

Example 6.6. Solve the Example 6.5 by Capt. McCaw’s method.

Solution (Fig.6:16):

A

A0

B

B0

P

P0

h 725 m

440 m

413 m

S + x
S − x

2S

Fig. 6.16

It is given that
2S = 110 km

  S = 55
2

110 = km
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and S + x = 65 km

  x = 65 – S

= 65 – 55 = 10 km.

From Capt. McCaw’s formula, we have

     ( ) ( ) ( ) ( )
R

m
xS

s

x
hhhhh ABAB 2

21
eccos

2

1

2

1 222 −−−−++= ξ

 = + + − − − −1
2

725 440 1
2

725 440 10
55

55 10 1 1 2 0 07
2 6400

10002 2× × × × × ( × . )
×

×	 
 	 
 � �

        = 582.5 + 25.909 – 196.523

  = 411.89 m.

Here h is same as P2P0 obtained in Example 6.5. The line of sight fails to clear the line of sight
by 413 – 411.89 = 1.11 m. The amount of raising BB2 required at B is calculated now in a similar
manner as in Example 6.5. Thus

65
11.1110×=  = 1.88 m ≈ 2 m.

Example 6.7: Two triangulation stations A and B, B being on the right of A, have cylindrical
signals of diameter 4 m and 3 m, respectively. The observations were made on A on the bright
portion and on B on the bright line, and the measured angle AOB at a station O was 44°15′32″.The
distances OA and OB were measured as 4015 m and 5635 m, respectively. The angle which the
sun makes with the lines joining the station O with A and B was 42°. Calculate the correct angle
AOB.

Solution (Fig.6:17):

Given that

D1 = 4015 m; D2 = 5635 m

r1 = 2 m; r2 = 1.5 m

θ1 = θ2 = 42° m

φ′ = 44°15′32″.
If the phase corrections for the signals A and B are

β1 and β2, respectively, the correct angle AOB

 φ = φ′ – β1 + β2

The observation for A was made on the bright portion, therefore the phase correction

β1 = 
206265

2
1

1

2r

D
cos θ seconds

   = °206265 2

4015
42
2

2×
cos

   = 89.55″.

Fig. 6.17

 
Sun 

O 

5635 m 

β1 β2 

A 

50
15

 m
 

φ 

φ′ 

θ 
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The observation for B was made on the bright line, therefore, the phase correction

β2 = 
206265

2
2

2

r

D
cos θ seconds

   = 
206265 1 5

5635
42
2

× .
cos °

   = 51.26″.
Thus the correct angle AOB

   = 44°15′32″ – 89.55″ + 51.26″
   = 44°14′53.71″ .

Example 6.8. The directions observed from a satellite station S, 70 m from a triangulation
station C, to the triangulation station A, B, and C are 0°00′00″ , 71°32′54″  and 301°16′15″ ,
respectively. The lengths of AB, and AC are 16.5 km and 25.0 km, respectively. Deduce the angle
ACB.

Solution (Fig.6.18):

Given that θ = 71°32′54″
ξ = 301°16′15″
a = AC = 16.5 km

b = BC = 25.0 km

d = SC = 70 m

γ = 360° – 301°16′15″ = 58°43 ′45″.
From Eq. (6.11), we have

βαθφ +−=

From Eq. (6.9), we have

γα sin206265
a

d=  seconds

  543458sin
10005.16

70
206265 ′′′

×
×= �

  = 747.94″ = 12 ′27.94″.
From Eq. (6.8), we have

     ( )γθβ += sin206265
b

d
 seconds

     )543458652371sin(
10000.25

70
206265 ′′′+′′′

×
×= ��β  seconds

 = 440.62″ = 7 ′20.62″.

B

A

C
S

α

β

φ γ

θ

ξ
Fig. 6.18
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Thus      26.20749.2721652371 ′′′+′′′−′′′= �φ

 = 71°27′′′′′48.68″″″″″.
Example 6.9. S is a satellite station to a triangulation station A at a distance of 12 m from A.

From S the following bearings were observed:

A = 0°00′00″
B = 143°36′20″
C = 238°24′48″
D = 307°18′54″

The lengths of lines AB, AC, and AD were measured and found to be 3190.32 m, 4085.15,
and 3108.60 m, respectively. Determine the directions of B, C, and D from A.

Solution (Fig.6.19):

If α1, α2, and α3 are the corrections to the observed directions, the required directions from
the stations A will be (θ1 + α1) for B, (θ2 + α2) for C, and (θ3 + α3) for D. Since the distances
SB, SC, and SD are quite large compared to the distance SA, the distances AB, AC, and AD,
respectively can be taken equal to them. The corrections can be computed from the following
relationship that is same as Eq. (6.9), i.e.,

α θ= 206265 d
a

sin seconds

4085.15 m

A

C

S

B

D

3108.60 m

3190.32 m

α3

α2

θ3

θ2

θ1

α1

12 m

Fig. 6.19

Thus α1 206265 12
3190 32

143 36 20= ° ′ ′′×
.

sin

   = 460.34″  = 7′40.34″

      α2 206265 12
4085 15

238 24 48= ° ′ ′′×
.

sin

   = – 516.13″ = – 8 ′36.13″

α3 206265 12
3108 60

307 18 54= ° ′ ′′×
.

sin

   = – 633.24″ = –10 ′33.24″ .
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Therefore, the directions from A to

B = 143°36′20″ + 7 ′40.34″   = 143°44′′′′′00.34″″″″″
C = 238°24′48″ – 8 ′36.13″  = 238°16′′′′′11.87″″″″″
D = 307°18′54″ – 10 ′33.24″  = 307°08′′′′′20.76″″″″″.

Example 6.10. In a triangulation survey, the station C could not be occupied in a triangle ABC,
and a satellite station S was established north of C. The angles as given in Table 6.1 were measured
at S using a theodolite.

Table 6.1

Pointing on Horizontal circle reading

A 14°43′27″
B 74°30′35″
C 227°18′12″

Approximate lengths of AC and BC were found by estimation as 17495 m and 13672 m,
respectively, and the angle ACB was deduced to be 59°44′53″. Calculate the distance of S from C.

Solution (Fig.6.20):

∠ ASB = Angle to B – angle to A

= 74°30′35″ – 14°43 ′27″ = 59°47 ′08″
∠ BSC = Angle to C – angle to B

= 227°18′12″ – 74°30 ′35″ = 152°47 ′37″
∠ ASC = 360° – (∠ ASB + ∠ BSC)

= 360° – (59°47′08″  + 152°47′37″) = 147°25 ′15″.
By sine rule in ∆’s ASC and BCS, we get

αsinsin

d

ASC

AC =    or  sin
sinα = d ASC

AC

and βsinsin

d

BSC

BC =    or  sin
sin

.β = d BSC

BC

For small angles, we can take

206265
1sinsin

ααα
′′

=′′′′=

                    
206265

1sinsin
βββ

′′
=′′′′= .

Therefore d
d

348.6
17495

5152147sin206265 =
′′′××=′′

�

α
Fig. 6.20

13672 m

A

α

C

S

B

β

17495 m

θ

φ

d
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′′ = ° ′ ′′ =β 206265 152 47 37

13672
6 898

× × sin
. .

d
d

The angle φ is given by Eq. (6.12)

βαφ −−∠= ASB

  = 59°47′08″  – (6.348 + 6.898) d

  = 59°47′08″ – 13.246 d.

But the value of φ is given as 59°44′53″. Therefore

    59°44′53″ = 59°47 ′08″ – 13.246d

d = 
624.13

354459807459
′′

′′′−′′′ ��

 = ( )3600246.13

7480556.597855556.59 −
 = 10.192 m.

Example 6.11. Determine the coordinates of a point R from the following data:

Coordinates of P = E1200 m, N1200 m

Coordinates of Q = E400 m, N1000 m

Bearing of PR = 62°13′40″
Bearing of QR = 38°46′25″ .

Solution (Fig. 6.21):

Let the coordinates of R be (X, Y), and the bearings of PR and QR be α and β, respectively.

            α = 38°46′25″, β = 62°13′40″

αtan =
1200

1200

−
−

Y

X

βtan =
1000

400

−
−

Y

X

or αα tan1200tan −Y = 1200−X

αβ tan1000tan −Y = 400−X   …(a)

or X = 1200tan1200tan +− ααY = 400tan1000tan +− ββY

Y =
βα

βα
tantan

800tan1000tan1200

−
−−

. …(b)

Substituting the values of α and β in (b), we get

Y = 1583.54 m

R (X, Y)

N

62°13′40″ 38°46′25″

Q (400, 1000) P (1200, 1200)

N

Fig. 6.21
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and from (a), we get

X = 1508.08 m.

Example 6.12. In a triangulation survey it was required to establish a point P by taking
observations from three triangulation stations A, B, and C. The observations made are as under:

∠ PAB = 65°27′48″
∠ PBA = 72°45′12″
∠ PBC = 67°33′24″
∠ PCB = 78°14′55″

      AB = 2600 m

      BC = 2288 m.

Determine three distances AP, BP, and CP to fix P.

Solution (Fig. 6.6a):

In the quadrilateral ABCP, we have

PCBPBCPBAPAB ∠+∠+∠+∠++ φθ = 360°

or        θ = 360° – (65°27′48″ + 72°45 ′12″ +  67°33 ′24″ +  78°14 ′55″) – φ
      = 75°58′41″ – φ
      = ε – φ …(a)

where ε is = 75°58′41″.
From Eq. (6.14), we have

φsin =
BC PCB

AB PAB

sin sin

sin

θ

= 
2288 78 14 55

2600 65 27 48

× sin

× sin
sin

° ′ ′′
° ′ ′′

θ

= 0.94708 sin θ. …(b)

Substituting the value of θ from (a) in (b), we get

sin φ = 0 94708. sin ( )ε φ−

= 0 94708. (sin cos cos sin )ε φ ε φ−

      1 = 0 94708. (sin cot cos )ε φ ε−

φcot = cot
. sin

ε
ε

+ 1
0 94708

Substituting the value of ε, we get

cot φ = 1.33804

φ = 36°46′23″ .
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Therefore θ = 75°58′41″ – 36°46 ′23″
= 39°12′18″ .

From ∆APB, we get

PBA

AP

sin
= θsin

AB
= 

PBA

BP

sin

AP =
812139sin

215472sin2600

′′′

′′′×
�

�

 = 3928.35 m

BP =
812139sin

847265sin2600

′′′

′′′×
�

�

 = 3741.85 m.

From ∆BPC, we get

PBC

CP

sin
= φsin

BC
= 

PCB

BP

sin

CP =
326436sin

423367sin2288

′′′

′′′×
�

�

 = 3532.47 m

BP =
812139sin

554178sin2288

′′′

′′′×
�

�

 = 3741.85 m.

The two values of BP being same, give a check on the computations.

Example 6.13. To establish a point P, three triangulation stations A, B, and C were observed
from P with the following results:

∠ APB = 39°12′18″
∠ BPC = 36°46′23″
∠ ABC = 140°18′36″

      AB = 2600 m

      BC = 2288 m.

Compute the lengths of the lines PA, PB, and PC to establish P by the method of resection.

Solution (Fig. 6.6b):

It is given that

θ = 39°12′18″
β = 140°18′36″
φ = 36°46′23″
a = 2600 m

b = 2288 m.
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In the quadrilateral ABCP, we have

α  + β  + γ  + φθ + = 360°

α  + γ = 360° – ( )β θ φ+ +
= 360° – (140°18′36″ + 39°12 ′18″ + 36°46 ′23″)
= 143°42′43″

              
1
2

α γ+	 
 = 71°51′21.5″. …(a)

From Eq. (6.14), we get

   α
γ

sin

sin
= θ

φ
sin

sin

b

a
…(b)

∆tan = α
γ

sin

sin
…(c)

Adding unity to both sides, we have

α
γ

sin

sin
+ 1 = ∆tan + 1

α
γα

sin

sinsin +
= �45tantan +∆ …(d)

Subtracting both sides of (c) from unity, we get

      α
γ

sin

sin
1− = ∆− tan1

      α
γα

sin

sinsin −
= ∆− tan45tan1 � …(e)

Dividing (e) by (d), we have

sin sin

sin sin

α γ
α γ

−
+

=
1 45

45
− °

+ °
tan tan

tan tan
∆

∆

( ) ( )

( ) ( )γαγα

γαγα

−+

−+

2

1
cos

2

1
sin2

2

1
sin

2

1
cos2

=



 ∆+�45tan

1

( ) ( )γαγα −+
2
1

tan
2
1

cot = 




 ∆+�45cot
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( )γα −
2

1
tan = ( )γα +


 ∆+

2

1
tan45cot �

…(f)

From (b) and (c), we get

            ∆tan =
812139sin2288

326436sin2600

′′′×

′′′×
�

�

 = 1.076228

    ∆ = 47°06′09.54″.
Substituting the value of ∆ and ½(α + β) from (a) in (f), we get

tan 1
2

α γ−	 
 = 5.211571tan45.9604745cot ′′′




 ′′′+ ���

= – 0.112037

      ( )γα −
2

1
= – 6°23′33.33″.

Thus ( )γα +
2

1
 + ( )γα −

2

1
= α = 71°51′21.5″ – 6°23′33.33″

= 65°27′48.17″

and ( )γα +
2
1

 – ( )γα −
2
1

= γ = 71°51′21.5″ + 6°23′33.33″

= 78°14′54.83″.
In ∆ABP, we have

∠ ABP + α + θ = 180°

             ∠ ABP = 180° – (α  + θ)

= 180° – (65°27′48.17″ + 39°12′18″)
= 75°19′53.83″.

In ∆CBP, we have

∠ CBP + γ + φ = 180°

             ∠ CBP = 180° – (γ  + φ)

= 180° – (78°14′54.83″ +36°46′23″)
= 64°58′42.17″.

Check: ∠ ABC = ∠ ABP + ∠ CBP = 75°19′53.83″ + 64°58 ′42.17″
= 140°18′36″        (Okay).

Now from ∆’s ABP and CBP, we have

ABP

x

sin
= θsin

a
= αsin

y
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           x = θsin

sin ABPa

=
812139sin

38.539175sin2600

′′′

′′′×
�

�

 = 3979.23 m.

           y =
θ
α

sin

sina

=
812139sin

71.487265sin2600

′′′

′′′×
�

�

 = 3741.85 m.

    
γsin

y
=

φsin

b
= 

CBP

z

sin

           y =
φ
γ

sin

sinb

=
326436sin

38.544178sin2288

′′′

′′′×
�

�

 = 3741.85 m.

           z =
φsin

sin CBPb

=
326436sin

71.428564sin2288

′′′

′′′×
�

�

 = 3463.26 m.

Example 6.14. To determine the sea- level distance between two stations A and B, A being
lower than B, the measured slope distance between A and B, and corrected for meteorological
conditions, is 32015.65 m. The measured vertical angles at A and B are + 3°40′15″ and –3°51 ′32″,
respectively. The elevation of point A is 410.22 m. Determine the sea level distance between the
points. Take mean earth’s radius as 6370 m.

Solution (Fig. 6.7):

From Eq. (6.23), we get

            ∠ ′BAB = ( )βα +
2

1

= 




 ′′′+′′′× 2315351413

2
1 ��

= 3°45′53.5″.



��� ������	
�

From Eqs. (6.24) and (6.25), we get

                         
R

BABAB

2

'cos

22
sin ≈≈ θθ

  radians

= 32015 65 30 45 53 5

2 6370 10
206265

3

. × cos .

× ×
×

° ′ ′′  seconds

= 517.23″ = 8 ′37.23″.

and    ∠ AB′B =
2

90
θ+�

= 90 + 8′37.23″ = 90°08 ′37.23″

∠ ABB′ = ( )
22

1
90

θβα −+−�

= 32.3785.5354390 ′′′−′′′− ��  = 86°05′29.27″.
From Eq. (6.26), we have

   AB′ =



 +

′

290sin

sin

θ�

BABAB

=
32.378090sin

72.295086sin65.32015

′′′

′′′×
�

�

= 31941.286 m.
From Eq. (6.27), we have

   MN = 




 −′

R

h
BA A1

= 






×
−×

10006370

22.410
1286.31941

= 31939.229 m.
From Eq. (6.29), the sea level distance

S = 2

3

24R

MN
MN +

= 62

3

10637024

229.31939
229.31939

××
+

= 31939.262 m.
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Example 6.15. Solve the Example 6.14 when the elevations of stations A and B are respectively
1799.19 m and 4782.74 m, and the vertical angles not observed.

Solution (Fig. 6.8):

The difference in elevations

∆h = 4782.74 – 1799.19

= 2983.55 m.

From Eq. (6.30), we have

         BA ′ ≈
AB

h
AB

2

2∆+−

 = 
65.320152

55.2983
65.32015

2

×
−  = 31876.631 m.

From Eq. (6.26), we have

R

BA

22

′
≈θ

  radians

=
100063702

206265631.31876

××
×

  radians

= 516.096″ = 8 ′36.09″
From Eq. (6.31), the more accurate value of AB′

= 




 ∆+∆−
AB

h
hAB

22
sin

2θ

= 





×

+′′′×−
65.320152

55.2983
90.368sin55.298365.32015

2

= 31869.166 m.

From Eq. (6.27), we have

         MN = AB h
R
A′ −��
�
�1

= 






×
−×

3106370

19.1799
1166.31869

= 31854.239 m.

From Eq. (6.29), the sea level distance

S =
2

3

24R

MN
MN +
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= 62

3

10637024

239.31854
239.31854

××
+

= 31854.272 m.

Example 6.16. In a geodetic survey, the mean angles of a triangle ABC having equal weights,
are as below:

∠ A = 62°24′18.4″
∠ B = 64°56′09.9″
∠ C = 52°39′34.4″ .

Side AB has length of 34606.394 m. Estimate the corrected values of the three angles. Take
the radius of the earth to be 6383.393 km.

Solution (Fig. 6.9):

In order to estimate the spherical excess using Eq. (6.32), it is necessary to estimate the area
of the triangle ABC. For this purpose it is sufficiently accurate to assume the triangle to be as a
plane triangle. Thus the sum of the three angles should be equal to 180°. To satisfy this condition
the value (ΣObserved angles – 180°)/3 must be deducted from each angle.

                                 
3
1

(ΣObserved angles − 180°)

=
3

1
× (62°24′18.4″  + 64°56′09.9″ + 52°39 ′34.4″ – 180°)

= 0.9″ .

Thus the plane triangles are

A = 62°24′18.4″ – 0.9″ = 62°24 ′17.5″
B = 64°56′09.9″ – 0.9″ = 64°56 ′09.0″
C = 52°39′34.4″ – 0.9″ = 52°39 ′33.5″

     Sum = 180°00′00″.
By sine rule in ∆ABC, we get

                           
A

BC

C

AB

sinsin
=

                             
C

AAB
BC

sin

sin=

=
5.339352sin

5.174262sin394.34606

′′′

′′′×
�

�

 = 38576.121 m.
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Area of the ∆ABC

A0 = BBCAB sin
2

1

= 906564sin121.38576394.34606
2
1 ′′′××× �

= 604.64 km2.

From Eq. (6.32), we have

ε = 
1sin2

0

′′R

A

= 206265
393.6383

64.604
2

×  = 3.06″.

Thus the theoretical sum of the spherical angles

= 180° + ε
= 180° + 3.06″
= 180°00′3.06″ .

The sum of the observed angles

= 180° + 3 × 0.9″
= 180°00′02.7″ .

Therefore, the triangular error

= 180°00′02.7″ – 180°00 ′3.06″   = – 0.36″ .

Since the angles were measured with equal reliability, the correction to each angle will be
+ 0.36″/3 = + 0.12″.

Therefore the corrected angles are

A = 62°24′18.4″ + 0.12″ = 62°24 ′18.52″
B = 64°56′09.9″ + 0.12″ = 64°56 ′10.02″
C = 52°39′34.4″ + 0.12″ = 52°39 ′34.52″

Sum = 180°00′00″ .

OBJECTIVE TYPE QUESTIONS

1. Control for survey can be provided by

(a) Triangulation.

(b) Trilateration.

(c) Traversing.

(d) All of the above.



��� ������	
�

2. The distance of visible horizon for a point having an elevation of 637.5 m is

(a) 6.735 km.

(b) 67.35 km.

(c) 10 km.

(d) 100 km.

3. A strongest route in a triangulation net has

(a) minimum value of R.

(b) maximum value of R.

(c) minimum value of R .

(d) maximum value of R .

where R D C
D

A A B B= − + +Σ δ δ δ δ2 2
 �

4. In a braced quadrilateral, the position of unknown corner points can be determined by

(a) a single route only.

(b) two alternative routes only.

(c) three alternative routes only.

(d) four alternative routes only.

5. Phase correction is required when the observations are made on

(a) Pole signals.

(b) Cylindrical signals.

(c) Pole and brush signals.

(d) Beacons.

6. The errors in horizontal angle measurements due to eccentricity of signal, is eliminated completely by

(a) the method of repetition.

(b) the method of reiteration.

(c) both the above method.

(d) none of the above.

7. The problem of reduction to center is solved by

(a) taking a long base line.

(b) removing the error due to phase.

(c) taking a satellite station.

(d) taking well-conditioned triangles.

8. A satellite station is a station

(a) close to the main triangulation station that cannot be occupied for making observations.

(b) also known as an intersected point.

(c) also known as a resected point.

(d) which falls on the circumference of the circle passing through three main triangulation
stations.
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9. The horizontal refraction is minimum between

(a) 6 AM to 9 AM.

(b) 10 AM to 2 PM.

(c) 8 AM to 12 Noon.

(d) 2 PM to 4 PM.

10. The vertical refraction is minimum between

(a) 6 AM to 9 AM.

(b) 10 AM to 2 PM.

(c) 8 AM to 12 Noon.

(d) 2 PM to 4 PM.

11. A grazing line of sight is that line which

(a) joins two stations which are not intervisible.

(b) is at least 3 m above the intervening ground between two stations.

(c) touches the intervening ground between two stations.

(d) joins the signals at two stations kept on towers.

12. Sum of the three angles of spherical triangle

(a) is always less than 180°.

(b) is always more than 180°.

(c) is  less or more than 180° depending the location of the triangle on spheroid.

(d) is equal to 180°.

ANSWERS

1. (d) 2. (d) 3. (a) 4. (d) 5. (b) 6. (d)

7. (c) 8. (a) 9. (a) 10. (b) 11. (c) 12. (b)
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7.1 CURVES

In highways, railways, or canals the curve are provided for smooth or gradual change in direction
due the nature of terrain, cultural features, or other unavoidable reasons. In highway practice, it is
recommended to provide curves deliberately on straight route to break the monotony in driving on
long straight route to avoid accidents.

The horizontal curve may be a simple circular curve or a compound curve. For a smooth
transition between straight and a curve, a transition or easement curve is provided. The vertical
curves are used to provide a smooth change in direction taking place in the vertical plane due to
change of grade.

7.2 CIRCULAR CURVES

A simple circular curve shown in Fig. 7.1, consists of simple arc of a circle of radius R connecting
two straights AI and IB at tangent points T1 called the point of commencement (P.C.) and T2 called
the point of tangency (P.T.), intersecting at I, called the point of intersection (P.I.), having a deflection
angle ∆ or angle of intersection φ. The distance E of the midpoint of the curve from I is called the
external distance. The arc length from T1 to T2 is the length of curve, and the chord T1T2 is called
the long chord. The distance M between the midpoints of the curve and the long chord, is called the
mid-ordinate. The distance T1I which is equal to the distance IT2, is called the tangent length. The
tangent AI is called the back tangent and the tangent IB is the forward tangent.

C

I

P

O

R R

D
T1 T2

A B

P″
P′

P1

x

E

M

y

b
a

L

∆

φ

δ

δ

2

∆
2

∆
2δ

Fig. 7.1
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Formula to calculate the various elements of a circular curve for use in design and setting
out, are as under.

Tangent length (T) =
2

tan
∆

R ...(7.1)

Length of curve (l) =
180

∆Rπ
…(7.2)

Long chord (L) =
2

sin2
∆

R ...(7.3)

External distance (E) = 




 −∆

1
2

secR ...(7.4)

Mid-ordinate (M) = 




 ∆−

2
cos1R ...(7.5)

Chainage of T1 = Chainage of P.I. – T ...(7.6)

Chainage of T2 = Chainage of T1 + l. ...(7.7)

Setting out of Circular Curve

There are various methods for setting out circular curves. Some of them are:

Perpendicular Offsets from Tangent (Fig. 7.1)

y = ( )22 xRR −− (exact) ...(7.8)

=
R

x

2

2

(approximate) ...(7.9)

where x = the measured distance from T1 along the tangent.

Radial Offsets (Fig. 7.1)

r = ( ) 222 RxR −+ (exact) ...(7.10)

=
R

x

2

2

(approximate) ...(7.11)

where x = the measured distance from T1 along the tangent.

Offsets from Long Chord (Fig. 7.1)

b = ( ) 









−−−

2
222

4

L
RaR ...(7.12)

where a = the measured distance from D along the long chord.



��� ������	
�

Offsets from Chords Produced (Fig. 7.2)

Offset from tangent

a1a =
R

aT

2

2
1 ...(7.13)

Offset from chords produced

b1b =
( )

R

abaTab

2
1 +

...(7.14)

Rankin’s Method or Deflection Angle Method

Tangential angle nδ =
R

cn9.1718  minutes ...(7.15)

Deflection angles n∆ = nn δ+∆ −1 ...(7.16)

7.3 COMPOUND CURVES

A compound curve (Fig. 7.3) has two or more circular curves contained between the two main
straights or tangents. The individual curves meet tangentially at their junction point. Smooth driving
characteristics require that the larger radius be more than 1 times larger than the smaller radius.

The elements of a compound curve shown in Fig. 7.3 are as below:

Tangent lengths

ts =
2

tan S
SR

∆
...(7.17)

tL =
2

tan L
LR

∆
...(7.18)

Ts = ( ) S
L

LS ttt +
∆
∆+

sin
sin

...(7.19)

TL = ( ) L
S

LS ttt +
∆

∆+
sin

sin
...(7.20)

where ∆ = ∆S + ∆L.

Lengths of curves

ls =
180

SSR ∆π
...(7.21)

lL =
180

LLR ∆π
...(7.22)

l = lS + lL ...(7.23)

O

R

T1

δ1=∆1 a

ba1

b1

c1

c2∆2

δ2

2δ1

2δ2

Fig. 7.2
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= ( )LLSS RR ∆+∆
180
π

...(7.24)

(iii)  Chainages

        Chainage of T1 = Chainage of P.I. – TS ...(7.25)

        Chainage of T3 = Chainage of T1 + lS ...(7.26)

        Chainage of T2 = Chainage of T3 + lL ...(7.28)

7.4 REVERSE CURVES

A reverse curve is one in which two circular curves of same or different radii have their centre
of curvature on the opposite sides of the common tangent (Fig. 7.4).Two straights to which a
reverse curve connects may be parallel or non-parallel.

We have the following cases:

Case-1: Non-parallel straights when R1 = R2 = R, and ∆2 > ∆1 (∆ = ∆2 – ∆1) given ∆1, ∆2,
d, and chainage of I

RS

TS

T1

OS

OL

RL

T3

T2

lS lL

I1

I

I2

TL

tS

tL

∆=∆S+∆L

∆L

∆S

Fig.7.3

R =

2
tan

2
tan 21 ∆

+
∆

d
...(7.29)

where d = the length of the common tangent.

Chainage of T1 = Chainage of P.I. – 






∆
∆

+∆
sin

sin

2
tan 2dR ..(7.30)

Chainage of T3 = Chainage of T1 + 
180

1∆Rπ
...(7.31)
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Chainage of T2 = Chainage of T3 + 
180

2∆Rπ
...(7.32)

R1

T1

∆

O1

O2

R2

T3

T2

I1
I2

T1

T2

I

I1

I2
δ1

δ2

∆1
∆2

Fig. 7.4

Case-2: Non-parallel straights when R1 = R2 = R, given δ1, δ2, and L

R =
L

sin cos sinδ θ δ1 22+ +
...(7.33)

where θ = sin
cos cos− +�
��

�
��

1 1 2

2

δ δ

∆1 = δ1 + (90° – θ)

∆2 = δ2 + (90° – θ).

Case-3: Non-parallel straights when R1 = R2, given δ1, δ2, L and R1 (or R2)

R2 =





 −+

−

2
sin4sin2

sin2

212
12

11
2

δδδ

δ

RL

LRL
...(7.35)

Case-4: Parallel straights when ∆1 = ∆2, given R1, R2,
and ∆1 (=∆2) (Fig. 7.5)

D = 2
2

1 2
2 1R R+� � sin ∆

...(7.36)

L = ( )[ ]212 RRD + ...(7.37)

H = R R1 2 1+� � sin ∆ ...(7.38)

R1

T1

O1

O2

R2

T3

T2

H

∆1

∆2

D

Fig. 7.5
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7.5 TRANSITION CURVES

Transition curves permit gradual change of direction from straight to curve and vice-versa, and at
the same time gradual introduction of cant or superelevation (raising of the outer edge over the
inner). Transition curve is also required to be introduces between two circular curves of different
radii. The radius of transition curve at its junction with the straight is infinity, i.e., that of the
straight, and at the junction with the circular curve that of the circular curve (Fig. 7.6).

A clothoid is a curve whose radius decreases linearly from infinity to zero. It fulfills the
condition of an ideal transition curve, i.e.,

rl = constant = RL = K ...(7.39)

For a transition curve, we have

Deflection angle of curve = φ1 = 
R

L

2
 radians ...(7.40)

Deflection angle of a specific chord =
RL

l

π

21800
 minutes ...(7.41)

δn =  
R

L

π
1800

 minutes ...(7.42)

=
3
1φ

 radians (when φ1 is small) ...(7.43)

I

l

T1

Radius = ∞

Radius = r

Radius =R

1T ′

S/2 θ

δ

Circular
curve

δn

φ1

x

S

φ1

y

L/2
L

Transition
curve

Straight

Fig. 7.6

Offsets from tangent

y ≈ l, x =
RL

l

6

3

(Cubic spiral) ...(7.44)
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=
RL

y

6

3

 (Cubic parabola) ...(7.45)

Shift of circular curve S =
R

L

24

2

...(7.46)

Tangent length IT1 = ( )
22

tan
L

SR ++ θ
...(7.47)

Rate of Change of Radial Acceleration

The centrifugal force P acting on a vehicle moving at a velocity of V on a curve shown in Fig.
7.7, having weight W is given by

P = 
gR

WV 2

...(7.48)

The ratio 
W

P
= 

gR

V 2

 is known as the centrifugal ratio. By lifting the outer edge of the road

or rail, the resultant can be made to act perpendicular to the running surface. In practice to avoid
large superelevations, for the amount by which the outer edge is raised, an allowance (fB) for

friction is made. In the case of transition curve, radial acceleration given by expression
R

V 2

, changes

as the vehicle moves along the curve due to change in radius. For a constant velocity v the rate
of change of radial acceleration (assumed uniform) is

α =
vL

Rv

/

/2

=
RL

v3

...(7.49)

where v is in m/s.

7.6 VERTICAL CURVES

Vertical curves are introduced at the intersection of two gradients either as summit curves
(Fig. 7.8a), or sag curves (Fig. 7.8b).

The requirement of a vertical curve is that it should provide a constant rate of change of grade,
and a parabola fulfills this requirement. As shown in Fig. 7.9, for flat gradients it is normal to
assume the length of curve (2L) equal to the length along the tangents the length of the long chord
AB its horizontal projection.

Reaction = (P sin α + W cos α)

α

(P cos α − W sin α)

fB

W
Resultant

P = WV2/gR

Fig. 7.7
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(+)

(−)

(+)

(+)

(−)

(−)

(a)

(+)

(−) (+)

(+)
(−)(−)

(b)

Fig. 7.8

Tangent correction h = kN 2 ...(7.50)
where

k =
n

ee

4
21 −

...(7.51)

    N = the number of chords counted from A (total length l = 2n),
    n = the number of chords of length l on each side of apex of the curve, and
e1, e2 = the rise and fall per chord length of l corresponding to +g1 and –g2, respectively.
Chainage of A = Chainage of apex C – nl

Chainage of B = Chainage of apex C + nl

Elevation of A = Elevation of apex C �  ne1   (take – ive when e1 + ive and vice-versa)
Elevation of B = Elevation of apex C  ±  ne2   (take  + ive when e2  –ive and vice-versa)
Elevation of tangent at any point (n′) = Elevation of A + n′e1

Elevation of corresponding point on curve
= Elevation of tangent + tangent correction (algebraically)

For the positive value of K, the tangent correction is negative, and vice-versa.
nth chord gradient = e1 – (2n – 1) k ...(7.52)

Elevation of nth point on curve = Elevation of (n – 1)th point + nth chord gradient

+g1%
−g2%

A

g

100

P

C

B

(g1 − g2)/100 radians

h

L L

Fig. 7.9
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Example 7.1. The chainage of the intersection point of two straights is 1060 m, and the angle
of intersection is 120°. If radius of a circular curve to be set out is 570 m, and peg interval is 30
m, determine the tangent length, the length of the curve, the chainage at the beginning and end of
the curve, the length of the long chord, the lengths of the sub-chords, and the total number of
chords.

Solution (Fig. 7.10):

I

T1
T2

A

B
.P(24+00)

(24+10.91 m)
(44+00)

(43+00)
(26+00)

.
.

(25+00) 30 m
2

1
20

19
.

.
7.81 m = cl

(44+7.81 m)

L

∆

T

10.01 m

19.09 m = cf

φ

Fig. 7.10

Deflection angle ∆ = 180° – φ
= 180° – 120° = 60°

 
2
∆

= 30°

(i)  Tangent length T =
2

tan
∆

R

= 570 × tan 30° = 329.09 m

(ii) Length of curve l =
180

∆Rπ

=
180

60570××π
 = 596.90 m

(iii) Chainage of P.I. = 1060 m

= (35 × 30 + 10) m

= 35 Full chain + 10 m

= 35 + 10
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T = 329.09 m = 10 + 29.09

l = 596.90 m = 19 + 26.90

Chainage of  T1 = Chainage of P.I. – T

= (35 + 10) – (10 + 29.09)

= 24 +10.91

 Chainage of T2 = Chainage of T1 + l

= (24 + 10.91) + (19 + 26.90) = 44 + 7.81

   Long chord L =
2

sin2
∆

R

= 2 × 570 × sin 30° = 570 m.

(iv) On the straight AI, the chainage of T1 is (24 + 10.91). Therefore a point P having chainage
(24 + 00) will be 10.91 m before T1 on AI. Since the peg interval is 30 m, the length of the normal
chord is 30 m. The first point 1 on the curve will be at a distance of 30 m from P having chainage
(25 + 00) and 30 – 10.91 = 19.09 m from T1. Thus the length of the first sub-chord

= 19.09 m.

Similarly, the chainage of T2 being (44 + 7.81) a point Q on the curve having chainage of
(44 + 00) will be at a distance of 7.81 m from T2. Thus the length of the last sub-chord

= 7.81 m.

To calculate the length of the sub-chords directly, the following procedure may be adopted.
If chainage of T1 is (F1 + m1) and the length of the normal chord C is m then

the length of the first sub-chord cf = m – m1

= 30 – 10.91 = 19.09 m.

If the chainage of T2 is (F2 + m2)

the chainage of the last sub-chord cl = m2 = 7.81 m.

(v) The total number of chords N = n + 2

where  n = Chainage of the last peg – chainage of the first peg

     = (44 + 00) – (25 + 00) = 19

Thus N = 19 + 2 = 21.

Example 7.2. Two straight roads meet at an angle of 130°. Calculate the necessary data for
setting out a circular curve of 15 chains radius between the roads by the perpendicular offsets
method. The length of one chain is 20 m.

Making the use of the following data, determine the coordinates of P.C., P.T., and apex of
the curve.

(a) Coordinates of a control point X = E 1200 m, N 1500 m

(b) Distance of X from P.I. = 100 m

(c) Bearing of line joining IX = 320°

(d) Angle between IX and back tangent = 90°.
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Solution (Fig. 7.11):

C

I

P

O

R

R

D
x

y

T1

T2

A

B
P′

Q

(P.C.)

(P.T.)

(P.I.)

C′

(E 1200 m, N 1500)

100 m

320° ∆

x′

φ

N

X •

2

∆

2

∆

Fig. 7.11

The given data are

R = 15 chains = 15 × 20 = 300 m

∆ = 180° – 130° = 50°

2

∆
= 25°

(a) The value of x′ to fix the apex C of the curve, is determined from ∆OQC

xC = QC = 
2

sin
∆

R

= 300 × sin 25°

= 126.79 m.

The maximum value of x being 126.79 m, the offsets are to be calculated for

x = 20, 40, 60, 80, 100, 120, and 126.79 m.

The perpendicular offsets are calculated from

y = ( )22 xRR −−

Thus y20 = 300 – ( )22 20300 −  = 0.67 m

y40 = 300 – ( )22 40300 −  = 2.68 m

y60 = 300 – ( )22 60300 −  = 6.06 m
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y80 = 300 – ( )22 80300 −  = 10.86 m

y100 = 300 – ( )22 100300 −  = 17.16 m

y120 = 300 – ( )22 120300 −  = 25.05 m

y126.79 = 300 – ( )22 79.126300 −  = 28.11 m

(b) Tangent length T = T1C = R tan 
2

∆

= 300 × tan 25° = 139.892 m

External distance E = IC = R sec ∆
2

1−�
�

�
�

= 300 × (sec 25° – 1) = 31.013 m

Bearing of IT1 = Bearing IX – ∠ XIT1

= 320° – 90° = 230°

      Bearing of IC = Bearing of IT1 – 
2

φ

= 230° – 
2

130�
 = 165°

      Bearing of XI = (180° + 320°) – 360° = 140°

Bearing of IT2 = Bearing of IT1 – φ
= 230° – 130° = 100°

Coordinates of I

Departure of XI = DXI = 100 × sin 140° = + 64.279 m

Latitude of XI = LXI = 100 × cos 140° = – 76.604 m

Easting of I = EI = Easting of X + DXI = 1200 + 64.279

= E 1264.279 m ≈ E 1264.28 m

Northing of I = NI = Northing of X + LXI = 1500 – 76.604

= N 1423.396 m ≈ N 1423.40 m

Coordinates of T1

Departure of IT1 = DIT1 = 139.892 × sin 230° = – 107.163 m

Latitude of IT1 = LIT1 = 139.892 × cos 230° = – 89.921 m

Easting of T1 = ET1 = Easting of I + DIT1 = 1264.279 – 107.163

= E 1157.116 m ≈ E 1157.12 m
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Northing of T1 = NT1 = Northing of I + LIT1 = 1423.396 – 89.921

= N 1333.475 m ≈ N 1333.48 m

Coordinates of C

Departure of IC = DIC = 31.013 × sin 165° = + 8.027 m

Latitude of IC = LIC = 31.013 × cos 165° = – 29.956 m

Easting of C = EC = Easting of I + DIC = 1264.279 + 8.027

= E 1272.306 m ≈ E 1272.31 m

Northing of C = NC = Northing of I + LIC = 1423.396 – 29.956

= N 1393.440 m ≈ N 1393.44 m

Coordinates of T2

Departure of IT2 = DIT2 = 139.892 × sin 100° = + 137.767 m

Latitude of IT2 = L IT2 = 139.892 × cos 100° = – 24.292 m

Easting of T2 = ET2 = Easting of I + DIT2 = 1264.279 + 137.767

= E 1402.046 m ≈ E 1402.05 m

Northing of T2 = NT2 = Northing of I + LIT2 = 1423.396 – 24.292

= N 1399.104 m ≈ N 1399.10 m

Checks: Long chord T1T2 = 2R sin 
2

∆

= 2 × 300 × sin 25° = 253.57 m

= ( ) ( )2
12

2
12 TTTT NNEE −+−

= ( ) ( )22 475.1333104.1399116.1157046.1402 −+−

= 22 629.65930.244 +  = 253.57 m

Mid-ordinate EC = R 1
2

−��
�
�cos ∆

= 300 ×  (1 – cos 25°) = 28.11 m

Easting of E = EE = ET1 + 
2

1
(ET2 – ET1)

= 1157.116 + 
2

1
 × 244.930 = 1279.581 m

Northing of N = NE = NT1 + 
2

1
(NT2 – NT1)

= 1333.475 + 
2

1
 × 65.629 = 1366.290 m
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EC = ( ) ( )22
CECE NNEE −+−

= ( . . ) ( . . )1279 581 1272 36 1366 290 1393 442 2− + −

= ( )22 151.27275.7 −+
= 28.11 m.  (Okay)

Example 7.3. A circular curve of 250 m radius is to be set out between two straights having
deflection angle of 45°20′ right, and chainage of the point of intersection as 112 + 10. Calculate
the necessary data for setting out the curve by the method of offsets from the chords produced
taking the length of one chain as 20 m.

Solution (Fig. 7.2):

∆ = 45°20′ = 45.333°

2

∆
= 22°40′

Tangent length T =
2

tan
∆

R

= 250 × tan 22°40′ = 104.41 m

    Length of curve l =
180

∆Rπ

= 
180

333.45250××π
 = 197.80 m

Chainage of T1 = Chainage of P.I. – T

= (112 + 10) – 104.41

= (112 × 20 + 10) – 104.41

= 2145.59 m = 107 + 5.59

       Chainage of T2 = Chainage of T1 + l

= 2145.59 + 197.80

= 2343.39 m = 117 + 3.39.

Length of first sub-chord cf = (107 + 20) – (107 + 5.59) = 14.41 m

Length of last sub-chord cl = (117 + 3.39) – (117 + 0) = 3.39 m

Number of normal chords N = 117 – 108 = 9

   Total number of chords n = 9 +2 = 11.

Offsets from chords produced

O1 =
R

c f

2

2

 = 
2502

41.14 2

×
 = 0.42 m
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O2 =
( )

R

CcC f

2

+

= 
( )

2502

2041.1420

×
+×

 = 1.38 m

O3 to O10 =
R

C 2

= 
250

202

 = 1.60 m

            O11 =
( )

R

Ccc ll

2

+

= 
( )

2502

2039.339.3

×
+×

 = 0.16 m.

The chainages of the points on the curve, chord length, and offsets are given in Table 7.1.

Table 7.1

Point Chainage Chord length Offset
Remarks

(m) (m)

0 107+5.59 14.41 – T1 (P.C.)

1 108+00 20 0.42

2 109+00 20 1.38

3 110+00 20 1.60

4 111+00 20 1.60

5 112+00 20 1.60

6 113+00 20 1.60

7 114+00 20 1.60

8 115+00 20 1.60

9 116+00 20 1.60

10 117+00 20 1.60

11 117+3.39 3.39 0.16 T2 (P.T.)

Example 7.4. A circular curve of radius of 17.5 chains deflecting right through 32°40′, is to
be set out between two straights having chainage of the point of intersection as (51 + 9.35).
Calculate the necessary data to set out the curve by the method of deflection angles. Also calculate
the necessary data indicating the use of the control points shown in Fig. 7.12. The length of one
chain is 20 m. Present the values of the deflection angles to be set out using a theodolite of least
count (a) 20″, and (b) 1″  in tabular form.
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I

P

(E 1062.11,
 N 1062.63)

X

α

T1
T2

∆4

Y

Z
(E 1161.26,
N 1025.74)

(E 941.57,
N 1041.44)

N

.78°36′30″

(E 1058.55,
 N 1045.04)

β

R = 17.5 chains

∆ = 32°40′
φ

Fig. 7.12

Solution (Fig. 7.12):

R = 17.5 × 20 = 350 m

∆ = 32°40′ = 32.667°

2

∆
= 16°20′

Tangent length T =
2

tan
∆

R

= 350 × tan 16°20′ = 102.57 m

   Length of curve l =
180

∆Rπ

=
180

667.32250××π
 = 199.55 m

                    Chainage of T1 = Chainage of P.I. – T

= (51 + 9.35) – 102.57

= (51 × 20 + 9.35) – 102.57

= 926.78 m = 46 + 6.78

       Chainage of T2 = Chainage of T1 + l

= 926.78 + 199.55 = 1126.33 m

= 56 + 6.33.

Length of first sub-chord cf = (46 + 20) – (46 + 6.78) = 13.22 m

Length of last sub-chord cl = (56 + 6.33) – (56 + 0) = 6.33 m

Number of normal chords N = 56 – 47 = 9

Total number of chords n = 9 + 2 = 11.
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Coordinates of T1 and T2

Bearing of IT1 = α = 180° + bearing of T1I

= 180° + 78°36′30″
= 258°36′30″

Bearing of IT2 = β = Bearing of IT1 – φ
= Bearing of IT1 – (180° – ∆)

= 258°36′30″ – (180° – 32°40 ′)
= 111°16′30″

Coordinates of T1

Easting of T1 = ET1 = Easting of I + T sin α
= 1058.55 + 102.57 × sin 258°36′30″
= E 958.00 m

Northing of T1 = NT1 = Northing of I + T cos α
= 1045.04 + 102.57 × cos 258°36′30″
= N 1024.78 m

Coordinates of T2

Easting of T2 = ET2 = Easting of I + T sin β
= 1058.55 + 102.57 × sin 111°16′30″
= E 1154.13 m

Northing of T2 = NT2 = Northing of I + T cos β
= 1045.04 + 102.57 × cos 111°16′30″
= N 1007.812 m.

Tangential angles

δ =
R

c
9.1718  minutes

1δ =
350

22.13
9.1718  = 64.925′

 2δ  to 10δ =
350
20

9.1718  = 98.223′

11δ =
350

33.6
9.1718  = 31.088′

Deflection angles

∆1 = δ1 = 64.925′ =1°04′55″
∆2 = ∆1 + δ2 = 64.925′ + 98.223′ = 163.148′ = 2°43′09″



�����

��
�	
� ���

∆3 = ∆2 + δ3 = 163.148′ + 98.223′ = 261.371′ = 4°21′22″
∆4 = ∆3 + δ4 = 261.371′ + 98.223′ = 359.594′ = 5°59′36″
∆5 = ∆4 + δ5 = 359.594′ + 98.223′ = 457.817′ = 7°37′39″
∆6 = ∆5 + δ6 = 457.817′ + 98.223′ = 556.040′ = 9°16′02″
∆7 = ∆6 + δ7 = 556.040′ + 98.223′ = 654.263′ = 10°54′16″
∆8 = ∆7 + δ8 = 654.263′ + 98.223′ = 752.486′ = 12°32′29″
∆9 = ∆8 + δ9 = 752.486′ + 98.223′ = 850.709′ = 14°10′43″

∆10 = ∆9 + δ10 = 850.709′ + 98.223′ = 948.932′ = 15°48′56″
∆11 = ∆10 + δ11 = 948.932′ + 31.088′ = 980.020′ = 16°20′00″

Check: ∆11 = 
2
∆

= 16°20′ (Okay)

The deflection angles for theodolites having least counts of 20″ and 1″, respectively, are given
in Table 7.2.

Table 7.2

Point Chainage
Chord Tangential Deflection Angle set Angle set
length angle (′) angle (′) on 20″ on 1″

(m) theodolite theodolite

0 (T1) 46+6.78 – 0.0 0.0 0.0 0.0

1 47+00 13.22 64.925 64.925 1°05′00″ 1°04′55″

2 48+00 20 98.233 163.148 1°43′00″ 1°43′09″

3 49+00 20 98.233 261.371 4°21′20″ 4°21′22″

4 50+00 20 98.233 359.594 5°59′40″ 5°59′36″

5 51+00 20 98.233 457.817 7°37′40″ 7°37′49″

6 52+00 20 98.233 556.040 9°16′00″ 9°16′02″

7 53+00 20 98.233 654.263 10°54′20″ 10°54′16″

8 54+00 20 98.233 752.486 12°32′20″ 12°32′29″

9 55+00 20 98.233 850.709 14°10′40″ 14°10′43″

10 56+00 20 98.233 948.932 15°49′00″ 15°48′56″

11(T2) 56+6.33 6.33 31.088 980.0230 16°20′00″ 16°20′00″

Use of Control Points

To make the use of control points to set out the curve, the points on the curve can be located by
setting up the theodolite at any control point, and setting of bearing of a particular point on the
theodolite, and measuring the length of the point from the control point. From the figure we find
that to set out the complete curve, use of control point Y would be most appropriate.

Let us take a point P having chainage 50 + 00 = 50 × 20 + 00 = 1000.00 m, and calculate
the necessary data to locate it from Y.
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Bearing of T1P = Bearing of T1I + ∠ IT1P

= Bearing of T1I + ∆4

= 78°36′30″  + 5°59′36″ = 84°36 ′06″
Length T1P = 2R sin ∆4

= 2 × 350 × sin 5°59′36″  = 73.09 m

Departure of T1P = DT1P = 73.09 × sin 84°36′06″ = 72.77 m

Latitude of T1P = LT1P = 73.09 × cos 84°36′06″  = 6.88 m

Easting of P = EP = ET1 + DT1P

= 958.00 + 72.77 = 1030.77 m

           Northing of P = NP = NT1 + LT1P

= 1024.78 + 6.88 = 1031.66 m

Length YP = ( ) ( )E E N NP Y E Y− + −2

= ( . . ) ( . . )1030 77 1062 11 1031 66 1062 632 2− + −

= ( . ) ( . )− + −31 34 30 972 2

= 44.06 m

Bearing of YP = 






−
−−

97.30

34.31
tan 1  = 45°30′25″

WCB of YP = 180° + 45°30′25″ = 225°20 ′25″

Bearing of YZ = 





−
−−

YZ

YZ

NN

EE1tan

= 






−
−−

63.106274.1025

11.106226.1161
tan 1

= 






−
−

89.36

15.99
tan 1  = 69°35′30″

WCB of YZ = 90° + 69°35′30″ = 110°24 ′30″
∠ PYZ = WCB of YP – WCB of YZ

= 225°20′25″ – 110°24 ′30″ = 114°55 ′55″.
The surveyor can sight Z, and P can be located by setting off an angle 114°55′55″ on the

horizontal circle of the theodolite, and measuring distance YP equal to 44.06 m. For other points
similar calculations can be done to locate them from Y.
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I

P

T1 T2

A

B C

D
•

∆

•
•

• •

Fig. 7.13

Example 7.5. Points A, B, C, and D lie on two straights as shown in Fig. 7.13, having
coordinates given in Table 7.3. The chainage of A is 1216.165 m. Calculate necessary data to set
out a circular curve of radius 220 m from a point P (E 1114.626 m, N 710.012 m) at through
chainage interval of 20 m.

Table 7.3

Point Easting Northing
 (m) (m)

A 935.922 657.993

B 1051.505 767.007

C 1212.840 778.996

D 1331.112 712.870

Solution (Fig. 7.13):

Coordinates of I

Let the coordinates of I be EI and NI. The equation of a straight line is

Y = mx + c

At the intersection I, we have

m1E1 + c1 = m2E1 + c2

E1 = −
−

c c
m m

2 1

1 2

But m1 = −
−

N N
E E

B A

B A

= −
−

767 007 657 993
1051 505 935 922

. .
. .

= =109 014
115 583

0 9432.
.

.

m2 = −
−

N N
E E

D C

D C

= −
−

712 870 778 996
1331 112 1212 840

. .

. .

= − = −66 126
118 272

0 5591.
.

.

At Point A 657.993 = 0.9432 × 935.922 +C1

C1 = – 224.769
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At Point D 712.870 = – 0.5591 × 1331.112 + C2

                      C2 = 1457.095

Thus the coordinates of I are

EI =
5591.09432.0

769.224095.1457
+
+

 = 1119.526 m

NI = 0.9432 × 1119.526 – 224.769

= 831.168 m

The deflection angle ∆ = tan–1(m1) – tan–1(m2)

= tan–1(0.9432) – tan–1(– 0.5591)

= 43°19′33″ – (– 29°12 ′34″)

= 72°32′07″

2
∆

= 36°16′03.5″.

Tangent length (T) =
2

tan
∆

R

= 220 × tan 36°16′03.5″ = 161.415 m

Length of curve (l) =
180

∆Rπ

= ° ′ ′′ =π× ×
.

200 72 32 07

180
278 515 m.

Length IA = E E N NA I A I− + −� � � �2 2

= 935 922 1119 526 657 993 831 168
2 2

. . . .− + −� � � �

= − + −183 604 173 175
2 2

. .� � � �

= 44.06 m.

Thus chainage of I = Chainage of A + IA

= 1216.165 + 252.389 = 1468.554 m

Thus chainage of T1 = Chainage of I + T

= 1468.554 – 161.415

= 1307.139 m = 65 + 7.139.
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Thus chainage of T2 = Chainage of T2 + l

= 1307.139 + 278.515

= 1585.654 m = 79 + 5.654.

Bearing of AI θ = tan− −
−

�
��

�
��

1 E E

N N
I A

I A

= tan .
.

.− �
��

�
�� = ° ′ ′′1 183 604

173 175
46 40 28

Length of AT1 = AI – T

= 252.389 – 161.415 = 90.974 m.

Easting of T1 = ET1 = Easting of A + AT1 sin θ
= 935.922 + 90.974 × sin 46°40′28″
= 1002.103 m.

Northing of T1 = NT1 = Northing of A + AT1 cos θ
= 657.993 + 90.974 × cos 46°40′28″
= 720.414 m.

Let the centre of the curve be O.

Bearing of T1O = α = Bearing of T1I + 90°

= Bearing of AI + 90°

= 46°40′28″ + 90° = 136°40 ′28″.
Coordinates of O

Easting of O = EO = ET1 + R sin α
= 1002.103 + 220 × sin 136°40′28″
= 1153.054 m.

Northing of O = NO = NT1 + R cos α
= 720.414 + 220 × cos 136°40′28″
= 560.371 m.

Bearing of OT1 = Bearing of T1O + 180°

= 136°40′28″ + 180°

= 316°40′28″.
Length of first sub-chord cf = (65 + 20) – (65 + 7.139)

= 12.861 m.
Length of last sub-chord cl = (79 + 5.654) − (79 + 0)

= 5.654 m.
Total number of chords n = (79 − 66) + 2

= 13 + 2 = 15.
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Point 1 on the curve

Angle subtended at O by the first sub-chord for point 1

=
R

c f
 radians

=
12 861

220
180. ×
π

degree = 3 20 58° ′ ′′

Bearing of O1 = Bearing of OT1 + 3°20′58″
= 316°40′28″ + 3°20 ′58″
= 320°01′26″ .

Easting of point 1 = E1 = EO + R sin 320°01′26″
= 1153.054 + 220 × sin 320°01′26″
= 1011.711 m.

Northing of point 1 = N1 = NO + R cos 320°01′26″
= 560.371 + 220 × cos 320°01′26″
= 728.960 m.

Length P1 = E E N NP P1
2

1
2− + −� � � �

= 1011 711 1114 626 728 960 710 012
2 2

. . . .− + −� � � �

= − +102 915 18 948
2 2. .� �

= 104.64 m.

Bearing of P1 = 




−

175.173
604.183

tan 1
 = – 79°34′05″.

The line being in fourth quadrant, the bearing will be 360° – 79°34′05″ = 280°25 ′55″.
Point 2 on the curve

Chord length = cf + C = 12.861 + 20 = 32.861 m.

Angle subtended at O =
π

180
220

861.32 ×  degrees

= 8°33′29″ .

Bearing of O2 = 316°40′28″ + 8°33 ′29″
= 325°13′57″ .

Easting of point 2 = E2 = EO + R sin 325°13′57″
= 1153.054 + 220 × sin 325°13′57″
= 1027.600 m.
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Northing of point 2 = N2 = NO + R cos 320°01′26″
= 560.371 + 220 × cos 320°01′26″
= 728.960 m.

Length P2 = E E N NP P2
2

2
2− + −� � � �

= 1027 600 1114 626 741 095 710 012
2 2

. . . .− + −� � � �

= − + =87 026 31 083 92 41
2 2. . .� �  m.

Bearing of P2 = 




 −−

083.31
026.87

tan 1

= – 70°20′41″ = 289°39 ′19″.
Point 3 on the curve

Chord length = cf + C + C = 12.861 + 20 + 20 = 52.861 m.

Angle subtended at O =
π

180
220

861.52 ×  degrees

= 13°46′01″.
Bearing of O3 = 316°40′28″ + 13°46 ′01″

= 330°26′29″.
Easting of point 3 = E3 = EO + R sin 330°26′29″

= 1153.054 + 220 × sin 330°26′29″
= 1044.525 m.

Northing of point 2 = N3 = NO + R cos 330°26′29″
= 560.371 + 220 × cos 330°26′29″
= 751.738 m.

Length P3 = E E N NP P3
2

3
2− + −� � � �

= 1044 525 1114 626 7851 738 710 012
2 2

. . . .− + −� � � �

= − + =70 101 41 726 81 579
2 2. . .� �  m.

Bearing of P3 = tan .
.

− −�
��

�
��

1 70 101
41 726

= – 59°14′16″ = 300°45 ′44″.
In similar manner as above, the necessary data for the remaining points have been calculated,

and are presented in Table 7.3.
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Table 7.3

Point Chainage

Chord          Coordinates Bearing of Distance of Bearing of Angle

length Pp Pp Op subtended

(m) E (m) N (m) (p=1, 2, 3,..) (p=1, 2, 3,..) (p=1, 2, 3,..) by T1p

(p=1, 2, 3...)

0–T1 65+7.139 – 1002.103 720.414 275°16′54″ 113.003 316°40′28″ –

1 66+00 12.861 1011.711 728.960 280°25′55″ 106.640 320°01′26″ 3°20′58″

2 67+00 32.861 1027.600 741.095 289°39′19″ 92.410 325°13′57″ 8°33′29″

3 68+00 52.861 1044.525 751.738 300°45′44″ 81.579 330°26′29″ 13°46′01″

4 69+00 72.861 1062.346 760.801 314°10′16″ 72.888 335°39′00″ 18°58′32″

5 70+00 92.861 1080.916 768.208 329°55′06″ 67.254 340°51′31″ 24°11′03″

6 71+00 112.861 1100.083 773.899 347°10′33″ 65.521 346°04′03″ 29°23′35″

7 72+00 132.861 1119.686 777.826 4°16′02″ 68.003 351°16′34″ 34°36′06″

8 73+00 152.861 1139.565 779.957 19°37′26″ 74.258 356°29′05″ 39°48′37″

9 74+00 172.861 1159.556 780.275 32°35′49″ 83.400 1°41′47″ 45°01′09″

10 75+00 192.861 1179.493 778.777 43°19′45″ 94.532 6°54′08″ 50°13′40″

11 76+00 212.861 1199.212 775.474 52°15′54″ 106.958 12°06′40″ 55°26′12″

12 77+00 232.861 1218.549 770.396 59°50′29″ 120.192 17°09′11″ 60°38′43″

13 78+00 252.861 1237.345 763.583 66°25′02″ 133.902 22°31′42″ 65°51′14″

14 79+00 272.861 1255.446 755.091 72°14′57″ 147.859 27°44′14″ 71°03′46″

15–T2 79+5.654 278.515 1260.416 752.396 73°47′23″ 151.826 29°12′35″ 72°32′07″
= ∆ (Okay)
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As a check, the bearing of T1 and T2, and their distances from P have also been calculated,
and presented in the above Table.

A further check on the computations can be applied by calculating the coordinates of T2
directly as below.

∠ IT1T2 =
2
∆

= 36°16′03.5″

Bearing of T1T2 = θ′ = Bearing of AI +
2
∆

= 46°40′28″ + 36°16 ′03.5″ = 82°56 ′31.5″.

Length of T1T2 = 2R sin 
2
∆

= 2 × 220 × sin 36°16′03.5″ = 260.285 m.

Thus ET2 = ET1 + T1T2 sin θ′
= 1002.103 + 260.285 sin 82°56′31.5″
= 1260.416 (Okay)

NT2 = NT1 + T1T2 cos θ′
= 720.414 + 260.285 cos 82°56′31.5″
= 752.396 (Okay).

Example 7.6. Two straights AP and QC meet at an inaccessible point I. A circular curve of
500 m radius is to be set out joining the two straights. The following data were collected:

∠ APQ = 157°22′, ∠ CQP = 164°38′, PQ = 200 m.

Calculate the necessary data for setting out the curve by the method of offsets from long
chord. The chain to be used is of 30 m length, and the chainage of P is (57 + 17.30) chains.

Solution (Fig. 7.14):
In the figure

α = 157°22′
β = 164°38′
θ1 = 180° – α = 22°38′
θ2 = 180° − β = 15°22′
φ = 180° − (θ1 + θ2)

= 180° − (22°38′ + 15°22′) = 142°00′
∆ = 180° − φ

= 180° − 142°00′ = 38°00′

2
∆

= 19°00′.

From sine rule in ∆PIQ, we have

2sinθ
PI

= φsin

PQ
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PI =
PQsin

sin
θ

φ
2

=
200 15 22

142
86 085

× sin

sin
.

° ′
°

= m.

Tangent length T = R tan ∆
2

= �19tan500×
= 172.164 m.

Length of curve l =
πR∆
180

=
π× ×

.
500 38

180
331 613=  m.

Chainage of T1 = Chainage of P + PI – T

= 57 × 30 + 17.30 + 86.085 – 172.164

= 1641.221 m

= (54 + 21.22) chains.

Chainage of T2 = Chainage of T1 + l

= 1641.221 + 331.613

= 1972.834 m

= (65 + 22.83) chains.

Long chord =
2

sin2
∆

R

= �19sin5002 ××  = 325.57 m.

Mid-ordinate = R 1
2

−���
�
��cos ∆

= 500 1 19 27 24× cos .− ° =� �  m.

Locate E at 1
2

1
2

1
2

325 571 2T T L= = × .  = 162.79 m, and C at 27.24 m on the perpendicular to

T1T2 at E. To locate other points, the distances to be measured along T1T2 from E on either sides
of E are

x = 0, 30, 60, 90, 120, 150, 162.785 m.

C

I

O

R

E
T1 T2

A

P
Q

•

θ1
θ2

φ
∆

L
x

y

α β200 m

Fig. 7.14
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The ordinates are given by

y = R x R L2 2 2
2

4
− − −�

��
�
��	 


= ( ) 759.472500 22 −− x

The calculated values of y are given in Table 7.5.

Table 7.5

Distance x (m) 0 30 60 90 120 150 162.79

Offset y (m) 27.24 26.34 23.63 19.07 12.63 4.21 0.00

Check:

y at x = 0.00 m is equal to M = 27.24 m

y at x = 162.79 m is equal to  = 0.00 m.

Example 7.7. Two straights AB and BC are to be connected by a right-hand circular curve.
The bearings of AB and BC are 70° and 140°, respectively. The curve is to pass through a point
P at a distance of 120 m from B, and the angle ABP is 40°. Determine

  (i) Radius of the curve,

 (ii) Chainage of the tangent points,

(iii) Total deflection angles for the first two pegs.

Take the peg interval and the length of a normal chord as 30 m. The chainage of the P.I. is
3000 m.

Solution (Fig. 7.15):

From the given data, we have

Bearing of AB = 70°

Bearing of BC = 140°

∠ ABP = α = 40°

                   BP = 120 m.

Thus the deflection angle ∆ = 140° – 70° = 70°

2
∆

= 35°.

If ∠ POT1 = θ , the following expression can be derived for θ.

θ = cos
cos

cos

−
+�

�
�
�

−1 2

2

∆

∆

α
α
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= cos
cos

cos
− ° + °

°
− °1 35 40

35
40

� �

= 31°34′52.46″.
The radius of the curve passing through P which is at a distance of x from B along the tangent

BT1, is given by

R =
x tan

cos

α
θ1−

=
BP cos sin

cos
cos

α α
α

θ1−

=
BP sin

cos

α
θ1−

=
64.524331cos1

40sin120

′′′−

×
�

�

= 520.82 m.

Tangent length T = R tan ∆
2

= �35tan82.520 ×  = 364.68 m.

Length of curve l =
180

∆Rπ

=
180

7082.520 ××π
 = 636.30 m.

Chainage of T1 = Chainage of B – T

= 3000 – 364.68

= 2635.32 m = (87 + 25.32) chains.

Chainage of T2 = Chainage of T1 + l

= 2635.32 + 636.30

= 3271.62 m = (109 + 1.62) chains.

Length of first sub-chord cf = (87 + 30) – (87 + 25.32)

= 4.68 m.

Length of last sub-chord cl = (109 + 1.62) – (109 + 0)

= 1.62 m.

C

B

O

R

120 m

T1 T2

A

α

P.
Q

∆

θ
2

∆

x

Fig. 7.15
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Tangential angle =
1718 9. c

R
 minutes

For the first peg δ1 =
1718 9 4 68

520 82

. × .

.
 = 0°15′27″

For the second peg δ1 =
1718 9 30

520 82

. ×

.
 = 1°39′01″

Total deflection angles
For the first peg ∆1 = 0°15′′′′′27″″″″″
For the second peg ∆2 = 0°15′27″  + 1°39 ′01″ = 1°54′′′′′28″″″″″.
Example 7.8. Two straights AB and BC intersect at chainage 1530.685 m, the total deflection

angle being 33°08′. It is proposed to insert a circular curve of 1000 m radius and the transition
curves for a rate of change of radial acceleration of 0.3 m/s3, and a velocity of 108 km/h. Determine
setting out data using theodolite and tape for the transition curve at 20 m intervals and the circular
curve at 50 m intervals.

Solution (Fig. 7.16):
Given that
Rate of change of radial acceleration α = 0.3 m/s3

Velocity V = 110 km/h, or v =
108 1000

60 60

×

×
 = 30.000 m/s

Deflection angle ∆ = 33°08′, or 
∆
2

 = 16°34′

Radius of circular curve = 1000 m
Chainage of I = 1530.685 m

Peg interval for the transition curve = 20 m
Peg interval for the circular curve = 50 m.

α =
v
LR

3

L =
v
R

3 330 000
0 3 1000α

= .
. ×

 = 90.000 m.

Shift S =
L

R

2 2

24

90 000

24 1000
= .

×
 = 0.338 m.

I

Transition
curveS

R
xT1 T2

16

A B

∆S
5

22
0

Circular curve

• •

••y

L/2

∆

Fig. 7.16



��� ������	
�

Tangent length IT1 = (R + S) tan 
∆
2 2

+ L

= (1000 + 0.338) × tan 16°34′ + 
2
000.90

= 342.580 m.

∆S =
R

L

2

=
10002
000.90

×
 radians

= π
180

10002
000.90 ×

×
 degrees = 2°34′42″.

Angle subtended by the circular curve at its centre

θ = ∆ – 2∆S

= 32°24′ – 2 × 2°43′28″ = 27°58 ′36″.

Length of circular curve l =
πRA
180

=
π× ×1000 27 58 36

180

° ′ ′′

= 488.285 m.

Chainage of T1 = Chainage of I – IT1

= 1530.685 – 342.580 = 1188.105 m

= (59 + 8.105) chains for peg interval 20 m.

Chainage of A = Chainage of T1 + L

= 1188.105 + 90.000 = 1278.105 m

= (25 + 28.105) chains for peg interval 50 m.

Chainage of B = Chainage of A + l

= 1278.105 + 488.285

= 1766.390 m

= (35 + 16.390) chains for peg interval 50 m.

= (88 + 6.390) chains for peg interval 20 m.

Chainage of T2 = Chainage of B + L

= 1766.390 + 90.000 = 1856.390 m

= (92 + 16.390) chains for peg interval 20 m.
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Length of first sub-chord for the transition curve

fc′ = (59 + 20) – (59 + 8.105) = 11.895 m.

Length of first sub-chord for the circular curve

fc = (25 + 50) – (25 + 28.105) = 21.895 m.

Length of last sub-chord for the circular curve

cl = (35 + 16.390) – (35 + 0) = 16.390 m.

Deflection angle for the transition curve

δ =
1800 2l

RLπ
 minutes

=
1800

1000 90 000
2

π× × .
l  minutes

= 0.006366 l2 minutes.

For different values of l, the deflection angles are given in Table 7.5.

Deflection angle for the circular curve

δ = 1718 9. c
R

 minutes

=
1718 9
1000

. c  minutes

= 1.7189 c minutes

     Table 7.5

Point Chainage Chord length l Deflection angle
(m) (m) (m) (δ)

0 (T1) 1188.105 0.0 0.0 0.0

1 1200.000 11.895 11.895 0°00′54″

2 1220.000 20 31.895 0°06′29″

3 1240.000 20 51.895 0°17′09″

4 1260.000 20 71.895 0°32′54″

5 (A) 1278.105 18.105 90.000 0°51′34″

The values of the tangential angles and total deflection angles to be set out at A are given in
Table 7.6.
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Table 7.6

Point Chainage Chord Tangential Deflection
(m) length (m) angle (δ) angle (∆)

5  (A) 1278.105 0.0 0.0 0.0

6 1300.000 21.895 0°37′38.1″ 0°37′38″

7 1350.000 50 1°25′56.7″ 2°03′35″

8 1400.000 50 1°25′56.7″ 3°29′32″

9 1450.000 50 1°25′56.7″ 4°55′28″

10 1500.000 50 1°25′56.7″ 6°21′25″

11 1550.000 50 1°25′56.7″ 7°47′22″

12 1600.000 50 1°25′56.7″ 9°13′18″

13 1650.000 50 1°25′56.7″ 10°39′15″

14 1700.000 50 1°25′56.7″ 12°05′12″

15 1750.766 50 1°25′56.7″ 13°31′08″

16 (B) 1766.390 16.390 0°28′10.4″ 13°59′19″

The second transition curve is set out from tangent point T2 by measuring distances in the
direction from B to T2, and deflection angles for the corresponding points from T2 measured in
counterclockwise from T2I.

Length of first sub-chord for the transition curve measured from B

fc ′′ = (88 + 20) – (88 + 6.390) = 13.610 m.

Length of last sub-chord

lc ′′ = (92 + 16.390) – (92 + 0) = 16.390 m.

Table 7.7

Point Chainage Chord l Deflection
(m) length (m) (m) angle (δ)

16 (B) 1766.390 13.610 90.000 0°51′34″
(from Table 7.5)

17 1780.000 20.000 76.390 0°37′09″

18 1800.000 20.000 56.390 0°20′15″

19 1820.000 20.000 36.390 0°08′26″

20 1840.000 16.390 16.390 0°01′43″

21 (T2) 1856.390 0.0 0.0 0.0
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Number of normal chords of 20 m = 92 – 89 = 3

Deflection angles

For point 17, the chord length from T2 = 95.097 – 2.234 = 92.863 m

δ17 = 0.006025 × 92.8632 = 51�57″.
For point 18, the chord length from T2 = 92.863 – 20 = 72.863 m

δ18 = 0.006025 × 72.8632 = 31�59″.
For other points δ can be computed in the similar manner. The data are tabulated inTable-7.7.

Example 7.9. For Example 7.8, determine the offsets required to set out the first transition
curve.

Solution (Fig. 7.16):

In the previous example, the length of the transition curve has been determined as

L = 90.000 m

The offsets from the straight T1I for cubic spiral

x =
RL

l

6

3

=
000.9010006

3

××
l

 = 
540000

3l

Chord length for setting out a transition curve is taken as 1/2 or 1/3 of the corresponding chord
length taken for a circular curve which is R/20.Therefore, for the circular curve chord length
= 1000/20 = 50 m, and for the transition curve 50/2 or 50/3 ≈ 20 m. Thus the given chord lengths
in the problem, are justified. The offsets calculated using the above formula, are given in Table 7.8.

Table 7.8

Point
Chainage Chord l x

(m) length (m) (m) (m)

0 (T1) 1188.105 0.0 0.0 0.0

1 1200.000 11.895 11.895 0.003

2 1220.000 20 31.895 0.060

3 1240.000 20 51.895 0.259

4 1260.000 20 71.895 0.688

5 (T2) 1278.105 18.105 90.000 1.350

Example 7.11. It is proposed to connect two straights, their point of intersection being
inaccessible, by a curve wholly transitional. The points A and B lie on the first straight, and C and
D lie on the second straight. These points were connected by running a traverse BPQC between
B and C. The data given in Table 7.9 were obtained.
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Table 7.9

Line Length (m) Bearing

AB 0.0 3°05′10″

BP 51.50 19°16′50″

PQ 70.86 29°02′10″

QC 66.25 53°25′30″

CD 0.0 66°45′10″

Determine the locations of the tangent points for the design of the rate of change of radial
acceleration as 1/3 m/s3, and the design velocity as 52 km/h.

Solution (Fig. 7.17, 7.19 and 7.20):

I

T1 T2
Proposed
Transition curveA B

P Q
C

D

• •
•

••
•

•
•

Fig. 7.17

Latitudes and departures of the lines

Latitude L = l cos θ
Departure D = l sin θ

LBP = 51.50 × cos 19°16′50″ = 48.61 m
DBP = 51.50 × sin 19°16′50″ = 17.00 m
LPQ = 70.86 × cos 29°02′10″ = 61.95 m
DPQ = 70.86 × sin 29°02′10″ = 34.39 m
LQC = 66.25 × cos 53°25′30″ = 39.48 m
DQC = 66.25 × sin 53°25′30″ = 53.20 m

ΣL = 150.04 m
ΣD = 104.59 m.

Length BC = 150 04 104 592 2. .+  = 182.90 m

Bearing of BC θ = tan .
.

− �
��

�
��

1 150 04
104 59

 = 55°07′13″.

In Fig. 7.18, we have

∆ = ∠ I ′IC = Bearing of CD – bearing of AB

= Bearing of IC – bearing of BI

= 66°45′10″ – 3°05 ′10″
= 63°40′00″.

I
N

B

A D

I′

C

3°05′10″

55°07′13″
52°02′03″

65°40′00″
∆ = 63°40′00″

Fig. 7.18
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In ∆BIC, we have

∠ BIC = 180° – ∠ I ′IC
= 180° – 63°40′00″ = 116°20 ′00″

∠ IBC = Bearing of BC – Bearing of BI

= 55°07′13″ – 3°05 ′10″ = 52°02 ′03″
∠ BCI = 180° – (∠ BIC + ∠ IBC)

= 180° – (116°20′00″ + 52°02 ′03″) = 11°37 ′57″ .

By sine rule, we get

IB
BCIsin

=
BC
BIC

IC
IBCsin sin

=

         IB =
BC BCI

BIC
sin

sin

=
182 90 11 37 57

116 20 00

. × sin

sin

° ′ ′′
° ′ ′′

 = 41.15 m

IC =
BC IBC

BIC
sin

sin

=
0002116sin

302052sin90.182
′′′

′′′×
�

�

 = 160.89 m.

In ∆BI ′ C, we have

BI ′ = BC IBCcos

= 182.90 × cos 52°02′03″ = 112.52 m

CI ′ = BC IBCsin

= 182.90 × sin 52°02′03″  = 144.19 m.

The transitional curve is to be wholly transitional and, therefore, there will be two transition
curves meeting at common point T as shown in Fig. 7.19, having the common tangent EF at T.
The tangent ET to the first transition curve at T makes angle φ1 with that tangent T1I or the tangent
TF to the second transition curve makes angle φ1 with the tangent IT2.

φ1 =
2

∆
 = 

2
000463 ′′′�

= 31°50′00″ = 0.5555965 radians.

I

T1

φ1

K

T2

E Fφ2

dl

T
•

• •

yT xT

∆ = 65°40′00″

l

dy
dx

Fig. 7.19



��� ������	
�

The angle φ1 being of large magnitude, the first order equations used between φ1 and
2

∆
 in this

case, will not be valid.

Taking dx = dl sin φ
dy = dl cos φ

we have dx = φ φ φ− +�
��

�
�� = − +�

��
�
��

3 5 2 6

3

10

53 5 2 48 3840! !
dl l

k

l

k

l

k
dl

dy = 1
2 6

1
8 384

2 4 4

2

8

4
− +�

��
�
�� = − +�

��
�
��

φ φ
! !

.dl l

k

l

k
dl

By integrating the above equations, we get

x =
l
k

l
k

l
k

3 7

3

11

56 336 42240
− +

y = l l
k

l
k

− +
5

2

9

440 3456

In the above equations, the constant of integration are zero since at l = 0, φ = 0. If L is the
length of each transition curve with the minimum radius R at the junction point T, then

φ1 = 0.5555965 = 
R

L

2

L = 1.111193 R.

Also α =
ν3

LR

1
3

=
52 1000 3600

3
× /� �

LR

           LR = k = ���
�
��52 1000

3600
3

3

× ×  = 9041.15.

   (1.1460996 R) R = 9041.15

R2 =
9041 15

1 111193
.

.

R =
9041 15

1 111193

.

.
 = 90.20 m

and L = 10023 m.
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Thus, when l = L at T, the values of x and y are

xT =
100 23

6 9041 15

100 23

336 9041 15

3 7

3

.

× .

.

× .
−  = 18.15 m

yT = 100 23 100 23

40 9041 15

5

2
. .

× .
−  = 97.14 m.

Now

Tangent length T1I = T2I = yT + xT tan φ1

= 97.14 + 18.15 × tan 31°50′00″ = 108.41 m.

To locate T1 from BI, and T2 from C, we require

BT1 = IT1 – IB

= 108.41 – 41.15 = 67.26 m

CT2 = IT2 – IC

= 108.41 – 160.89 = – 52.48 m.

The negative sign of CT2 shows that T2 is between I and C.

Example 7.11. Two straights having a total deflection angle of 65°45′ are connected with a
circular curve of radius 1550 m. It is required to introduce a curve of length 120 m at the beginning
and end of the circular curve without altering the total length of the route. The transition curve to
be inserted is a cubic spiral, and the chainage of the point of intersection is 5302.10 m. Calculate

 (i) the distance between the new and the previous tangent points,

(ii) the setting out data for transition curve taking peg intervals 20 m, and

(iii) the data for locating the midpoint of the new circular curve from the point of intersection.

Solution (Fig. 7.20 and 7.22):

I (5302.10 m)

T1

R′ = 1550 m

T2

T′2

New tangent
point

Existing circular
curve

Existing
tangent point

∆ = 65°45′

•
• •

•
T′1

Fig. 7.20

R′ = 1550 m

∆ = 65°45′ = 65.75°

2

∆
= 32°52′30″
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Existing circular curve

Curve length l =
πR′ ∆
180

=
π× × .1550 65 75

180
 = 1778.71 m.

Tangent length (IT1) T = R′ tan 
∆
2

= 1550 × tan 32°52′30″ = 1001.78 m.

Transition curves

φ1 =
L
R2

 radians

where L is the length of the transition curve, and R is the radius of the new circular curve.

I

Transition curve

S

R

T1 T2
C

Old circular
curve

R

T″2T″1
T′1 T′2

C′

I′

Midpoint of new
circular curve

57°07′30″

•

••

•

∆ = 65°45′

φ1
65°45′ φ2

Fig. 7.21

Total length of the curve

T1' T2' = 2L + 
π φR R∆
180

2 1−�
�


�
��� �

= 2L + π× .65 75

180
−�

��
�
��

L

R
R

= 2L + 1 1475540. −�
��

�
��

L

R
R

Shift of circular curve S =
L

R

2

24
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The new tangent length

1TI ′ =
2
L

+ ( )
2

tan
∆+ SR

=
L R L

R2 24
32 52 30

2
+ +�
��

�
�� ° ′ ′′tan

T1' T1 = 1TI ′ – T = 1TI ′  – 1001.78

Since the total length of the route must remain unchanged, the total curve length

T1' T2' = Length of the existing circular curve + 2 T1' T1'

or 2L + 1 1475540. −�
��

�
��

L
R

R = 1778.71 + 2 T1' T1'

= 1778.71+2 
L R L

R2 24
32 52 30

2
+ +�
��

�
�� ° ′ ′′

�
�


�
��

tan – 2 × 1001.78

By clearing and rearranging the terms, and substituting the value of L = 120 m, we get

R2 – 1549.98 R + 5346.32 = 0

Solving the above equation, we get

R = 1546.52 m.

Thus S =
L

R

2 2

24
120

24 1546 52
=

× .
 = 0.39 m

and 1TI ′ = ( ) 032532tan39.052.1546
2

120 ′′′++ �
 = 1059.78 m.

(a) Therefore the distance between the new tangent point 1T ′ and the previous tangent point T1

T1' T1 = 1TI ′ – IT1

= 1059.78 – 1001.78 = 58.00 m.

(b) Setting out transition curve T1' T1"

Chainage of 1T ′ = Chainage of I – IT1′

= 5302.10 – 1059.78 = 42425.32 m

= 212 + 2.32 for 20 m chain.
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The deflection angle for chord length l

δ =
1800 2l

RLπ
 minutes

=
1800

1546 52 120
2

π× . ×
l  minutes

= 0.0030873 l2 minutes.

The length of the first sub-chord

cf = (212 +20) – (212 + 2.32) = 17.68 m

δ17.68 = 0.0030873 × 17.682 minutes

= 00′58″
δ37.68 = 0.0030873 × 37.682 minutes

= 4′23″ .

Other values of δ are given in Table 7.10.

Table 7.10

Point Chainage Chord Deflection
(m) lenght (m) angle (δ)

0 ( 1T ′ ) 4242.32 0.0 0.0

1 4260.00 17.68 0′58″

2 4280.00 37.68 4′23″

3 4300.00 57.68 10′16″

4 4320.00 77.68 18′38″

5 4340.00 97.68 29′27″

6 4360.00 117.68 42′45″

7 ( 1T ′′ ) 4362.32 120.00 44′27″

(c) IO =
OT R S1

2 2
cos cos∆ ∆= +

 =

2

5465
cos

39.052.1546

′

+
�

 = 1841.87 m

IC′ = IO – OC′
= 1841.87 – (1546.52 + 0.39) = 294.96 m

IC = IC′ + C′ C

= 294.96 + 0.39 = 295.35 m
        ∠ II′O = 65°45′ + 57°07′30″ = 122°52′′′′′30″″″″″
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Now C can be located by setting out an angle of 122°52′30″  from IT1′  produced, and

measuring a distance of 295.35 m from I.

Example 7.12. Two parallel railway tracks, centre lines being 60 m apart, are to be connected
by a reverse curve, each section having the same radius. If the maximum distance between the tangent
points is 220 m calculate the maximum allowable radius of the reverse curve that can be used.

Solution (Fig. 7.22):

We have

T1P = PT3 = T3Q = QT2 = R tan
2

∆

T1T3 = T3T2 = sin ∆
2

1
2

2
2= +AT AT� �

 = +200 602 2	 

 = 228.035 m …(a)

PQ = (PT3 + T3Q) = 2PT3 = 2R tan
sin

∆
∆2

60=

or 2 2

2

R
sin

sin

∆

∆ =
60

2
2 2

sin cos∆ ∆

2
2

R sin ∆
=

30

2
sin ∆

From (a), we have 228.035 =
30

2
sin ∆

sin ∆
2

=
30

228 035.

Substituting the value of 
2

sin
∆

 in (a) we get

2 30
228 035

R ×
.

= 228.035

R =
228 035

60

2.
 = 866.7 m.

Fig. 7.22
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∆1
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Fig. 7.23

Example 7.13. The first branch of a reverse curve has a radius of 200 m. If the distance
between the tangent points is 110 m, what is the radius of the second branch so that the curve
can connect two parallel straights, 18 m apart ? Also calculate the length of the two branches of
the curve.

Solution (Fig. 7.23):

We have

R1 = 200 m

D = 18 m

L = 110 m.

From Eq. (7.37), we have

L = 2 1 2D R R+� �

            R2 =
L
D

R
2

1
2

−

=
100

2 18
200 136 11

2

×
.− =  m.

From Eq. (7.36), we have

D = 2
2

1 2
2 1R R+� �sin ∆

∆1 = 2
2

1

1 2

sin−

+

�

�





�

�
�
�

D
R R� �

= 2 18
2 200 136 11

1× sin
× .

−

+

�

�





�

�
�
�� �

= 18°50′10″ = 18.836° = ∆2

The lengths of the first and second branches of the curve

 l1 =
πR1 1

180
∆

=
π× × .200 18 836

180
 = 65.75 m

l1 =
π× . × .136 11 18 836

180
 = 44.75 m.

Example 7.14. It is proposed to introduce a reverse curve between two straights AB and CD
intersecting at a point I with ∠ CBI = 30° and ∠ BCI = 120°. The reverse curve consists of two
circular arcs AX and XD, X lying on the common tangent BC. If BC = 791.71, the radius
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RAX 

O1 

O2 

D 

C 

B A 
I 

X 

RAD

°

 

Fig. 7.24

60°
30°

120°

15°
30°

∆

RAX = 750 m, and chainage of B is 1250 m, calculate

  (i) the radius RXD,

 (ii) the lengths of  the reverse curve, and

(iii) The chainage of D.

Solution (Fig. 7.24):

From the given data, we have

∆1 = 30°, 
∆1

2
 = 15°

∆2 = 180° – 120° = 60°, 
∆2

2
 = 30°

RAX = 750 m

BC = 791.71 m

Chainage of B = 1250 m.

(a) Tangent lengths

BX = RAX tan 
∆1

2

XC = RXD tan 
∆2

2

BC = BX + XD

BC = RAX tan 
∆1

2
 + RXD tan 

∆2

2

RXD =
BC RAX− tan

tan

∆

∆

1

2

2

2

=
791 71 750 15

30

. × tan

tan

− °
°

= 1023.21 m.

(b) Length of the reverse curve l

lAX =
180

1∆AXRπ

lXD =
180

2∆XDRπ

    l = lAX + lXD

30°
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=
π

180
1 2R RAX XD∆ ∆+� �

=
π

180
750 30 1023 21 60× ( × . × )+  = 1464.20 m.

(c) Chainage of D

AB = BX = RAX tan 
2

1∆

= 750 × tan 15° = 200.96 m

Chainage of D = Chainage of B – AB + l

= 1250 – 200.96 + 146.20 = 2513.24 m.

Example 7.15. Two straights AB and BC falling to the right at gradients 10% and 5%,
respectively, are to be connected by a parabolic curve 200 m long. Design the vertical curve for
chainage and reduce level of B as 2527.00 m and 56.46 m, respectively. Take peg interval as
20 m.

Also calculate the sight distance for a car having headlights 0.60 m above the road level, and
the headlight beams inclined upwards at an angle of 1.2°.

Solution (Fig. 7.25):

The total number of stations at 20 m interval

= 2n = 
L

20
200
20

=  = 10 m

or n =
10
2

 = 5.

g1 = − 10%

A

D

B

g2 = − 5%

A0

C0 C

Ey

x

l

Fig. 7.25

Fall per chord length

e1 =
g1

100
20 10

100
20 2× ×= − = −  m

e2 =
g2

100
20 5

100
20 1× ×= − = −  m.
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Elevation of the beginning of the curve at A0

= Elevation of B – ne1

= 56.46 – 5 × (– 2) = 66.46 m.

Elevation of the end of the curve at C0

= Elevation of B + ne2

= 56.46 – 5 × (–1) = 51.46 m.

Tangent correction with respect to the first tangent

h = kN2

where k =
n

ee

4
21 −

=
54

)1(2

×
−−−

 = – 0.05

Reduced levels (R.L.) of the points on the curve

= Tangential elevation – tangent correction

= H – h

where H is the tangential elevation of a point.

R.L. on the n' th point on the curve = R.L. of A0 + n′ e1 – kn′ 2

R.L. of point 1 (A0) = 66.46 + 1 × (–2) – (– 0.05) × 12 = 64.51 m

R.L. of point 2 = 6.46 + 2 × (– 2) – (– 0.05) × 22 = 62.66 m

R.L. of point 3 = 6.46 + 3 × (– 2) – (– 0.05) × 32 = 60.91 m

R.L. of point 4 = 66.46 + 4 × (– 2) – (– 0.05) × 42 = 59.26 m

R.L. of point 5 = 66.46 + 5 × (– 2) – (– 0.05) × 52 = 57.71 m

R.L. of point 6 = 66.46 + 6 × (– 2) – (– 0.05) × 62 = 56.26 m

R.L. of point 7 = 66.46 + 7 × (– 2) – (– 0.05) × 72 = 54.91 m

R.L. of point 8 = 66.46 + 8 × (– 2) – (– 0.05) × 82 = 53.66 m

R.L. of point 9 = 66.46 + 9 × (– 2) – (– 0.05) × 92 = 52.51 m

R.L. of point 10 (C0) = 66.46 + 10 × (– 2) – (– 0.05) × 102 = 51.46 m (Okay).

Chainage of the intersection point B = 2527.00 m

Chainage of A0 = Chainage of B – 20n

= 2527.00 – 20 × 5 = 2427.00 m.

Chainage of C0 = Chainage of B + 20n

= 2527.00 + 20 × 5 = 2627.00 m.

The chainage of the points and the reduced levels of the corresponding points on the curve
are tabulated in Table 7.11.
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Table 7.11

Point
Chainage R.L. of

Remarks(m) points on curve
(m)

0 2427.00 66.46 A0 (P.C.)

1 2447.00 64.51

2 2467.00 62.66

3 2487.00 60.91

4 2507.00 59.26

5 2527.00 57.71 Apex

6 2547.00 56.26

7 2567.00 54.91

8 2587.00 53.66

9 2607.00 52.51

10 2627.00 51.46 C0 (P.T.)

With the car at tangent point A0, the headlight beams will strike the curved road surface at
a point where the offset y from the tangent at A0 is (0.60 + x tan 1.2°), x being the distance from
A0. The offset y at a distance x from A0 is given by

y =
221

400
x

l

gg −

where l is half of the total length of the curve = 200/2 = 100 m. Thus

y =
2

100400
12

x
×
+−

 = 
40000

2x
 ignoring the sign

or 0.60 + x tan 1.2° =
40000

2x

x2 – 837.88x – 24000 = 0

Sight distance x =
+ + +837 88 937 88 4 1 2400

2 1

2. . × ×

×
 = 865.61 m.

Example 7.16. Two straights AB having gradient rising to the right at 1 in 60 and BC having
gradient falling to the right at 1 in 50, are to be connected at a summit by a parabolic curve. The
point A, reduced level 121.45 m, lies on AB at chainage 1964.00 m, and C, reduced level 120.05
m, lies on BC at chainage 2276.00 m. The vertical curve must pass through a point M, reduced
level 122.88 at chainage 2088.00 m.

Design the curve, and determine the sight distance between two points 1.06 m above road
level.
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Solution (Fig. 7.26):

Given that

g1 = + 
60

100
 = 

6

10
%

g2 = + 
50

100
 =  

5

10
= 2%.

+ g1 %

A

x

P

B
− g2 %

d
C

E

F

M

Q

R

S

•
•

•
•

••
1.06 m

1.05 m

l l
S

Sight distance

y

Fig. 7.26

Let the horizontal distance AB = x1.

Level of B = Level of A + 
60

1x

= 121.45 + 
x1

60

= Level of C + − −2276 1964
50

1x

= 120.05 + 
312

50
1− x

Therefore

121.45 + 
x1

60
= 120.05 + 

312
50

1− x

     x1 =
50 60

110
120 05 312

50
121 45 132 00

×
. . .+ −�

��
�
�� −  m.

Chainage of B = Chainage of A + x1

= 1964.00 + 132.00 = 2096.00 m.

Distance of M from B = x′ = Chainage of B – chainage of M

= 2096.00 – 2088.00 = 8.00 m.

Distance of M from A = Chainage of M – chainage of A

= 2088 – 1964.00 = 124.00 m .

Grade level at the chainage of M = 121.45 + 
124 00

60
.

 = 123.52 m.
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Curve level at M = 122.88 m

         Offset at M = 123.52 – 122.88 = 0.64 m.

If the tangent length of the curve is l then the offset at M

=
g g

l
l x1 2 2

400
− − ′� �

or 0.64 =
g g

l
l1 2 2

400
8− −� �

=

10
6

2

400
8

2
+

−
l

l� �

l2 – 85.818182 l + 64 = 0

l = 85.066 m.

The value of l can be taken as 85 m for the design purposes. Therefore

chainage of P = 2096.00 – 85 = 2011.00 m

chainage of Q = 2011.00 + 2 × 85 = 2181.00 m .

Taking peg interval as 20 m, the values of x and chainage of the points are

x = 0.0 m chainage of 0 (P) = 2011.00 m

= 9.0 m 1 = 2020.00 m

= 29.0 m 2 = 2040.00 m

= 49.0 m 3 = 2060.00 m

= 69.0 m 4 = 2080.00 m

= 89.0 m 5 = 2100.00 m

= 109.0 m 6 = 2120.00 m

= 129.0 m 7 = 2140.00 m

= 149.0 m 8 = 2160.00 m

= 169.0 m 9 = 2180.00 m

= 170.0 m 10 = 2181.00 m

Grade levels

Distance between A and P = 2011.00 – 1964.00 = 47.00 m

Grade level at P =
47
60

121 45+ .  = 122.23 m.

The grade levels of other points can be obtained from 122.23 + 
60

x
, and the offsets y from

221

400
x

l

gg −
 by substituting the values of x. The curve levels can be calculated by subtracting the
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offsets from the corresponding grade levels. The calculated values of the design data are presented
in Table 7.12.

The level of a point on the curve above P is obtained by the expression

h =
2211

400100
x

l

gg
x

g −
−

where x is the distance of the point P. The highest point on the curve is that point for which h
is maximum. By differentiating the above expression and equating to zero, we get the value xmax
at which h = hmax.

h =
2211

400100
x

l

ggxg −
−

dx

dh
=

( )
x

l

ggg

400
2

100
211 −

−  = 0

x = ( )21

1

200
400

gg

gl

−

=






 +×

××

2
6

10
200

6
10

85400
 = 77.27 m.

= xmax for hmax.

Table 7.11

Point
Chainage Grade x y Curve

(m) level (m) (m) (m) level (m)

0 (P) 2011.00 122.23 0.0 0.0 122.23

1 2020.00 122.38 9.00 0.01 122.37

2 2040.00 122.71 29.00 0.09 122.62

3 2060.00 123.05 49.00 0.26 122.79

4 2080.00 123.38 69.00 0.51 122.87

5 2100.00 123.71 89.00 0.85 122.86

6 2120.00 124.05 109.00 1.28 122.77

7 2140.00 124.38 129.00 1.79 122.59

8 2160.00 124.71 149.00 2.39 122.32

9 2180.00 125.05 169.00 3.08 121.97

10 (Q) 2181.00 125.06 170.00 3.11 121.95
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The grade level at xmax = 122.23 + 
77 27

60
.

 = 123.52 m

and the offset =

10
6

2

400 85
77 272

+�
�

�
�

×
× .  = 0.64 m.

Thus the reduced level of the highest point

= 123.52 – 0.64 = 122.88 m.

The offset BE at B =

10
6

2

400 85
852

+�
�

�
�

×
×  = 0.78 m = EF.

The sight line can be taken as the tangent RS to the curve at E. RS is parallel to PQ which

has a slope of 
l

lglg

2
100100

21 +
 = 

200
21 gg +

 radians, and the slope of PB is
100

1g
 radians. Thus the angle

θ between PB and PQ as shown in Fig. 7.27,

=
100

1g
 – 

200
21 gg +

=
200

21 gg −
.

Distance JK = 1.06 – 0.78 = 0.28 m.

Thus in ∆JPK, we have

JK
d

= θ

     d =
JK
θ

= 
JK

g g1 2

200

0 28 200
10
6

2
− =

+�
�

�
�

. ×
 = 15.27 m.

Thus the total sight distance

RS = 2 (d + l)

= 2 × (15.27 + 85) = 200.54 m

= 200 m (say)

P

B

K

J

Q

R

S

• θ1.06 m 0.78 m

d

Fig. 7.27
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OBJECTIVE TYPE QUESTIONS

1. A circular curve is most suited for connecting

(a) two straights in horizontal plane only.

(b) two straights in vertical plane only.

(c) two straights, one in horizontal plane and the second in vertical plane.

(d) two straights in horizontal plane or vertical plane.

2. A compound curve consists of

(a) two circular arcs of same radius only.

(b) two circular arcs of different radii only.

(c) two circular arcs of different radii with their centers of curvature on the same side of the
common tangent only.

(d) two or more circular arcs of different radii with their centers of curvature on the same side
of the common tangent.

3. A reverse curve consists of

(a) two circular arcs of different radii with their centers of curvature on the same side of the
common tangent only.

(b) two circular arcs of same radius with their centers of curvature on the same side of the
common tangent only.

(c) two circular arcs of different radii with their centers of curvature on the opposite side of the
common tangent only.

(d) two circular arcs of same or different radii with their centers of curvature on the opposite
side of the common tangent.

4. A transition curve is a special type of curve which satisfies the condition that

(a) at the junction with the circular curve, the angle between the tangents to the transition curve
and circular curve should be 90°.

(b) at the junction with the circular curve, the angle between the tangents to the transition curve
and circular curve should be zero.

(c) its curvature at its end should be infinity .

(d) its curvature at its end should be infinity.

5. The most widely used transition curve for small deviation angles for simplicity in setting out is

(a) cubic parabola.

(b) cubic spiral.

(c) lemniscate curve.

(d) hyperbola.

6. The following curve has the property that the rate of change of curvature is same as the rate
of change of increase of superelevation:

(a) Reverse curve.

(b) Compound curve.

(c) Transition curve.

(d) Vertical curve.
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7. A parabola is used for

(a) summit curves alone. (b)  sag curves alone.

(c) both summit and sag curves. (d)  none of the above.

8. A parabola is preferred for vertical curves because it has the following property:

(a) The slope is constant throughout.

(b) The rate of change of slope is constant throughout.

(c) The rate of change of radial acceleration is constant throughout.

(d) None of the above.

9. The shortest distance between the point of commencement and the o\point of tangency of a
circular curve is known as

(a) Long chord. (b)  Normal chord.

(c) Sub-chord. (d)  Half-chord.

10. The long chord of a circular curve of radius R with deflection angle ∆ is given by

(a) 2R cos(∆/2). (b)  2R sin(∆/2).

(c) 2R tan(∆/2). (d)  2R sec(∆/2).

11. The lengths of long chord and tangent of a circular curve are equal for the deflection angle of

(a) 30°. (b)  60°.

(c) 90°. (d)  120°.

12. The degree of a circular curve of radius 1719 m is approximately equal to

(a) 1°. (b)  10°.

(c) 100°. (d)  None of the above.

13. If the chainage of point of commencement of a circular curve for a normal chord of 20 m is
2002.48 m, the length of the first sub-chord will be

(a) 2.48 m. (b)  17.52 m.

(c) 20 m. (d)  22.48 m.

14. If the chainage of point of tangency of a circular curve for a normal chord of 20 m is 2303.39
m, the length of the last sub-chord will be

(a) 3.39 m. (b)  16.61 m.

(c) 23.39 m. (d)  none of the above.

15. For an ideal transition curve, the relation between the radius r and the distance l measured from
the beginning of the transition curve, is expressed as

(a) rl ∝ . (b)  2rl ∝ .

(c) rl /1∝ . (d)  2/1 rl ∝ .

16. For a transition curve, the shift S of a circular curve is given by

(a)
L
R24 2

. (b)  
L
R

2

224
.

(c)
L
R

3

224
. (d)  

L
R

3

24
.
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17. For a transition curve, the polar deflection angle αs and the spiral angle ∆s are related to each
other by the expression

(a) αS = ∆S/2. (b)  αS = ∆S /3.

(c) αS = ∆S/4. (d)  αS = ∆2
S/3.

18. To avoid inconvenience to passengers on highways, the recommended value of the centrifugal
ratio is

(a) 1. (b)  1/2.

(c) 1/4. (d)  1/8.

19. The following value of the change in radial acceleration passes unnoticed by the passengers:

(a) 0.003 m/s2/sec. (b)  0.03 m/s2/sec.

(c) 0.3 m/s2/sec. (d)  3.0 m/s2/sec.

20. The curve preferred for vertical curves is a

(a) circular arc. (b)  spiral.

(c) parabola. (d)  hyperbola.

21. If an upgrade of 2% is followed by a downgrade of 2%, and the rate of change of grade is 0.4%
per 100 m, the length of the vertical curve will be

(a) 200 m. (b)  400 m.

(c) 600 m. (d)  1000 m.

22. For a vertical curve if x is the distance from the point of tangency, the tangent correction is given
by

(a) Cx. (b)  Cx2.

(c) Cx3. (d)  Cx4.

ANSWERS

1. (a) 2. (d) 3. (d) 4. (b) 5. (a) 6. (c)

7. (c) 8. (b) 9. (a) 10. (b) 11. (d) 12. (a)

13. (b) 14. (a) 15. (c) 16. (d) 17. (b) 18. (c)

19. (c) 20. (c) 21. (d) 22. (b)



8 AREAs AND VOLUMES 

8.1 AREAS AND VOLUMES 

In civil engineering works such as designing of long bridges, dams, reservoirs, etc., the area of 
catchments of rivers is required. The areas of fields are also required for planning and management 
of projects. The area is required for the title documents of land. 

In many civil engineering projects, earthwork involves excavation and removal and dumping 
of earth, therefore it is required to make good estimates of volumes of earthwork. Volume 
computations are also needed to determine the capacity of bins, tanks, and reservoirs, and to check 
the stockpiles of coal, gravel, and other material. 

Computing areas and volumes is an important part of the office work involved in surveying. 

8.2 AREAS 

The method of computation of area depends upon the shape of the boundary of the tract and 
accuracy required. The area of the tract of the land is computed from its plan which may be 
enclosed by straight, irregular or combination of straight and irregular boundaries. When the boundaries 
are straight the area is determined by subdividing the plan into simple geometrical figures such as 
triangles, rectangles, trapezoids, etc. For irregular boundaries, they are replaced by short straight 
boundaries, and the area is computed using approximate methods or Planimeter when the boundaries 
are very irregular. Standard expressions as given belC!w are available for the areas of straight figures. 

Area of triangle = .lab sin C 
2 

in which C is the included angle between the sides a and b. 

Ar f 
. a+b

h ea 0 trapezmm =--
. 2 

in which a and b are the parallel sides separated by perpendicular distance h. 

Various methods of determining area are discussed below. 

Area Enclosed by Regular Straight Boundaries 

If the coordinates of the points A, B, C, etc., for a closed traverse of n sides shown in Fig. 
8.1, are known, the area enclosed by the traverse can be calculated from the following expression . 

.. . (8.1) 

256 
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... (8.2) 

The area can also be computed by arranging the coordinates in the determinant form given 
below. 

xtx x><x3 •••••••••• x)<xt 

y(/ y:i/ Y3" " " " "y~'/ Yt 

The products of the coordinates along full lines is taken positive and along dashed lines 
negative. 

Thus the area 

.(8.3) 

Area Enclosed by Irregular Boundaries 

Two fundamental rules exist for the determination of areas of irregular figures as shown in 
Fig 8.2. These rules are (i) Trapezoidal rule and (ii) Simpson's rule. 

y 

E(x~.ys) 

Fig. 8.1 

Trapezoidal Rule 

I 
I 
I 
I 

C (Xl. y,) 

I » 

Fig. 8.2 

In trapezoidal rule, the area is divided into a number of trapezoids, boundaries being assumed 
to be straight between pairs of offsets. The area of each trapezoid is determined and added together 
to derive the whole area. If there are n offsets at equal interval of d then the total area is 

(
Ot +On ) A = d 2 + 02 + 0 3 + ......... + 0n-t ... (8.4) 

While using the trapezoidal rule, the end ordinates must be considered even they happen to be zero. 

Simpson's Rule 

In Simpson's rule it is assumed that the irregular boundary is made up of parabolic arcs. The 
areas of the successive pairs of intercepts are added together to get the total area. 
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Since pairs of intercepts are taken, it will be evident that the number of intercepts n is even. 
If n is odd then the first or last intercept is treated as a trapezoid. 

Planimeter 

An integrating device, the planimeter, is used for the direct measurement of area of all shapes, 
regular or irregular, with a high degree of accuracy. 

The area of plan is calculated from the following formula when using Amsler polar planimeter . 

. .. (8.6) 

where M the multiplying constant of the instrument. Its value is marked on the tracing 
arm of the instrument, 

RF and RJ = the final and initial readings, 

N = the number of complete revolutions of the dial taken positive when the zer::i 
mark passes the index mark in a clockwise direction an4 'negative when i,1 
counterclockwise direction, and 

C the constant of the instrument marked on the instrument arm just above the 
scale divisions. Its value is taken as zero when the needle point is kept outside 
the area. For the needle point inside, -the value of MC is equal to the area of 
zero circle. 

8.3 VOLUMES 

Earthwork operations involve the determination of volumes of material that is to be excavated or 
embankeq in engineering project to bring the ground surface to a predetermined grade. Volumes can 
be determined via cross-sections, spot levels or contours. It is convenient to determine the volume 
from 'standard-type' cross-sections shown in Fig. 8.3, provided that the original ground surface 
is reasonably uniform in respect of the cross-fall, or gradient transverse'to the longitudinal centre 
line. The areas of various standard-type of cross-sections have been discussed in various examples. 

Having computed the cross-sections at given intervals of chainage along the centre line by 
standard expressions for various cross-sections, or by planimeter, etc., volumes of cut in the case 
of excavation or volumes of fill in the case of embankment, can be determined using end-area rule 
or prismoidal rule which are analogous to the trapezoidal rule and Simpson's rule, respectively. 

If the cross-sections are considered to be apart by distance d then by end-areas rule and 
prismoidal rule the volume is given by the following formulae: 

End-areas rule 

... (8.7) 

Prismoidal rule 
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The prismoidal rule assumes that the earth forms a prismoid between two cross-sections 2d 
apart, and for this to apply the linear dimensions of the mid-section between them should be the 
mean of the corresponding dimensions at the outer sections. The prismoidal formula gives very 
nearly correct volume of earthwork even for irregular end sections and sides that are warped 
surfaces. 

The prismoidal formula though being more accurate than end-areas rule, in practice the end­
areas rule is more frequently adopted because of the ease of its application. End-areas rule gives 
the computed volumes generally too great which is in favour of contractor. 

Since the end-areas rule gives volume larger than the prismoidal rule, accurate volume by the 
former can be obtained by applying a correction known as prismoidal correction given below. 

Cpc = Volume by end-areas rule - volume by prismoidal rule 

... (8.9) 

where Am = the area of the middle section. 

If hi and h2 are the depths or heights at the midpoints of the sections Al and A2, respectively, 

hi + h2 
hm for the middle section is = 2 

rOriginal ground level 

_JL ___ t _____________ _ 

J in s 

Formation level 

(a) Level section 

1 inn~. ___ , 

1 ins 

(c) Three-level section 

....... 

_____________ ~ Ori~inal ground level 

-----------------. J.ill n 

I in s 

Formation level 

(b) Two-level section 

..... 

...... ··1······· 

,.-.. , 
............. 

....... 

I ins 

(d) Part cut-part fill 

I ins 

(e) M~lti-Ievel section 

Fig. 8.3 
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where 

For a two-level section, we have 

n = the cross-fall (1 in n) of the original ground, 

s = the side slope (1 in s), and 

b = the width of formation. 

SURVEYING 

Substituting the values of AI' A2, and in Eq. (8.9), the prismoidal correction for a two-level 
section is 

= ds ( n 2 J(h _ h )2 
6 2 2 1 2 

n -s 
... (8.10) 

In a similar manner, the prismoidal corrections can be obtained for other types of sections. 

The end-areas rule for calculating the volume is based on parallel end-areas, i.e., the two cross­
sections are normal to the centre line of the route. When the centre line is curved, the cross-sections 
are set out in radial direction and, therefore they are not parallel to one another. Hence the volume 
computed by end-areas rule will have discrepancies and need correction for curvature. 

According to Pappus's theorem, the volume swept by an area revolving about an axis is given 
by the product of the area and the length of travel of centroid of the area, provided that the area 
is in the plane of the axis and to one side thereof. 

If an area A is revolved along a circular path of radius R through a distance L, the volume 
of the solid generated is 

V=AL(R±e) 
R 

... (8.11) 

where e is the distance of the centroid of the cross-sections from the centre line AB as shown in 
Fig. 8.4, and it is called as eccentricity of cross-sections. The eccentricity e is taken negative when 
it is inside the centre 0 and the centre line AB, and positive when outside. 

Volume by Spot Levels 

If the spot levels have been observed at the corners of squares or rectangles forming grid, the 
volume is calculated by determining the volume of individual vertical prisms of square or rectangular 
base A and depth h, and adding them together. The following expression gives the total volume. 



AREAS AND VOLUMES 

v 

where 

A(Ihl +2Ih2 +3I h3 +4IhJ 
4 
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... (S.12) 

A the area of the square or rectangle, 

I hI = the sum of the vertical depths common to one 

pnsm, 

Centroid lin~~'entrc line 

~:~~~--~:{-:~: -: .. ~ 
'" . ' , ~ 

I h2 = the sum of the vertical depths common to two 

pnsm, 

I h3 = the sum of the vertical depths common to three 

prism, and 

I h4 = the sum of the vertical depths common to four 

pnsm. 

~~~' 

'\ 
o 

Fig. 8.4 
Volume from Contours 

Contours are used in a manner similar to cross-sections and the distance between the cross­
sections is taken equal to the contour interval. The area enclosed by a contour is determined using 
a planimeter. This method of determining volume is approximate since the contour interval is 
generally not sufficiently small to fully depict the irregularities of the ground. 

8.4 HEIGHTS OF POINTS FROM A DIGITAL TERRAIN MODEL 

A digital terrain model (DTM) also is a digital representation of terrain surface by densely distributed 
points of known (X, Y, Z) coordinates. It is also known as digital elevation model (DEM) when 
the Z coordinate represent only elevation of the points. Data for a DTM may be gathered by land 
survey, photogrammetry or from an existing map, of these the photogrammetric methods are most 
widely used. By photogrammetric method the DTM is produced in a photogrammetric plotter by 
supplementing it with special processing components which make model digitization possible. The 
stored digital data in the form of (X, Y, Z) coordinates of characteristic points in a computer, allow 
the interpolation of Z coordinates of other points of given coordinates (X, 1'). 

When the characteristic points are located in the form of square, rectangular or triangular grid 
layouts, linear interpolation is used to determine the Z coordinates of other points. Fig. S.Sa shows 
the spot levels ZA' ZB' Ze, and ZD at the nodes A, B, C, and D, respectively, of the square of side 
L. 

Interpolating linearly between A and B, in Fig. 8.Sb, 

X 
Za = ZA + (ZH -ZA)-

L 

_ (L-x)Z X z - A+- B 
L L 

Similarly, interpolating between C and D, in Fig. 8.Sc, 
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Zb = (L - x) Zc + ~ ZD 
L L 

Now interpolating between a and b, in Fig. 8.5d, we get the Z coordinate of P. 

f 

~ 
t 
L 

t 
L 

Z - (L-x)Z 1::.Z 
P - ,,+ b 

L L 

_(L-y)[(L-X)Z Xz] y[(L-X)Z Xz] - A+- B +- c+- D 
L L L L L L 

= ~2 [(L -x)(L - y)ZA + x(L - y)ZB + y(L -x)Zc + XyZD] 

C b D 

c~.~.~.~.·· d 

;~ 
A a B []J [}]

P 
: z. : z i 

Z, iZ. Zc iZ' . "z.cE]" 
A~x~ BC~x~ D" b 
~L~ ~L~ ~L~ 

(b) (c) (d) 

i ~--~--~--~x 
O~L~L~~L~ 

(b) (c) (d) 

(a) 
(a) 

Fig. 8.S 

.. (8.13) 

8.5 MASS-HAUL DIAGRAM 

A mass-haul diagram or curve is drawn subsequent to the calculation of earthwork volumes, its 
ordinates showing cumulative volumes at specific points along the centre line. Volumes of cut and 
fill are treated as positive and negative, respectively. Compensation can be made as necessary, for 
shrinkage or bulking of the excavated material when placed finally in an embankment. 

Fig. 8.6 shows a typical mass-haul diagram in which the following characteristics of a mass­
haul diagram may be noted: 

(a) A to G and S to M indicate decreasing aggregate volume which imply the formation of 
embankment. 

(b) Rising curve from R to B indicates a cut. 

(c) R having a minimum ordinate is a point which occurs in the curve at the end of an 
embankment. 

(d) S having the maximum ordinate is a point which indicates the end of a cut. 
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R 

-8000 Distance (m) --.. 

Fig. 8.6 

In a mass-haul diagram for any horizontal line, e.g., GH, the ordinates at G and H will be equal, 
and therefore, over the length GH, the volume of cut and fill are equal, i.e., they are balanced out. 
When the curve lies between the trace line ABC, earth is moved to left, B-R-A, and, similarly, when 
the curve lies above, earth is moved to right, i.e., B-S-C. The length of the balancing line indicates 
the maximum distance that the earth will be transported within the particular loop of the diagram 
formed by the line. Though the base line ABC gives continuous balancing lines AB and BC, but for 
ensuring the most economical solution, the balancing lines should be taken at appropriate place 
without caring for continuity. 

Haul: It is defined as the total volume of excavation multiplied by average haul distance. It 
is the area between the curve and balancing line, i.e., area GRH is the haul in length GH 

Free-haul: It is the distance up to which the hauling is done by the contractor free of charge. 
For this distance the cost of transportation of the excavated material is included in the excavation 
cost. 

Overhaul: It is the excavated material from a cutting moved to a greater distance than the 
free-haul, the extra distance is overhaul. 

Example 8.1. The length of a line originally 100 mm long on a map plotted to a scale of 
111000, was found to be 96 mm due to shrinkage of the map. The map prepared using a tape of 
length 20 m was later found to be actually 20.03 m. If a certain area on the map, measured using 
a planimeter, is 282 mm2

, determine the correct area on the ground. 

Solution: 

Due to shrinkage in the map, the scale of the map will change from 111000 to liS where 

S = 1000 x 100. 
96 

20.03 
Further, since the 20 m tape was actually 20.03 m, a correction factor c of 20 has to be 

applied to all th.e linear measurements. 
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The correct area on the ground due to change in scale 
A' = Measured area x (new scalei 

= Measured area x S-
Now the corrected area due to incorrect length of the tape 

A = A'e2 

= 282 x ( 1000 x 1~~ J x ( 2~.~3 J mm2 

SURVEYING 

= 282 x (1000 x 100)2 x (20.03)2 x _1_ m2 = 307 m 2• 
96 20 10002 

Example 8.2. The coordinates of traverse stations of a closed traverse ABCDE are given in 
Table 8.1. 

Table 8.1 

A 0 0 

B + 170 + 320 

C +470 

D + 340 - 110 

E - 40 - 220 

Calculate the area enclosed by the traverse. 

Solution (Fig. 8.7): 

Writing the coordinates in determinant form, we get 

A 
o 

B 
+170 

C D 
+470 +340 

E 
-40 

A 
o 

xxxxx 
0 +320 +90 -1l0 -220 0 

B 
Y .+ 

c 

E 

Fill. 117 
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Thus the area 

A = ~ x [0 x 320 - 0 x 170 + 170 x 90 - 320 x 470 + 470 x (-110) - 90 x 340 
2 

+ 340 x (- 220)- (-llO)x (- 40)+ (- 40 +} x 0 - (- 220)x 0] 

= ~ x (- 296600) = - 148300 m2 

2 

= 148300 m2 (neglecting the sign) = 14.83 hectares. 
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It may be noted that the computed area has negative sign since the traverse has been considered 
clockwise. 

Example 8.3. A tract of land has three straight boundaries AB, BC, and CD. The fourth 
boundary DA is irregular. The measured lengths are as under: 

AB = 135 m, BC = 191 m, CD = 126 m, BD = 255 m. 

The offsets measured outside the boundary DA to the irregular boundary at a regular interval 
of 30 m from D, are as below: 

0.0 30 60 90 120 150 180 

0.0 3.7 4.9 4.2 2.8 3.6 0.0 

Determine the area of the tract. 

Solution (Fig. 8.8): 

Let us first calculate the areas of triangles ABD and BCD. 

The area of a triangle is given by 

A = ~S(S-a)(S-b)(S-c) 

S =a+b+c 
in which a, b, !lnd c are the lengths of the sides, and 2 

For MBD 

S = 135 + 255 + 180 = 285 m 
2 

AI = ~285 x {285 -135}x {285 - 255}x {285 -180} ... . 

= 11604.42 m2
• 

For MCD 

S= 191+126+255 =286m 
2 

A2 = ~286 x {286 -191}x {286 -126}x {286 - 255} 

= 11608.76 m2
. 

B 191 m 

Fig. 8.8 
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Now to calculate the area of the irregular figure, use of trapezoidal rule or Simpson's rule can 
be made. The Simpson's rule require even number of increments, whereas the trapezoidal rule can 
be used for odd as well as even number of increments. In the present case since the number of 
increments is even, the area can be determined with either trapezoidal rule or Simpson's rule. 

Area by trapezoidal rule 

(
01 +07 ) A =d 2 +02 +03 +04 +05 +06 

In this case 0 1 and 0 7 are the end offsets, and therefore 0 1 = 07 = 0 m. 

Thus A3.=30X(0~0 +3.6+2.8+4.2+4.9+3.7) 

= 30 x 19.2 = 576.00 m2
. 

Hence the total area of the tract 

= Al + A2 + A3 

= 11604.42 + 11608.76 + 576.00 

= 23789.18 m2 = 2.4 hectares. 

Example 8.4. The area of an irregular boundary was measured using a planimeter. The initial 
and final readings were 9.036 and 1.645, respectively. The zero mark on the dial passed the index 
mark twice. The tracing point was moved in clockwise direction and needlepoint was outside the 
plan. Calculate the area of the plan if the multiplying constant of the planimeter is 100 cm2

. 

Solution: 

A = M (RF - RJ ± ION + C) 
Since the needlepoint was kept outside the plan, C = 0, and the tracing point was moved in 

clockwise direction, N = +2. Thus 

A=100x(1.645-9.036+10x2) = 1260.9 m2
• 

Example 8.5. An area defined by the lines of a traverse ABCDEA is to be partitioned by a line 
XY, X being on AB, and Y on CD, having bearing 196°58'. The area of XCDYX has to be 
30100 m2

. The coordinates of the traverse stations are given in Table 8.2. 

Solution (Fig. 8.9): 

Table 8.2 

Easting (E) 610 1010 760 580 460 

Northing (N) 760 760 260 380 510 

Let X be at a distance of x from B on AB, and Y be at a distance of y from C on CD. Since 
A and B have equal northings, i.e., N 760, the coordinates of X can be written as 

Easting of X = Easting of B - x 

= (1010 - x) = y (say) 
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and 

A 

E 

Northing of X = Northing of A or B 

= 760 = 'A. (say). 

X 
~_X~B 

A 
(E61O, N760) (E 10\ 0, N 760) 

(b) 

Fig. 8.9 

From Fig. 8.9b, we find that 

We have 

Therefore 

My Y Mly 
--=-=--
M CD MI 

!1E = 760 - 580 = 180 m 

MI = 380 - 260 = 120 m 

CD = ~(M2+Ml2) 

~(18Q2 + 12Q2) = 216.33 m. 

M 180 
!1E y = CDY = 216.33 Y = 0.832 Y 

MI 120 
Mly = CDY = 216.33Y = 0.555 Y 

Easting of Y = Easting of C - My 

= 760 - O.~32 Y = a (say) 

Northing of Y = Northing of C + Mly 

= 260 - 0.555 Y = P (say). 
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Now the bearing of XY being 196°58', the bearing of YX will be 196°58' - 180° = 16°58'. 

Thus 
Ex-Ey y-a 

tanI6°58' = =--
Nx-Ny 'A.-P 

0.30509 
y -a 
),,-p 
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y -u = 0.30509 (A - P) 
1010 - x - 760 + 0.832 y = 0.30509 x (760 - 260 - 0.555 y) 

x = 97.455 + 1.001 y. 

Therefore Easing of X = 1010 - (97.455 + 1.001 y) 

= 912.545 - 1.001 y = x' (say) 

Northing of X = 760 m. 

Now writing the coordinates of X, B, C, Y, and X in determinant form 

X B c y x 
x' 1010 760 a x' 

XXXX 
760 760 260 760 

The area of the traverse XBCYX is 

SURVEYING 

1 
A = -x[x'x760-760x1010+1010x260-760x760+760x P -260xu 

2 

+ux760-pxx'] 

=.!. x [(760 - P )x' + 760p + 50fu -1082600] 
2 

1 
= - x [(760 - 260 - 0.555 y) x (912.545 - 1.001y) + 760 x (260 + 0.555 y) 

2 

+ 500 x (760 - 0.832y )-1082600] 

= .!.X[0.556y2 -1001.312y-48727.5] 
2 

Since the traverse XBCYX has been considered in clockwise direction, the sign of the computed 
area will be negative. Therefore 

.!. X [0.556y 2 -1001.312y - 48727.5] = - 30100 
2 

0.556y2 -1001.312y - 48727.5 = - 60200 

0.556y2 -1001.312y + 11472.5 = 0 
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and 

The solution of the above equation gives 

y = 23.06 m 

x = 97.455 + 1.001 x 23.06 = 120.54 m. 

Thus the coordinates of X and Yare 

Ex = 912.545 - 1.001 x 23.06 

E 889.46 m :::; E 889 m 

Nx = N 760 m 

E y = 760 - 0.832 x 23.06 

E 740.81 m :::; E 741 m 

Ny = 260 + 0.555 x 23.06 

= N 272.80 m :::; N 273 m. 
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Example 8.6. Calculate the area of cross-section that has breadth of formation as 10m, center 
height as 3.2 m and side slopes as 1 vertical to 2 horizontal. 

Solution (Fig. 8.10): 

A cross-section having no cross-fall, i.e., the ground transverse to the center line of the road 
is level, is called as a level- section. The area of a level-section is given by 

where 

A = h (b + sh) 

h = the depth at the center line in case of cutting, and the height in case of embankment, 

b = the formation width, and 

1 in s = the side slope. 

The widths w are given by 

It is given that 

w 
b 
-+sh 
2 

b 10 m 

h 3.2 m 

s 2. 

(a) Cutting 

Fig. 8.10 

(b) Embankment 
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Hence the area 

A = 3.2 x (10 + 2 x 3.2) = 52.48 m2
. 

Example 8.7. Compute the area of cross-section if the formation width is 12 m, side slopes 
are I to I, average height along the center line is 5 m, and the transverse slope of the ground is 
10 to 1. 

Solution (Fig. 8.11): 

A cross-section that has a cross-fall is known as two-level section. For such sections the area 
is given by 

where 

_n_(!.+ Sh), a,1'1d 
n+s 2 

1 in n = the cross·-fall of the ground. 

(a) Cutting (b) Embankment 

Fig. 8.11 

From the given data, we have 

b 12 m 

h 5m 
s = 1 

n = 10. 

To calculate the area, let us first calculate wI and w2' 

wI = ~X(~+lX5)= 12.22 m 
10-1 2 

10 (12 ) 
w2 10+1 x 2+ 1x5 = 10.00 m. 

Therefore A -.x -+lx5 (12.22+10.00)-- = 157.00 m2. 1 [(12) 122] 
2xl 2 2 
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Example 8.8. The following data pertains to a cross-section: 

Formation width 18 m 

Depth of cut at the midpoint of formation 

Transverse slope on the right side of midpoint 

Transverse slope on the left side of midpoint 

Side slope 

Compute the area of the cross-section. 

Solution (Fig. 8.12): 

3m 

10 to 1 

7 to 1 

2.5 to 1. 
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In this problem the original ground surface has three different levels at A, B, and C, and such 
sections are known as three-level section. The area of a three level-section is given by the following 
expression. 

A -(w +w h+---1 \ b) b2 

2 1 2 2s 4s 

where n1 (b ) -- -+sh , 
n1 -s 2 

-- -+sh . n2 (b ) 
n2 +s 2 

It is given that b 18 m Fig. 8.12 
h 3 m 

s = 2.5 

Now ~x(.!!+2x3)= 18.75 m 
10-2 2 

w2 = ~X(.!!+2x3)= 11.67 m. 
7+2 2 

Therefore 
1 ( 18) 18

2 

A = - x (18.75 + 11.67) x 3 + -- ---
2 2x2 4x2 

= 73.58 m2
. 

Example 8.9. Calculate the area of a cut section shown in Fig. 8.13. 

Solution (Fig. 8.12): 

Since the point B at which the level is changing from 1 in 18 to 1 in 10 is not on the center 
line, there is no staildard expression for such a three-level section. Let us derive the expression for 
determination of the area. 
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b 
GE = b l = -+FE 

2 

FD 
b 

b2 = 2- FE 

-_n_I_(b
l 

+sh) 
nl -s 
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A~WI ~ W2~ 
------------------------__________ i B 

I in 18 --.;rj--(j?f--- I in 10 

I in 3 ! ~ i 1.0 :--------- C 

Fi : 
G \, ,:.' D 
t+::.8m~~m~ 

~\~.: ... i :pb2~ 

\\t 
Fig. 8.13 

The area of the cross-section ABCDGA is given by 

A = Area of MBJ - area of I1GFJ + area of MCH - area of I1EDH 

Now 

From the figure, we have 

Therefore 

1 1 1 1 
-W)BJ --GE EJ +-'W2BH --EDEH 
2 2 2 2 

1 
-( W)BJ - bt EJ + 'W2BH - hz EH) 
2 

bt BJ = BE + EJ = BE + -

bt EJ =-
s 

s 

hz 
BH = BE + EH = BE + -

s 

EH = hz 
s 

s = 3, nl = 18, n2 = 10 
h 1.0 m = BE, b = 16 m. 

18 
18-2 x(9.0+3xl.O)= 13.5 m 

10 ) 
10+2 x(7.0+3xl.O = 8.33 m 
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9.0 
BJ = l.0 + 2= 5.5 m. 

9.0 
EJ = 2= 4.5 

7.0 
BH = l.0 + 2= 4.5 

7.0 
EH = 2= 3.5 m. 

Therefore the area of cross-section 

A 
1 
- x (13.5 x 5.5 - 9.0 x 4.5 + 8.33 x 4.5 - 7.0 x 3.5) 
2 

23.37 m2
. 
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Example 8.10. The width of a certain road at formation level is 9.50 m with side slopes 
in 1 for cut and 1 in 2 for filling. The original ground has a cross-fall of 1 in 5. If the depth of 
excavation at the center line of the section is 0.4 m, calculate the areas of the cross-section in cut 
and fill. 

Solution (Fig. 8.14): 

The transverse slope of the ground as shown in Fig. 6.13, may intersect the formation level 
such that one portion of the section is in cutting and the other in filling. In such cases the section 
is partly in cpt and partly in fill, and they are known as side hill two-level section. 

Since the side slopes in fill and cut are different, the areas of fill and cut will different as below. 

1 (%-nhY 

t. 
1+--1<11 .,0( , 

Area of fill 
2 n-s 

Fill 

Area of cut = 
1 (%+nhJ / 
2 n-r Fig. 8.14 

The side widths can be calculated from the following expressions. 

_n (~+rh) 
n-r 2 

_n (~-Sh). 
n-s 2 
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In Fig. 8.13, the center of the fonnation is lying in cut. If the center of the cross-section lies 
in the fill, in the expressions the + h is replaced by - h and vice-versa to get the areas, i.e., 

Area of fill 

Area of cut 
2 n-r 

The given data are b 9.5 ro 

h 0.4 ro 

s 2 

r = 
n = 5. 

Since the center of fonnation is lying in cut, we have 

Area of cut 
1 (9~5 +5X0.4r 
-x~----,:",--

2 5-1 
= 5.70 m2 

Area of fill = 

1 (9~5 -5X0.4r 
-x~----':"'--

2 5-2 

Example 8.11. A new road is to be constructed with formation width of 20 ro, side slopes 
of 1 vertical to 2.5 horizontal. The heights of fill at the center line of three successive cross­
sections, 50 ro apart, are 3.3 ro, 4.1 ro, and 4.9 ro, respectively. The existing ground has a cross-
fall of 1 in 10. Calculate the volume of the fill. . 

Solution (Fig. 8.11b): 

It is the case of two- level section for which the area is given by 

where _n (~+Sh), 
n-s 2 

W2 _n (~+Sh). 
n+s 2 
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The volume of fill is' given by the end-areas rule, i.e., 

V = d( Al ~ A3 + A2 ) 

and by prismoidal rule 

where AI' A2, and A3 are the areas of the three cross-sections. 

The following are given 

b = 20 m 

s = 2.5 

n = 10 

d = 50 m 

hI' h2' h3 = 3.3 m, 4.1 m, 4.9 m. 

For section-l 

_1_0_x (_20 + 2.5 x 3.3J= 2427 m 
10- 2.5 2 . 

_1_0_ x (_20 + 2.5 x 3.3J = 14.60 m 
10+2.5 2 

1 x [(20 + 2.5 x 3.3J x (24.27 + 14.60)- 20
2

] 
2x 2.5 2 2 

101.88 m2
. 

For section-2 

10 x(20 +2.5X4.1J = 26.93 m 
10-2.5 2 

_1_0_X(_20 +2.5X4.1J = 16.20 m 
10+ 2.5 2 

1 x[(20 + 2.5 X 4.1J x (26.93 +16.20)- 20
2

] 
2x 2.5 2 2 

134.68 m2
. 

For section-3 

_1_0_x (_20 + 2.5 x 4.9J = 29.59 m 
10- 2.5 2 

275 
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Therefore 

by end-areas rule 

and by prismoidal rule 

SURVEYING 

Wz _1_0_X(_20 +2.5 X4.9)= 17.80 m 
10+ 2.5 2 

1 x [(20 + 2.5 x 4.9) x (29.59 + 17.80)- 20
2

] 
2x 2.5 2 2 

170.89 mZ
• 

v = 50 x C°1.88; 170.89 + 134.68) 

13553.3 ~ 13553 m3. 

v = 50 x (101.88 + 170.89 + 4 x 134.68) 
3 

13524.8 ~ 13525 m3. 

Since the end-areas rule gives the higher value of volume than the prismoidal rule, the volume 
by the former can be corrected by applying prismoidal correction given by the following formula 
for a two-level section. 

Cpc 

50 (102 J - x 2.5 x 2 2 = 22.22 
6 10 - 2.5 

Now 22.22x(3.3-4.1Y= 14.22 m3 

Total correction 

Cpc = Cpcl + Cpcz = 2 x 14.22 = 28.44 m3. 

Thus the corrected end-areas volume 

= 13553 - 28.44 = 13524.56 ~ 13525 m3
. 

Example 8.12. Fig. 8.15 shows the distribution of 12 spot heights with a regular 20 m spacing 
covering a rectangular area which is to be graded to form a horizontal plane having an elevation 
of 10.00 m. Calculate the volume of the earth. 

Solution (Fig. 8.15): 

Since the finished horizontal surface has the elevation of 10.00 m, the heights of the comers 
above the finished surface will be (h - 10.00) where h is the spot heights of the points. 
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Now 

"[.h! 17.18 + 17.76 + 18.38 + 17.76 = 71.08 m 

"[.h2 17.52 + 18.00 + 18.29 + 18.24 + 17.63 + 17.32 = 107.00 m 

"[.h3 0 

"[.h4 17.69 + 18.11 = 35.80 m 

A = 20 x 20 = 400 m2. 

The volume is given by 

v = A("i./4 + 2"i.~ + 3"[.ft., + 4"[.14) 

4 

i 27]76 
~28.00_ 

20 

f"I" 27.69 

20 

127]18 27.32 

277 

~9 2~38 

I 
I 
I 
I 

i 

28
1
11 2sh 

, 

I 

27.63 27176 

400 x (17.08 + 2 x 107.00 + 3 x 0 + 4 x 35.80) 

4 

1+--20 )I( 20~~20~ 

Fig. 8.15 
37428.00 m3

. 

Example 8.13. The area having spot heights given in Example 8.12 to be graded to form a 
horizontal plane at a level where cut and fill are balanced. Assuming no bulking or shrinking of the 
excavated earth and neglecting any effects of side slopes, determine the design level. 

Solution (Fig. 8.15): 

Let the design level be h. Thus 

"[.h! (27.18 - h) + (27.76 - h) + (28.38 - h) + (27.76 - h) = 111.08 - 4h 

"[.h2 (27.52 - h) + (28.00 - h) + (28.29 - h) + (28.24 - h) + (27.63 - h) + (27.32 - h) 

167.00 - 6h 

"[.h3 0 

"[.h4 (27.69 - h) + (28.11 - h) = 55.80 - 2h. 

Since the cut and fill are balanced, there will be no residual volume of excavated earth, 
therefore 

v = 4~0 x[(111.08-4h)+2(167.00-6h)+3xO+4(55.80-2h)] 

o 668.28 - 24h 

668.28 
h = 

24 
= 27.85 m. 

Example 8.14. The stations P and Q were established on the top of a spoil heap as shown 
in Fig. 8.16. Seven points were established at the base of the heap and one at the top on the line 
PQ. The observations given in Table 8.3 were recorded using a total station instrument from the. 
stations P and Q keeping the heights of instrument and prism equal at both the stations. 
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zero 

F 

A 230°15'24" 50.23 

B 281 °26' 18" 41.69 

c 37.28 

D 46.17 

E 48.33 

F 

G 

H 20.13 

B 

E 

Fig. 8.16 

Table-8.3 

- 5.65 

- 5.34 

- 5.13 

- 5.44 

- 5.76 

+0.25 

C Reference 
... -y' zero 

D 

42.89 

58.96 

45.41 

34.35 

28.72 

SURVEYING 

- 5.37 

- 5.48 

- 5.67 

- 5.71 

+ 0.53 

Determine the volume of heap above a horizontal plane 6.0 m below the station P. 

Solution (Fig. 8.17): 

For such problems, the volume is calculated from a ground surface model consisting of a 
network of triangles. Further, it may be noted that if the point H does not lie on the ridge joining 
the stations P and Q, the top of the ridge would be truncated. 

As shown in Fig. 8.17, the volume bounded between the ground surface and the horizontal 
surface is the sum of the volumes of the triangular prisms with base in horizontal plane and having 
heights· \.:quai to m<2an of the thn:c heights of the comers. For example, the volume of the prism 

hI Tit, + h, 
------- x area of triangle 1'-2'-3' 

3 

h x area of triangle 1'-2'-3' 
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where 

In the present case, since the lengths of two sides of a triangle and the included angle are 
known, the area of the triangle can be computed from the following formula for a plane triangle. 

A = .!..absinC. 
2 

Let us calculate the volume under the triangle PAB. 

LAPB = Direction to B from P - direction to A from P 

= 281°26'18" - 230°15'24" = 51°10'54" 

P A = LI = 50.23 m 

I 

4 

PB = L2 = 41.69 m 1L----..Jr--t--74' 

Height of P = hi = 6.00 m 

Height of A 

Height of B 

h2 = 6.00 - 5.65 = 0.35 m 

h3 = 6.00 - 5.34 = 0.65 m 
Horizontal surtace 

Mean height h 

Volume 

1 "3 x (6 + 0.35 + 0.65) = 2.33 m 

2.33 x.!.. x 50.23 x 41.69 x sin51°10'54" 
2 

Table 8.4 

Fig. 8.17 

P A B 51 ° 10' 54" 50.23 41.69 6.00 0.35 0.65 2.33 1900.79 

PBC 41°21'14" 41.69 37.28 6.00 0.65 0.87 2.51 128X.T~ 

PCD 61 °54'24" 37.28 6.00 0.87 2.48 1882.85 

PHA 
-----" 

QAH 6.25 4.10 2246.81 

QHE 0.24 4.07 2839.64 

0.05 2.00 2609.27 

1.93 148~.77 

2.03 l364.77 

Total = 21643.93 

~ 21644 
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The horizontal plane is 6 m below P, or (6 + 0.25) = 6.25 m below H, or (6.25 - 0.53) = 

5.72 m below Q. Therefore, to calculate the heights of the comers of the triangles, observed from 
P, the height 6.00 m of P, and observed from Q, the height 5.72 m of Q, above the horizontal plane 
have to be considered. 

Table 8.4 gives the necessary data to calculate the volume of triangular prisms. 

Example 8.15. Fig. 8.18 shows the spot heights at the nodes of the squares of 20 m side in 
certain area. With origin at 0, three points P, Q, and R were located having coordinates as 
(23.0 m, 44.0 m), (86.0 m, 48.0 m), and (65.0 m, 2.0 m), respectively. It is proposed to raise the 
area PQR to a level of 50.00 m above datum. Determine the volume of earthwork required to fill 
the area. 

i'-'i.~ ".'- H'-":' ~ -

46~5 _ _ A6j&-__ A7.5 _ 4lLl __ 48.7_~_Q' 

I ;-pr~~~:----------------------r}: 
46,5 4710_' '4.7.7 _48.4_ 49.0 -I ._ 

, "~, / 

! 'I "'" '/ 

411--- 41..4 ___ .48.Q \-4,~6.- __ 4~ 
ii"", R! 

47[4 ____ 47..9 __ 48.5- 48:'r~~~'I{49l3-
o 

Fig. 8.18 

Solution (Fig. 8.18): 

46.8 47_5 

Fig. 8.19 

To determine the heights of the points P, Q, and R above datum, let us define the squares as 
shown in Fig. 8.19. 

For the point P 

L 

x 

L-x 
y 

L - Y 

20 

23.0 - 20 = 3.0 m 

20 - 3.0 = 17.0 m 

44.0 - 40 = 4.0 m 

20 - 4.0 = 16.0 m 

ZA 47.0 m, ZB = 47.7 m, Zc = 46.8 m, ZD = 47.5 m. 

Zp 

1 
-x [17.0 xI6.0x47.0 +3.0xI6.0x47.7 + 4.0xI7.0x46.8 
202 

+ 3.0 x 4.0x 47.5] 

47.1 m. 
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F or th~ point Q 

For the point R 

The area of !:lPQR 

x = 86.0 - 80 = 6.0 m 

L - x = 20 - 6.0 = 14.0 m 

y = 48.0 - 40 = 8.0 m 

L - y = 20 - 8.0 = 12.0 m 

ZA = 49.0 m, ZB = 49.3 m, Zc = 48.7 m, ZD = 48.9 m. 

281 

1 
ZQ = -2 X [14.0 x 12.0 x 49.0 + 6.0 x 12.0 x 49.3 + 8.0 x 14.0 x 48.7 

20 

-+ 6.0 x 8.0 x 48.9] 

= 49.0 m. 

x = 65.0 - 60 = 5.0 m 

L - x = 20 - 5.0 = 15.0 m 

y = 2.0 - 0 = 2.0 m 

L - y = 20 - 2.0 = 18.0 m 

ZA = 48.9 m, ZB = 49.3 m, Zc = 48.6 m, ZD = 49.0 m. 

1 
ZR = -2 x [15.0 x 18.0 x 48.9 + 5.0 x 18.0 x 49.3 + 2.0 x 15.0 x 48.6 

20 

+ 5.0 x 2.0 x 49.0] 

= 49.0 m. 

PQ = ~(23.0-86.0)2 +(44.0-48.0)2 = 63.13 m 

QR = ~(86.0-65.0)2+(48.0-2.0)2 = 50.57 m 

RP = ~(65.0-23.of +(2.0-44.0)2 = 59.40 m 

S = l.(PQ+QR+RP) 
2 

.!.x(63.13+50.57+59.40) = 86.55 m. 
2 

Area A = ~[S(S - PQ){S - QR)(S - RP)] 

~86.55 x {86.55 - 63.13}x {86.55 - 50.57}x {86.55 - 59.40} 

1407.2 m2. 
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Depth of fills at P, Q, and R 

Therefore volume of fill 

hp 50.0 - 47.1 = 2.9 m 

hQ 50.0 - 49.0 = 1.0 m 

hR 50.0 - 49.0 = 1.0 m. 

(h; + hQ + hR ) 
A---=---

3 

1407.2 x (2.9 + 1.0 + 1.0) = 2298.4 ~ 2298 m3. 

3 
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Example 8.16. Along a proposed road, the volumes of earthwork between successive cross­
sections 50 m apart are given in Table 8.5. Plot a mass-haul diagram for chainage 5000 to 5600, 
assuming that the earthworks were balanced at chainage 5000. The positive volumes denote cut and 
the negative volumes denote fill. Draw the balancing lines for the following cases: 

(a) Balance of earthworks at chainage 5000 and barrow at chainage 5600. 

(b) Equal barrow at chainages 5000 and 5600. 

Determine the costs of earthworks in the above two cases using the rates as under. 

(i) Excavate, cart, and fill within a free-haul distance of 200 m Rs. 10.00 1m3 

(ii) Excavate, cart, and fill for overhaul 

(iii) Barrow and fill at chainage 5000 

(iv) Barrow and fill at chain age 5600 

Table 8.5 

5000 

5050 - 2100 

5100 - 2400 

5150 - 1500 

5200 + 1800 

5250 +2200 

5300 +2100 

5350 + 1700 

5400 

5450 + 300 

5500 - 600 

5550 - 2300 

5600 - 2500 

Rs. 15.00 1m3 

Rs. 20.00 1m3 

Rs. 25.00 1m3
. 
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Solution (Fig. 8.20): 

Taking cut as positive and fill as negative the cumulative volumes are determined at each 
chainage with zero volume at chainage 5000 since at this chainage the earthworks were balanced, 
and the same have been tabulated in Table 8.6. Plot the mass-haul diagram Fig. 8.19, tlking the 
chainage on x-axis and the cumulative volumes on y-axis. 

Case (a): Since the earthworks have been balanced at the chainage 5000. there is no f>urplus 
or barrow at this chainage, therefore the balancing must commence from A which is the origin of 
the mass-haul diagram. This balancing line will intersect the mass-haul diagram at Band Cleaving 
a barrow of 2000 m3 at chain age 5600. 

Case (b): For equal barrow at chainages 5000 and 5600, the balancing line must bisect the 
ordinate at chainage 5600, i.e., the balancing line EJ must pass through J such that DJ = JQ 
DQI2 =- 2000/2 = - 1000 m3 or 1000 m3 barrow at chainages 5000 and 5600. 

Table 8.6 

5000 0 

5050 - 2100 - 2100 

5100 . 24()0 .- 4500 

5150 - 1500 - 6000 

5200 + 1800 -4200 

5250 + 2200 - 2000 

5300 + 2100 + 100 

5350 + 1700 + 1800 

5400 + 1300 + 3100 

5450 + 300 + 3400 

5500 - 600 +2800 

5550 - 2300 + 500 

5600 - 2500 - 2000 

The free-haul distance is the distance up to which. carting of the excavated material is done 
without any extra payment to the contractor, the cost of transportation being included in excavation 
cost. Beyond the free-haul distance if the excavation is to cart it is overhaul and a different unit 
rate 55 is applied. To show free-haul distance of 200 m, draw the balancing lines LM and NP 200 
In long The volumes of excavation involved are given by the intercepts from LM to H, and NP 
to K Since the balancing line indicates that cut halances fill over the length of the balancing line 
the earth will be cart a maximum distance of 200 m from M to L, and N to P, respectively. 
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r-___ =r __ ~L~2~------__ ~~~--~ __ ----~~~~~----~~X 
5100 5200 

·························.,.········f-::.·················· ..............•.•............•........ '-......••.... 'v,,,j 

\---~---f. M 

H 

Balancing line for 200 m 
free-haul distance 

Distance (m) ~ 

Fig. 8.20 

Q 

5700 

Cost of excavation 

Case (a): The balancing line AC shows balance of earthworks at chainage 5000 with barrow 
at chainage 5600. The balancing lines LM and NP show free-haul distance of 200 m. In this case 
the remaining volumes to be overhauled are given by the ordinates LL2 and NNI • 

From the mass-haul diagram, we get 

LLz = 2100 m3 

NNI = 1400 m3 

And let rl = Rs 10.00 1m3
, rz = Rs 15.00 1m3

, r3 = Rs 20.00 1m3
, r4 = Rs 25.00 1m3

. 

Free-haul volume VI 

Overhaul volume Vz 

Intercept between LM and H + intercept between NP and K 

(Ordinate of H - ordinate of L) + (ordinate of K - ordinate of N) 

= (6000 - 2100) + (3400 - 1400) 

5900 m3 

Intercept between AB and LM + intercept between BC and NP 

(Ordinate of L - ordinate of A) + (ordinate of N - ordinate of B) 

(2100 - 0) + (1400 - 0) 

3500 m3 

Barrow at chainage 5600 V3 = 2000 m3 

Therefore cost Vlr l + V2rz + V3r4 

5900 x 10.00 + 3500 x 15.00 +2000 x 25.00 

Rs. 161500.00 
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Case (b): The balancing line EJ shows equal barrow at chainages 5000 and 5600. The 
balancing lines LM and NP show free-haul distance of 200 m. In this case the remaining volumes 
to be overhauled are given by the ordinates LL) and NN2. 

From the mass-haul diagram, we get 

Free-haul volume V) 

NN) + N)N2 = 1400 + lOOO = 2400 m3 

LL2 - L)L2 = 2100 - lOOO = 1100 m3 

Same as in the case (a) 

5900 m3 

Overhaul volume V2 Intercept between LM and EF + intercept between FG and NP 

= LL) + NN2 = 1100 + 2400 = 3500 m3 

Barrow at chainage 5000 V3 = 1000 m3 

Barrow at chainage 5600 V4 = 1000 m3 

Therefore cost VIr) + V2r2 + V3r3 + V4r4 

5900 x 10.00 + 3500 x 15.00 + lOOO x 20.00 + lOOO x 25.00 

Rs. 156500.00. 

OBJECTIVE TYPE QUESTIONS 

1. If area calculated by end - areas rule and prismoidal rule are Ae and Ap. respectively, then 
(Ae - Ap) 

(a) is always positive. 

(b) is always negative. 

(c) may be positive or negative. 

(d) is equal to zero. 

2. Prismoidal correction is required to correct the volume calculated 

(a) using contours. 

(b) using spot heights. 

(c) for a curved section. 

(d) by end-areas rule. 

3. Curvature correction to the computed volume is applied when 

(a) the formation levels at the cross-sections are at different levels. 

(b) the successive cross-sections are not parallel to each other. 

(c) the distance between the successive cross-sections is quite large. 

(d) none of the above. 
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4. Free-haul distance is 

(a) the length of a balancing line. 

(b) the distance between two balancing lines. 

(c) the distance between two successive points where the mass-haul diagram intersects the line 
of zero ordinate. 

(d) the distance up to which carting of excavated material is done without extra payment. 

S. A mass-haul diagram indicates cutting if the curve 

(a) rises. 

(b) falls. 

(c) becomes horizontal. 

(d) none of the above. 

6. A mass-haul diagram indicates fill if the curve 

(a) rises. 

(b) falls. 

(c) becomes horizontal. 

(d) none of the above. 

7. Maximum ordinate on a mass-haul diagram occurs 

(a) at the end of a cut. 

(b) at the end of an embankment. 

(c) where cut and fill are balanced. 

(d) none of the above. 

8. A minimum ordinate on a mass-haul diagram occurs 

(a) at the end of a cut. 

(b) at the end of an embankment. 

(c) where cut and fill are balanced. 

(d) none of the above. 

ANSWERS 

1. (a) 

7. (a) 

2. (d) 

8. (b) 

3. (b) 4. (d) S. (a) 6. (b) 
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9.1 SETTING OUT 

POINT LoCATION AND 

SETTING OUT 

Setting out is a procedure adopted to correctly position a specific design feature such as a building, 
a road, a bridge, a dam, etc., on the ground at the construction site. It requires location of the 
control fixed during the original survey. These may be subsidiary stations which are located by the 
method of intersection or resection (see Sec. 6.6) from controls already fixed. Setting out is thus 
the ,reverse process of detail surveying in that the control stations are used to fix the points on the 
gr6~d in their correct relative positions. 

9.2 POINT LOCATION 

If two control points A and B are known, a third point C as shown in Fig. 9.1, can be located in 
a number of ways. 

B\'lc B\ /c B~~···.---,c 
\j D\ ~ 

(a) A (b) A (c) A 

B~c B~c 
A A 

(d) (e) 

Fig. 9.1 

(a) Set out distanees AC and Be. 

(b) Set out distance AD and then perpendicular distance DC. 

(c) Set off angles 91 and 92, 

(d) Set off aagle 9 and distance Ae. 

(e) Sef;:.l.IIiaIete iDd distance BC. 

9.3 INTERSECTION AND RESECTION 

Subsidiary statiaaa clOle to the work site can be fixed using intersection or resection. The method 
of locating poiats by intersection and resection is discussed in Sec. 6.6. 

287 
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In Fig. 9.1 c, the point C can either be coordinated by observing the angles 8, and 82 or be 
located if its coordinates are known, since the angles 8, and 82 can be calculated. 

Location of points by resection requires pointings made on at least three known stations. This 
technique is very useful in setting out works since it allows the instrument to be sited close to the 
proposed works, and its coordinates to be obtained from two angle observations. 

The coordinates of appoint C, shown in Fig. 9.2, can be obtained by usual method from the 
given data. However, if many points are to be fixed it is useful to employ the following general 
formulae. The points of known coordinates A and E, and the point C to be located, are considered 
clockwise. 

EAcot 8B + EBcot 8A + (NB - NA) 

cot 8A + cot 8B 

cot 8A + cot 8B 

... (9.1) 

... (9.2) 

9.4 TRANSFER OF SURFACE ALIGNMENT-TUNNELLING 

Fig. 9.2 
C(E"N,.) 

Transferring the surface alignment through a vertical shaft is difficult operation in view of the 
small size of the shaft. Generally, plumbwires are used to transfer directions underground. Essentially, 
the plumbwires produce a vertical reference plane, and on the surface the plane can be placed in 
the line of sight; below ground, the line of sight can be sighted into that plane. This is known as 
co-planing, and the line of sight when established can be used to set up floor or roof stations within 
the tunnel. 

Accurate transfer of surface alignment down a vertical shaft using two plumbwires can be 
achieved by Weisbach triangle method. 

In Fig. 9.3, p and q are plan positions of the plumbwires P and Q on the ground surface 
alignment above the tunnel, respectively. A theodolite, reading directly one second, is set up at A', 
approximately in line with p and q. In triangle pA'q, the angle pA'q is measured by the method of 
repetition, and the lengths of sides are also measured correct up to millimeter. The angle pq A')s 
also calculated by applying sine rule. 

-----------------------

Fig. 9.3 

Now, the perpendicular distance d of A' from the line qp produced, is calculated from the 
following expression. 

d 
A' A' 

P q sinpA'q ... (9.3) 
pq 



POINT LOCATION AND SETTING OUT 289 

The point p and q are joined by a fine thread, and a perpendicular AA' equal to d in length 
is dropped from A' on the thread. The foot of perpendicular A is the required point on the line qp 
produced which may be occupied by the theodolite for fixing the points on the floor or roof of the 
tunnel. 

9.5 SETTING OUT BY BEARING AND DISTANCE 

Setting out by bearing and distance, or by polar rays as it is often referred to, is a common task 
using modem instrument. The computed values of the angles should always be whole circle 
bearings (WCB) and not angles reduced to the north-south axis, i.e., the reduced bearings. If the 
WCB is always calculated by subtracting the northing and easting values of the point where the line 
starts from point being aimed at, then positive and negative signs of the angle obtained will be 
correct. 

9.6 MONITORING MOVEMENTS 

One of the important tasks of surveying is measurement of small movements due to deformation 
in civil engineering structures or in industrial measurement system. When structure, such as a dam, 
is loaded, it will move, and accurate theodolite observations on to targets attached to the structure 
can be used to measure this movement. The horizontal position of the target can be calculated by 
the process of intersection whilst the vertical movement is calculated by tangent trigonometry. 

9.7 CONSTRUCTION LASERS 

A rotating construction laser produces a horizontal plane of laser light. This may be manifest as a 
line on a staff or, in the case of infrared instruments, located by a photo-electric cell mounted on 
the staff. The equipment allows the task of setting out levels to be carried out by one person, and 
the calculations involved are essentially the same as those for a levelling exercise. 

9.8 SIGHT RAILS FOR A TRENCH SEWER 

The sight rails are positioned so that the line connecting their upper edges reflects the gradient of 
the trench bottom or the pipe invert, as applicable. A boning rod or traveller of correct length is 
held with the upper edge of its horizontal sight bar just in the line of sight given by the sight rails; 
in this position its lower end stands at the required level (Fig. 9.4). The horizontal sight rails are 
nailed to stout uprights, firmly installed on alternate sides of the trench. These uprights must be well 
clear of the sides of the trenches. Frequent checking of their integrity is essential. 

n 
Sight rail 

Required level 

Fig. 9.4 

-r 
Trayelleror 
Boning rod 

Sight rail 
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9.9 EMBANKMENT PROFILE BOARDS 

The profile boards are nailed to two uprights which are firmly driven into the ground near the toes 
of the embankment (Fig. 9.5). The inner uprights must have clearances from the toes of the order 
of 1.0 m to prevent disturbance. The inner and outer uprights can be spaced up to 1.0 m apart, 
since the sloping boards reflecting the side gradients, need to be of reasonable length for sighting 
purposes. A traveller is used in conjunction with the upper surface of the boards to achieve the 
gradients. 

Embankment rl 
1 in s Profile board 

Outer upright 

Fig.9.S 

Example 9.1. The four comers A, B, C, and D of a rectangular building having the coordinates 
given in Table 9.1, are to be set out from control station P by a total station instrument. Calculate 
the WCB and distance to establish each comer of the building. 

Table 9.1 

A 117.984 92.849 

B 82.629 128.204 

c 33.132 78.707 

D 68.487 43.352 

The coordinates of Pare E 110.383 m, N 81.334 m. 

Solution (Fig. 9.6): 

For comer A 

WCB of PA = epA 

tan = tan ---_1[117.984 -110.383] -I[ 7.601 ] 
92.849-81.334 11.515 
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For comer B 

weB of PB = aPB 

PA = ~(EA -Ep)2 +(NA -Np )2 

.J7.6012 +11.515 2 

13.797 m. 

_1[82.629 -110.383] tan 
128.204 - 81.334 

_1[-27.754] 
= tan 

46.870 

= 30°37'55" (from a calculator) 
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Fig. 9.6 

The whole circle bearings are never negative. The computed value using a calculator is from 
trigonometric functions relative to north-south axis with positive and negative signs depending upon 
the quadrant containing the angle. The tangent value of an angle is positive or negative as shown 
in Fig. 9.7. 

In this case northing of B is greater than that of P so B must lie in the fourth quadrant. 
Therefore 

apB 

PB 

For comer C 

WeB of PC = 

360° - 30°37'55" = 329°22'05" 

~(-27.754)2 +46.8702 

a - t -l[ Ee - Ep ] PC - an 
Ne-Np 

tan-l [ 33.132 -110.383] 
78.707 - 81.334 

tan-1 [-77.251 ] 
-2.627 

= 54.471 

c········ 

West I 

88°03'08" (from a calculator) 
c ••• 

m. 

IV 

- Departure 
+ Latitude 

tan = - value 

III 

-Departure 
- Latitude 

tan = + value 

North 
........ 

~ 

South 

Fig. 9.7 

+ Departure 
+ Latitude 

tan = + value 

II 

+ Departure 
- Latitude 

tan = - value 

East 

...... 

Since both easting and northing of C are less that those of P as indicated by the negative signs 
in numerator and denominator of the calculation of tan-I, the point C must be in the third quadrant 
to get the positive value of the tangent of WeB. Therefore 
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For corner D 

apc = 180° + 88°03'08" = 268°03'08" 

PC = ~(-77.251Y + (- 2.627Y = 77.296 m. 

WCB of PD = apD 

_1[68.487 -110.383] tan 
43.352 - 81.334 

SURVEYING 

_1[-41.896] 
= tan = 47°48'19" (from a calculator) 

-37.982 

The point D is also in the third quadrant due to the same reasons as for C above. Therefore 

aPD = 180° + 47°48'19" = 227°48'192 

PD = ~(-41.896)2 + (-37.982Y = 56.55 m. 

Example 9.2. From two triangulation stations A and B the clockwise horizontal angles to a 
station C were measured as LBAC = 50°05'262 and LABC = 321 °55'442 • Determine the coordinates 
of C given those of A and Bare 

A E 1000.00 m N 1350.00 m 

B E 1133.50 m N 1450.00 m. 

Solution (Fig. 9.8): 

a 50°05'26" 

P 360° - 321°55'442 = 38°04'16". 

If the coordinates of A, B, and Care (EA' NA), (EB' NB), and (Eo Nd, respectively, then 

BD = EB - EA 1133.50 - 1000.00 = 133.50 m 

AD = NB - NA 

Therefore bearing of AB 

1450.00 - 1350.00 = 100.00 m. 

a tan-I BD. 
AD 

_1133.50 
tan = 53°09'52". 

100.0 

Bearing of AC = aAC = Bearing of AB + a 

53°09'52" + 50°05'26" 

D:----

0..._. 

A 

--c 

Fig. 9.8 
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Bearing of BA = eBC = Bearing of AB + 180° 

= 53°09'52" + 180° = 233°09'52". 

Bearing of BC = e BC = Bearing of BA - b 

In MBC, we have 

233°09'52" - 38°04'16" = 195°05'36". 

L.ACB = 180° _. (a + ~) 

180° - (50°05'26" + 38°04'16") = 91°50'18". 

AB ~ .JBD2 +AD2 

.J133.S02 + 100.002 
= 166.80 m. 

ABsin 13 
AC = 

sin<\> 

BC = 

166.80 x sin 38°04'16" 

ABsina 

sin<\> 

166.80x sinSOoOS'26w 

sin91°S0'18" 

= 102.90 m 

= 128.01 m. 
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Let the latitude and departure of C, considering the line AC and BC, be respectively LAC> DAc> 

and L BC> D BC· 

Coordinates of C 

LAC = AC cos 8AC = 102.90 x cos 103°15'18" = - 23.59 m 

DAC = AC sin e AC = 102.90 x sin 103°15'18" = 100.16 m 

LBC = BC cos eBC = 128.01 x cos 195°05'36" = - 123.59 m 

DBC = BC sin eBC = 128.01 x sin 195°05'36" = - 33.33 m. 

EC = EA + DAC = 1000.00 + 100.16 = 1100.16 m 

= EB + DBC = 1133.50 - 33.33 = 1100.17 m (Okay) 

Nc = NA + LAC = 1350.00 - 23.59 = 1326.41 m 

= NB + LBC = 1450.00 - 123.59 = 1326.41 m (Okay). 

Thus, the coordinates of Care E 1100.17 m and N 1326.41 m. 

Example 9.3. The coordinates of two control points A and B are 

A E 3756.81 m N 1576.06 m 

B E 3614.09 m N 1691.63 m. 
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A subsidiary station P having coordinates E 3644.74 m, N 1619.74 m, is required to be 
established. Determine the angles at A and B to be set out, and distances AP and BP to check the 
fixing of P. 

Solution (Fig. 9.9): 

Let the bearings of the lines AB, AP, and BP be 8), 82, and 83, respectively. If the coordinates 
of A, B, and Pare (EA' NA), (EB' N B), and (Ep, N p), respectively, then the bearings and lengths 
of the lines are as below. 

MAB = EB - EA 

MAB = NB - NA 

3614.09 - 3756.81 = - 142.72 m 

1691.63 - 1576.06 = + 115.57 m 

MAP = Ep - EA 3644.74 - 3756.81 = - 112.07 m 

MAP = Np - NA 1619.74 - 1576.06 = + 43.68 m 

M BP = Ep - EB 3644.74 - 3614.09 = + 30.65 m 

M BP = Np - NB 1619.74 - 1691.63 = - 71.89 m. 

B 

(i) Bearing of the lines Fig. 9.9 

tan-I -142.72 = _ 51000'02". 
115.57 

Since MAB is negative is positive and MAB is positive, the line AB is fourth quadrant, therefore 

8) 360° - 51 °00'02" = 308°59'58". 

t -I !lEAP an --
tlNAP 

tan-I-112.07 = _ 68042'23". 
43.68 

The line AP is fourth quadrant, therefore 

02 = 360° - 68°42'23" = 291°17'37". 

tan-t !lEBP 

tlNBP 

= - 23°05'27". 

_I 30.65 
tan -:',--

-71.89 

The line BP is second quadrant, therefore 

83 = 180° - 23°05'27" = 156°54'33". 

Now the angles a and p can be calculated as below. 

a Bearing of AB -, bearing of AP 

= 8) - 82 = 308°59'58" - 291°17'37" = 17°42'21" 
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P = Bearing of BP - back bearing of AB 

= 8, - 82 = 156°54'33" - (180° + 308°59'582 - 360°) = 27°54'352 • 

To check the computations 

<I> = (360° - back bearing of BP) + back bearing of AP 

= [360° - (180° - 156°54'332
)] + (180° + 291°17'372) = 134°23'042 

Now, in !:!.APB we should have 

a + P + <I> 

17°42'21" + 27°54'35" + f34°23'04" 180° (Okay). 

Lengths of the lines 

Thus 

~(-112.07r + 43.68 2 
= 120.28 m. 

~30.652 +(-71.89)2 = 78.15 m. 

LBAP = 17°42'21" 

LABP = 27°54'35" 

AP = 120.28 m 

BP = 78.15 m. 

Example 9.4. To monitor the movement of dam, the observations were made on a target C 
attached to the wall of the dam from two fixed concrete pillars A and B, situated to the north-west 
of the dam. The coordinates and elevations of the pillar tops on which a theodolite can be mounted 
for making observations, are: 

A E 1322.281 m, N 961.713 m, 241.831 m 

B E 1473.712 m N 1063.522 m, 242.262 m 

The observations given in Table-9.2, were made with a theodolite having the height of collimation 
486 m above the pillar top. If the height of C is given by the mean observations from A and B, 
determine its movement after the reservoir is filled. 

Solution (Fig. 9.10): 

The given data are 

Table 9.2 

B Horizontal LABC 48°31' 18" 48°31 '05" 

Vertical angle LC +4°54'42" +4°54'38" 

EA. NA = E 1322.281 m, N 961.713 m 

EB, NB = E 1473.712 m, N 1063.522'm 
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hA = 241.831 m 

hB = 242.262 m 

hi = 486 mm 

eA LBAC 

eB LABC 

ex Vertical angle to C at A 

13 = Vertical angle to C at B. 

Fig. 9.10 

Bearing 4> of AB = tan -1[ EB - EA ] 
NB -NA 

The line AB is in first quadrant, therefore 

_1[1473.712 -1322.281J tan 
1063.522 - 961.713 

tan-1[151.431J = 56005'11.6". 
101.809 

4> 56°05'11.6". 

AB ~(EB -EJ2 +(NB -NJ2 

SURVEYING 

= ~151.4312 + 101.8092 = 182.473 m. 
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(i) Before filling the reservoir 

Bearing of AC = 0AC = Bearing of AB + OA 

= 56°05'11.6" + 55°11 '23" = 111°16'34.6". 

Bearing of BC = 0 BC = Bearing of BA - 0 B 

= (180° + 56°05'11.62
) - 48°31'18" 

= 187°33'53.6". 

In MBC, we have 

'Y = 180° - (OA + 0B) 

ACo = 

ACo = 

180° - (55°11'23" + 48°31'18") = 76°17'19". 

ABsin8 B 

Stn'Y 

182.473 x sin 48°31'18" = 140.720 m 
sin 76° 17' 19" 

AB sin 8 A 

sin 'Y 

182.473 x sin55° 11' 23" = 154.214 m. 
sin 76° 17' 19" 

Latitude and departure of C from A 

Therefore 

LAC = ACo cosOAc = 140.720 x cos 111°16'34.6" = - 51.062 m 

DAC=ACo sinOAC = 140.720 x sin 111°16'34.6" = + 131.129 m. 

EC = EA + DAC 

= 1322.281 + 131.129 = E 1453.410 m 

Nc = NA + LAC 

961.713 - 51.062 = N 910.651 m. 

Latitude and departure of C from B 

Therefore 

Thus 

LBc = BCo cosOBC = 154.214 x cos 187°33'53.6" = - 152.872 m 

DBC = BCo sinOBc = 154.214 x sin 187°33'53.6" = - 20.302 m. 

EC = EB + DBC 
= 1473~712 - 20.302 = E 1453.410 m 

Nc = NB + LBC 
1063.522 - 152.872 = N 910.650 m. 

mean Ec = 1453.4100 m 

mean Nc = 910.6505 m. 
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Height of point C 

Height of instrument at A = hA + hi 

H.I. = 241.831 + 0.486 = 242.317 m 

Height of C above height of instrument 

V = ACo tan ex 

= 140.720 x tan 5°33'12" = 13.682 m. 

Elevation of C = H.I. + V 

242.317 + 13.682 = 255.999 m. 

Height of instrument at B = hE + hi 

H.I. = 242.262 + 0.486 = 242.748 m 

Height of C above height of instrument 

V = BCo tan ~ 

= 154.214 x tan 4°54'42" = 13.252 m. 

Elevation of C = H.I. + V 

Mean elevation of C = 

(ii) After filling the reservoir 

242.748 + 13.252 = 256.000 m. 

255.999 + 256.000 

2 
= 255.9995 m 

Bearing of AC = 8AC = 56°05'11.6" + 55°11'12" = 111°16'23.6". 

SURVEYING 

Bearing of BC = 8BC = (180° + 56°05'11.6") - 48°31'052 = 187°34'06.6". 

In MBC, we have 

ACo = 

BCo = 

182.4 73 x sin 48°31' 05" 

sin 76°17'43" 

182.4 73 x sin 55°11' 12" 

sin 76°17'43" 

= 140.708 m 

154.204 m. 

Latitude and departure of C from A 

Therefore 

LAC = ACo cos 8AC = 140.708 x cos 111°16'23.6" = - 51.051 m 

DAC = ACo sin 8AC = 140.708 x sin 111°16'23.6" = + 131.120 m. 

Ec = EA + DAC 

= 1322.281 + 131.120 = E 1453.401 m 

NC = NA + LAC 

= 961.713 - 51.051 = N 910.662 m. 
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Latitude and departure of C from B 

Therefore 

Thus 

LBe = BCo cos eBe = 154.204 x cos 187°34'06.6" = - 152.861 m 

DBe = BCo sin eBe = 154.204 x sin 187°34'063.6" ='- 20.3lO m. 

Ee = EB + DBe 
= 1473.712 - 20.310 = E 1453.402 m 

Ne = NB + LBe 
1063.522 152.861 = N 9lO.661 m. 

mean Ee = 1453.4015 m 

mean Nc = 910.6615 m. 

Height of point C 

Elevation of C = H.1. at A + ACo tan p 
242.317 + 140.708 x tan 5°33'06" = 255.994 m. 

Elevation of C = H.1. at B + BCo tan P 
242.748 + 154.204 x tan 4°54'38" = 255.997 m. 

255.994 + 255.997 
Mean elevation of C = 

2 
= 255.9955 m. 

Movement of dam 0E = 1453.4100 - 1453.4015 

= + 0.0085 m = 8.5 mm west 
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ON = 910.6505 - 9lO.6615 = - 0.011 m = 11.0 mm north. 

The horizontal movement 

~8.52 + 11.02 = 13.9 mm north-west 

::::: 14 mm north-west. 

Example 9.S. From two stations A and B a third station C, not intervisible from A and B, is 
to be fixed by making linear measurements along and perpendicular to the line AB. The coordinates 
of the main stations are: 

A 

B 

C 

E 908.50 m, 

E 942.00 m, 

E 933.50 m, 

Determine the required data to fix C. 

Solution (Fig. 9.11): 

N 1158.50 m 

N 1298.50 m 

N 1224.50 m 

Let the coordinates of the points A, B, and C be (EA' NA), (EB' NB), and (Eo Nc), respectively. 
Also let 

LBAC = ~A 

LABC = ~B 

AB = L 
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AD = x 

DB = y = (L - x) 

CD = d 

From Eqs. (9.1) and (9.2), we have 

cot SA + cot SB 

cot SA + cot SB 

x 
But cot 8A d 

cot 8B 
Y 
d 

A 
(EA , NA ) 

,~i"9.11 

Substituting the values of cot 8A and cot 8B in (a) and (b), we~~ '. 
x Y 

Ee-+Ec-
d d 

(Ee -EB)X+(Ec -EA)Y = (NB -NA)d 

and (Nc -NB)X+(Nc -NA)y = -(EB -EA)d 

Let E B - E A = E BA 

NB - NA = NBA 

Ec - EA = ECA 

Nc - NA = NCA 

Ee - EB = ECB 

Nc - NB = NCB 

Thus ECB x + ECA (L - x) = NBA d 

NCB X + NCA (L - x) = - EBA d 

(ECB - ECA ) x - NBA d = - ECA L 

(NCB - NCA ) x + EBA d = - NCA L 

SURVEYING 

... (a) 

... (b) 

... (c) 

... (d) 

In (c) and (d), there are two unknowns x and d, and solution of these two equations will give 
their values. 

EBA 942.00 - 908.50 = 33.50 m 

NBA 1298.50 - 1158.50 = 140.00 m 
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ECA ' = 933.50 - 908.50 = 25.00 m 

NCA = 1224.50 - 1158.50 = 66.00 m 

-ECB = 933.50 - 942.00 = - 8.50 m 

NCB = 1224.50 - 1298.50 = - 74.00 m 

L ~33.502 + 140.002 

143.95 m. 

Thus (C) and (d) are 

(- 8.50 - 25.00) x ... ·.14().00 d = - 25.00 x 143.95 

(- 74.00 - 66.00) x + 33.50 d = - 66.00 x 143.95 

- 33.50 x -: 140:00 d = - 3598.75 
• '. J ~ c., 

- 140.00 x + 33.50 d = - 9500.70 

185551.55 
d = 20722.25 = 8.95 m 

x = 70.02 m. 

Alternative solution 

Therefore 

-I 33.50 
B an' f AB tan = 13°27'25.3" e ng 0 = 140.00 

Bearing of AC = tan-I 25.00 = 20°44'45.9" 
66.00 

SA = 20°44'45.9" - 13°27'25.3" = 7°17'20.6" 

AC = ~25.002 + 66.002 
= 70.58 m. 

AD = 70.58 x cos 7°17'20.6" = 70.01 m 

CD = 70.58 x sin 7°17'20.6" = 8.95 m. 
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Example 9.6. During the installation of plumbwires in a shaft, two surface stations A and B 
were observed from a surface station P near to a line XY. The observations are given in Table-9.4. 
If PB = 79.056 m, PX = 8.575 m, and XY = 6.146 m, determine the bearing of XP given that X 
was the nearer of the wires to P. 

Table 9.4 

Plumb wire Y 0°00'00" 

Plumb wire X 0°02'40" 

A (E 1550.00 m, N 1600.00 m) 85°45' 44" 

B 1500.00 m, N 1450.00 m) 265°43'58" 
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Solution (Fig. 9.12): 

From the given data, we get 

AB = ~(EA -EB)2 +(NA -NBY 

~(1550 -1500 Y + (1600 -1450 Y 
= ~502 + 1502 = 158.114 m. 

-I[ 50 ] Bearing of AB = e = tan - = 18°26'05 8" AB 150 . 

LAP B = Pointing to B - pointing to A 

= 265°43'58" - 85°45'44" = 179°58'14". 

Since P is very close to the line AB, it may be assumed that 
PA + PB = AB 

SURVEYING 

Thus PA = AB - PB = 158.114 - 79.056 = 79.058 m. 
y 

~P __ --:::::?-" A 

B 

Fig. 9.12 

Now in MPB, we have 

Similarly 

Therefore 

sin PAB 

PB 

sin PAB 

78.855 

sin PAB sin APB 
= 

PA AB 

sin PBA sin 179°58'14" 
= 

79.259 158.114 
sin 179°58'14" = sin (180° - 1'46") = sin 1'46" = sin 106" 

= 106" x sin 1" (angle being small) 
sin PAB = PAB" x sin 1" 
sin PBA = PBA" x sin 1" 

LPAB = 

LPBA = 

79.056x106 

158.114 

79.058xl06 

158.114 

= 52.999" 

= 53.001" 

Bearing BP = Bearing AB - LPBA 

= 18°26'05.8" - 53.001" = 18°25'12.8". 
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Now 

In MPY, we have 

Therefore 

LXPY = Pointing on X - pointing on Y 

2°02'40" - 0°00'00" 

= 2'40" = 160". 

sin XYP = XYP" x sin 1" 

sin XPY = XPY" x sin 1" 

XYP XPY 

PX XP 

PXXPY 8.575 x 160 
XYP = 

XP 
6.146 seconds = 3'43.2". 

LPXY = 180° - (3'43.2" + 2'40") = 179°53'36.8" 

LBP X = 360° - (pointing on B - pointing on X) 

= 360° - 265°43'58" + 0°02'40" = 94°18'42" 

Bearing of PB = Bearing of BP + 180° 

18°25'12.8" + 180° = 198°25'12.8" 

Bearing of PX = Bearing of PB + LBPX 

198°25'12.8" + 94°18'42" = 292°43'54.8" 

Bearing of XP = Bearing of PX + 180° 

292°43'54.8" + 180° = 112°43'54.8" 

Bearing of XY = Bearing of XP + LPxy 

112°43'54.8" + 179°53'36.8" 

292°37'31.6" = 292°37'32". 
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Example 9.7. For setting out a rectangular platfonn ABCD, a rotating construction laser was 
used. It gave a reading of 0.878 m on a temporary B.M., having a level 45.110 m. The platfonn has 
a cross fall of 1 in 1000 longitudinally and 1 in 250 transversely. If the platfonn is 8 m longitudinally, 
i.e., along AD or BD, and 40 m transversely, i.e., along AB or DC, detennine the offsets from the 
laser beam to the comers of the platfonn. The lowest comer A has a level 45.30 m. 

Solution (Fig. 9.13): 

A construction laser produces a horizontal plane of laser light. In this case the horizontal plane 
produced by the laser beam has a level 

= 45.110 + 0.878 = 45.988 m. 

The levels of all the comers should be found out and difference from the level of the horizontal 
plane produced would be the reading for the particular comer. 

Level of A 45.30m 

Level of B 
I 

45.30 + - x 40 = 45.460 m 
250 

I 
Level of C = 45.460 + -- x 8 = 45.468 m 

1000 

I 
Level of D 45.468 - 250 x 40 = 45.308 m 
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Check: 

Offsets 

t 
~ D 

Fig. 9.13 

Level of A 
1 

45.468 - 1000 x 8 = 45.300 m (Okay). 

to corner A 45.988 - 45.300 = 0.688 m 

to corner B 45.988 - 45.460 = 0.528 m 

to corner C = 45.988 - 45.468 = 0.520 m 

to corner D = 45.988 - 45.308 = 0.680 m. 

SURVEYING 

Example 9.8. To lay a sewer is to be laid between two points A and B, 120 m apart, the 
data of profile levelling are given in Table 9.4. The invert level at A is to be 112.250 m, and the 
gradient of AB is to be 1 in 130, B being at lower level than A. 

Table-9.4 

1 0.744 117.064 B.M. = 116.320 m 

2 3.036 0 A 

3 2.808 30 

4 2.671 60 

5 3.026 90 

6 3.131 120 B 

7 0.744 B.M. 
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At the setting-out stage, the level was set up close to its previous position, and a back sight of 0.698 
was recorded on the staff held at the B.M. Determine 

(a) the length of the traveler, 

(b) the height of rails above ground level at A and B, and 

(c) the staff reading required for fixing of sight rails at A and B. 

Solution (Fig. 9.14): 

Let us first reduce the existing ground levels from the given levelling record. 

Table 9.5 

Now the invert levels for the intermediate points and point B are as below: 
at 0 m (A) = 112.250 m 

1 
30 m = 112.250 - 130 x 30 112.019 m 

1 
60 m = 112250 - -x60 111.788 m . 130 

I 
90 m = 112250 - - x 90 111.558 m . 130 

I 
120 m (B) = 112.250 - 130 x 120 = 111.327 m. 

The level differences at the intermediate points have been given in Table-9.6. 

Table 9.6 

B 120 113.933 111.327 2.606 
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Sight 
rail 

Sight 
rail 

p 

Invert 
level 

Ground 
profile 

Invert 
level 

Traveller 

Q 

Sight 
rail 

Invert 112.250 111.327 
level _. __ ._ ............. _. __ . _. ____ . _____ . __ ._ .... _ ............... ____ . __ ...... __ ... . 
Ground 114.028 114.256 114.393 114.038 113.933 
level 

o 30 60 90 120 
Distance .... 

Fig. 9.14 

SURVEYING 

Seeing the level difference between the ground level and invert level, a traveller or boning rod 
of 3 m length should be sufficient. Further, the line of sight given by the sight rails should have 
gradient of 1 in 130, and it must have clearance of 1 m above ground and also one of the sight 
rails should be about 1 m or so above the ground for convenient sighting. 

Hence the levels of the top sight rails 

at A 112.250 + 3 = 115.250 m 

at B = 111.327 + 3 = 114.327 m. 

The height of the top of sight rails above ground 

at A 115.250 - 114.028 = 1.222 m (Okay) 

at B = 114.327 - 113.933 = 0.394 m. 

To achieve the levels of top of the sight rails at A and B as 115.250 m and 114.327 m, 
respectively, the staff readings required are calculated below. 

Level of the B.M. 116.320 m 

B.S. reading on B.M. 

Height of instrument 

Staff reading at A 

Staff reading at B 

0.698 m 

116.320 + 0.698 = 117.018 m 

117.018 - 115.250 = 1.768 m 

117.018 - 114.327 = 2.691 m. 

To fix the sight rails, the staff is moved up and down the uprights to give readings of 1.768 
m and 2.691 m, respectively, at A and B, marks are made thereon corresponding to the base of 
the staff. The sight rail is then nailed in position and checked. Alternatively, the tops of the uprights 
could be leveled, and measurements made down the uprights to locate the finished levels of 115.250 
m and 114.327 m. 

Example 9.9. An embankment is to be constructed on ground having a transverse cross fall 
of 1 in 10. At a cross-section the formation level is 296.63 m, ground level at the centre line being 
291. 11 m. Side slope of 1 in 2.5 have been specified together with a formation width of 20 m. 
Determine the necessary data to establish the profile boards to control the construction. 
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Solution (Fig. 9.15): 

The inner upright of the profile board should have a clearance of about 1 m from the toes to 
avoid disturbance. The inner and outer uprights can be spaced to 1 m apart. A traveller is required 
in conjunction with the upper surface of the boards to achieve the gradient. 

As shown in the figure 

b ns ( b) -+-- h+-
2 n -s 2n 

W2 

where 

b = the formation width (=20 m), 

h = the height of the embankment at centre line (= 296.63 - 291.11 = 5.52), 

n = the transverse cross fall (= 10), and 

s = the side slope of the embankment (= 2.5). 

'Thus 

20 + 10X2.5(S.52+~) = 3l.73 m 
2 10 - 2.S 2 x 10 

W2 = 
20 + 10 x 2.S (S.52 _~) 
2 10 + 2.S 2 x 10 

19.04 m. 

The reduced level of C = 291.11 m 

1 
The reduced level of A = 29l.l1 + 10 x 19.04 = 293.01 m 

The reduced level of A 
1 

29l.l1 - 10 x 31.73 = 287.94 m 

The difference of level between C and A = 

The difference of level between C and B ~ 

19.04 

10 

31.73 

10 

l.904 m 

=3.173m. 

In the first instant let us assume the length of a traveller as 1.25 m with centre lines of the 
uprights at 1 m and 2 m, respectively, from toes A and B. 

The level of the bottom of uprights 

1 
inner near A = 293.01 + 10 xl = 293.11 m 



308 

outer near A 
1 

293.01 + -x 2 = 293.21 m 
10 

1 
inner near B = 287.94 - 10 xl = 287.84 m 

~ ~ 
" ; "'~ 

///' ! f i., 

/ .. /": ~(----7:. b --~J,'" 
/ , 

......... 

linn 

ci B 

1ICi~tt+(-l-n-1 -- W2------O.~:((-----WI----l m-ly 
Fig. 9.15 

outer near A 
1 

287.94 - 1O x2 = 287.74 m. 

The level of sight line at A 

The level of sight line at B 

The level of sight hne at 

293.01 + 1.25 = 294.26 m 

287.94 + 1.25 = 289.19 m. 

inner upright near A 
1 

294.26 - 2.5 xl = 293.86 m 

outer upright near A 
1 

294.26 - 2.5 x 2 = 293.46 m 

inner upright near B 
1 

289.19 - 2.5 xl = 288.79 m 

1 
outer upright near B = 289.19 - 2.5 x 2 = 288.39 m. 

The height of the uprights, i.e., altitude of sight line above ground 

near A 

near B 

inner upright = 293.86 - 293.11 = 0.75 m 

outer upright = 293.46 - 293.21 = 0.25 m 

inner upright = 288.79 - 287.84 = 0.95 m 

outer upright = 288.39 - 287.74 = 0.65 m. 

SURVEYING 

Imler upright 
Outer uprighl 



POINT LOCATION AND SETTING OUT 309 

Taking traveller length as 1.5' m for convenience, the altitude of the sight line above ground 
line can be computed in a similar manner as above. 

OBJECTIVE TYPE QUESTIONS 

1. A third point C cann~~ be located using two points A and B of known locations by measuring 

(a) all the sides of the triangle ABe. 

(b) two angles A and B and the length A B. 

(c) all the angles of the triangle ABe. 

(d) the angle A, and the lengths AB and Be. 

2. Location of a point P by resection is done by observing 

(a) one control point from P. 

(b) two control points from P. 

(c) three control points from P. 

(d) P from three control points. 

3. Co-planing is a process of 

(a) bringing points in same horizontal plane. 

(b) establishing points in a vertical plane at different levels. 

(c) centering the instrument over the ground station mark. 

(d) transferring the surface alignment underground through a narrow shaft. 

4. Accurate sm-face alignment down a vertical shaft using two plumb wires is achieved by 

(a) Weisb~ch triangle qlethod: 

(b) reducing the s~ of triangle of error to zero. 

(c) by adjuStip.g 'the"closing error. 

(d) none of the above. 

5. Sight rails ..are 'usid for setting out 

(a) large;'imildings. 

(b) bridges. 

(c) the gradient of canal bed. 

(d) the gradient of trench of bottom or pipe invert. 

6. Weisbach triangle method is a method 

(a) of locating the plane table position on paper by minimizing the size of triangle of error. 

(b) used in transferring the ground surface alignment down the shaft using plumb wires. 

(c) of determining spherical excess in spherical triangles. 

(d) none of the above. 

ANSWERS 

1. (c) 2. (c) 3. (d) 4. (a) 5. Cd) 6. (b) 
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1. The difference in elevation ∆h between two points was measured repeatedly for 16 times giving
the following results:

7.8621, 7.8632, 7.8630, 7.8646, 7.8642, 7.8652, 7.8620, 7.8638, 7.8631, 7.8641, 7.8630, 7.8640, 7.8630,
7.8637, 7.8633, 7.8630.

Compute the mean and the standard error of the mean of the observations.

2. Calculate the standard error of the volume of a cuboid whose sides x, y, and z have the values
and standard errors as under:

x = 60 ± 0.03 cm, y = 50 ± 0.02 cm, z = 40 ± 0.01 cm.

3. Compute the area, error in the area, and the standard error of the area for Fig. 1 using the
following data:

a = 50.30 ± 0.01 m

b = 82.65 ± 0.03 m

r = 9.50 ± 0.02 m.

The measurements were made with 30 m tape standardized at 30° C and the field temperature
during the measurements was 50° C.  Take coefficient of linear expansion = 1.15 × 10–5 per ° C.

4. A single measurement of an angle has the standard deviation of ± 2.75″ . To get the standard
error of the mean of a set of angles as 1″  how many measurements should be made in similar
conditions?

5. In Fig. 2, the sides PQ and QR of a Weisbach triangle used in an underground traverse measure
(2.965 ± 3) m and (2.097  ± 2) m, respectively. The Approximate value of the angle QRP is 6′50″
and the standard error of the angle PRS is ± 4″. Calculate how many times this angle QRP should
be measured in order that the standard error of the bearing of RS is not to exceed 5″. The standard
error of a single measurement of the angle QRP  is estimated to be ±10² and assume that the
bearing of PQ is known without error.

R 

P 

Q To S 

Fig. 2

6. A line AB was measured in segments along sloping ground with a 30 m tape, and the following
measurements were recorded:

Fig. 1

Hole of radius r

a

b a

���
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Slope Difference in
distance (m) elevation (m)

30.00 1.58

30.00 0.95

18.92 0.90

11.46 0.56

30.00 3.01

8.23 0.69

What is horizontal length of the line AB ?

7. A line was measured by a 30 m tape in five bays, and the following results were obtained:

Bay Span length Rise/fall between
(m) the ends of span (m)

1 29.60 0.0

2 29.80 – 0.21

3 29.40 0.0

4 29.60 + 0.31

5 26.00 – 0.04

The field temperature and pull as measured were 10° C and 175 N.

The tape was standardized on the flat under a pull of 125 N at temperature 20° C. If the top of
the first peg is at 250.00 m from the mean sea level, calculate the correct length of the line reduced
to mean sea level. Take mean radius of the earth as 6372 km.

Tape details:

Tape density ρ = 77 kg/m3

Cross-sectional area A = 6 mm2

Coefficient of linear expansion α = 0.000011/°C

Modulus of elasticity of tape material E = 207 kN/mm2

8. The length of a steel tape found to be exactly 30 m at a temperature of 30° C under pull of 5
kg when lying on the flat platform. The tape is stretched over two supports between which the
measured distance is 300.000 m. There are two additional supports in between equally spaced.
All the supports are at same level; the tape is allowed to sag freely between the supports.
Determine the actual horizontal distance between the outer supports, and its equivalent reduced
mean sea level distance if the mean temperature during the measurements was 37° C and the pull
applied was 9kg. The average elevation of the terrain is 1500 m. Take tape details as below:

Weight = 1.50 kg

Area of cross-section = 6.5 mm2

Coefficient of linear expansion = 1.2 × 10–5/°C

Modulus of elasticity of tape material E = 2.1 × 106 kg/cm2

Mean earth, radius = 6372 km.
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9. A 30 m tape weighing 0.900 kg has a cross-sectional area 0.0485 cm2. The tape measures
30.000 m when supported throughout under a tension of 5 kg. The modulus of elasticity is
2.1 × 106 kg/cm2. What tension is required to make the tape measure 30 m when supported only
at the two ends ?

10. The length of an embankment was measured along its surface as 25.214 m using a steel tape under
a pull of 25 N at a temperature of 10° C. If the top and bottom of the embankment are at levels
of 75.220 m and 60.004 m, respectively, and the tape was standardized on the flat at 20° C under
a pull of 49 N, what is the embankment gradient ?

Tape details

Cross-sectional area = 6 mm2

Coefficient of linear expansion = 0.000011/°C

Modulus of elasticity of tape material = 207000 MN/mm2.

11. A steel tape of nominal length 200 m with a plumb bob of mass 16 kg attached to it was used
to measure a length down a shaft as 160.852 m. The mean temperature during the measurement
was 4° C. If the tape was standardized to be 200.0014m under a tension of 115 N at 20° C
temperature, determine the correct measured length.

The following data may be used:

Mass of tape = 0.07 kg/m

Cross-sectional area of tape = 10 mm2

Coefficient of linear expansion α = 11 × 10–6/°C

Modulus of elasticity = 2 × 105 N/mm2

Acceleration due to gravity = 9.807 m/s2.

12. A distance is measured along a slope with an EDM which when corrected for meteorological
conditions and instrument constants, is 714.652 m. The EDM is 1.750 m above the ground, and
the reflector is located 1.922 m above ground. A theodolite is used to measure a vertical angle
of + 4°25′15″ to a target placed 1.646 m above ground. Determine the horizontal length of the
line.

13. With a theodolite set 1.58 m above station A, a sight is taken on a staff held at station B. The
staff intercept 1.420 m with middle cross hair reading 3.54 m, and vertical angle – 5°13′. With the
instrument set 1.55 m above station B, a sight is taken on the staff held at station A. The staff
intercept is 1.430 m with middle cross hair reading as 2.35 m, and the vertical angle + 6°00′. The
instrument is internal focussing with constants k = 101 and c = 0. What is the average length
of AB and the average difference in elevation between the two points ?

14. A tacheometer was set up at station A with trunion axis 1.18 m above ground, and due to some
obstruction in line of sight only reading of upper stadia wire could be recorded as 2.022 with
vertical angle as + 3°05′, on the staff held vertically at station B. The line joining A and B has
a gradient of 1 in 20. If the tacheometric constants are as k = 100 and c = 0, calculate the other
staff readings and the horizontal distance AB.

15. To determine the gradient of a line AB, the following data were collected from a station T with
staff held vertical using a tacheometer having the constants as k = 100 and c = 0 m.
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Tacheometer Staff at Bearing Vertical Staff readings
at observed at T angle (m)

A 120°15′ + 7°35′ 1.410, 1.965, 2.520

B 206°15′ + 4°10′ 1.655, 2.475, 3.295

Determine the gradient of the line AB.

16. A base line AB was measured in two parts AC and CB of lengths 1540 m and a9a9 m, respectively,
with a steel tape, which was exactly 30 m at 20° C at pull of 10 kg. The applied pull during the
measurements for both parts was 25 kg, whereas the respective temperatures were 40° C and 45°
C. The ground slope for AC and CB were + 2°40′  and + 3°10′, respectively, and the deflection
angle for CB was 11° R. Determine the correct length of the base line. The cross-section of the
tape is 0.025 cm2, the coefficient of linear expansion is 2.511 × 10–6/°C, and the modulus of
elasticity is 2.1´105 kg/cm2

.

17. The following observations were made using a tacheometer (k = 100 and c = 0 m). A point P
is on the line AB and between the stations A and B, and another point Q is such that the angle
ABQ is 120°.

Tacheometer at Staff at Vertical angle Staff readings (m)

P (hI = 1.45 m) A (hA = 256.305 m) – 7°15′ 2.225, 2.605, 2.985

B – 3°30′ 1.640, 1.920, 2.200

Q (hI = 1.51 m) B + 9°34′ 0.360, 0.900, 1.440

hI = Height of instrument above ground

hA = Elevation of A above m.s.l.

Determine

  (i) the distance AQ,

 (ii) the elevation of Band Q, and

(iii) the gradient of line AQ.

18. A back sight of 3.0545 m is taken on a point 50 m from the level. A for sight 2.1604 m is taken
on a point 200 m from the level. Compute the correct difference in level between the two points,
taking into effect of

 (i) curvature, and

(ii) curvature and refraction.

19. Sighting across a lake 40 km wide through a pair of binoculars, what is the height of a shortest
tree on the opposite shore whose tip the observer can see if the eyes are 1.70 m above the
shoreline on which he stands ?

20. The line of sight rises at the rate of 0.143 m in 100 m when the level bubble is centered. A back
sight of 1.713 m is taken on a point P at a distance of 25 m from the level, and a fore sight of
1.267 m is taken from a point Q at a distance of 60 m from the level. If the elevation of P is 111.000
m, what is the elevation of Q ?

21. A line of levels is run from B.M.-1 (elevation = 100.00 m) to B.M.-2 (elevation = 104.00 m). The
field observations were recorded as given below:

            T
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Station B.S. I.S. F.S. Remarks

1 4.95 B.M.-1

2 2.65

3 5.60 3.45

4 – 3.90 – 2.60

5 2.50

6 1.50 B.M.-2

Reduce the levels of points 2, 3, 4, and 5. Determine the total error of closure, and adjust the
values.

22. The following figures were extracted from a level filed book; some of the entries eligible because
of exposure to rain. Insert the missing figures, and check your results.

Station B.S. I.S. F.S. H.I. R.L. Remarks

1 ? 279.08 277.65 B.M.-1

2 2.01 ?

3 ? 278.07

4 3.37 0.40 278.68

5 2.98 ?

6 1.41 280.64

7 ? 281.37 B.M.-2

23.  A staff is held at a distance of 200 m from a level, and a reading of 2.587 m is obtained. Calculate
the correct reading for curvature and refraction.

24. The following results were obtained in reciprocal leveling across a river for staff held vertically
at stations at X and Y from level stations A and B on each bank of a river, respectively.

Staff reading at X from A = 1.753 m

Staff reading at Y from A = 2.550 m

Staff reading at X from B = 2.080 m

Staff reading at Y from B = 2.895 m

Calculate the elevation of Y if the elevation of X is 101.30 m above mean sea level.

25. In order to check the adjustment of a tilting level, the following procedure was followed. Pegs
A, B, C, and D were set out on a straight line such that AB = BC = CD = 30 m. The level was
set up at B, and readings were taken to a staff at A then at C. The level was then moved to D,
and readings were again taken to a staff held first at A and then at C. The readings are given
below:

Instrument   Staff reading (m)

position A C

B 1.926 1.462

D 2.445 1.945

Determine whether or not the instrument is in adjustment and if not, explain how the instrument
can be corrected.
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26. A tilting level is set up with the eyepiece vertically over a peg A. The height of the center of the
eyepiece above A was measured to be 1.516 m. The reading on a vertically held staff at a peg B,
was found to be 0.0696 m. The positions of the level and staff were interchanged, and the measured
height of the center of the eyepiece above B was 1.466 m, and the staff reading at A was 2.162 m.
Determine the difference in level between A and B. Also ascertain from the readings the adjustment
of line of collimation, and calculate the correct reading on the staff at A.

27. During levelling it was found that the bubble was displaced by two divisions off the centre when
the length of the sight was 100 m. If the angular value of one division of the bubble tube is 20²,
find the consequent error in the staff reading. What is the radius of the bubble tube if one
graduation is 2 mm long?

28. Levelling was done to determine the levels of two pegs A and B, and to determine the soffit level
of an over bridge. Using the values of staff readings given the following table, and given that
the first back sight is taken on a bench mark at a temple (R.L. = 75.630 m), and the final fore sight
is on a bench mark at P.W.D. guest house (R.L. = 75.320 m) determine the closing error.

Could a lorry 5.5 m high pass under the bridge?

Staff reading Remarks
(m)

1.275 B.S. on B.M. at temple (R.L. = 75.630 m)

2.812 F.S. on C.P.1

0.655 B.S. on C.P.1

– 3.958 Inverted staff to soffit of bridge

1.515 Ground level beneath center of bridge

1.138 F.S. on C.P.2

2.954 B.S. on C.P.2

2.706 Peg A

2.172 Peg B

1.240 F.S. on B.M. at P.W.D. (R.L. = 75.320 m)

29. To check the rail levels of an existing railway, seven points were marked on the rails at regular
intervals of 20 m, and the following levels were taken:

Point B.S. I.S. F.S. Remarks
2.80 B.M. A = 38.40 m

1 0.94

2 0.76
3 0.57
4 1.17 0.37

5 0.96
6 0.75
7 0.54

Reduce the levels of the points by rise and fall method, and carry out appropriate checks. If the
levels of the points 1 and 7 were correct, calculate the amount by which the rails are required
to be lifted at the intermediate points to give a uniform gradient throughout.
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30. To determine the collimation adjustment of a level, readings were taken on two bench marks X
and Y 53.8 m apart having elevations of 187.89 m and 186.42 m, respectively, the readings being
0.429 and 1.884, respectively. The distance of the level at P from Y was 33.8 m. What is the
collimation error per 100 m ? If further reading of 2.331 is taken from P on a point Z 71.6 m from
P, what is the elevation of Z ?

31. To determine the reduced level of a point B, the vertical angle to B was measured as + 1°48′15″
from a point A having reduced level of 185.40 m. The vertical angle from B to A was also measured
as – 1°48′02″. The signal heights and instrument heights at A and B were 3.10 mand 4.50 m, and
1.35 m and 1.36 m, respectively. The geodetic distance AB is 5800 m. If the mean radius of the
earth is 6370 km determine (a) the reduced level of B and (b) the refraction correction.

32. The following observations were obtained for a closed-link traverse ABCDE.

Station Clockwise Length
angle (m)

A 260°31′18″ –

B 123°50′42″ 129.352

C 233°00′06″ 81.700

D 158°22�48″ 101.112

E 283°00′18″ 94.273

The observations were made keeping the bearings of lines XA and EY, and the coordinates of
A and E, fixed as below:

W.C.B. of XA = 123°16′06″
W.C.B. of EY = 282°03′00″

Coordinates of A = E 782.820 m N 460.901 m
Coordinates of E = E 740.270 m N 84.679 m

Obtain the adjusted values of the coordinates of stations B, C, and D by Bowditch’s method.

33. Determine the coordinates of the intersection of the line joining the traverse stations A and B
with the line joining the stations C and D if the coordinates of the traverse stations are as below.

Station Easting Nothing
(m) (m)

A 4020.94 5915.06
B 4104.93 6452.93

C 3615.12 5714.61
D 4166.20′ 6154.22

34. A theodolite traverse was run between two points A and B with the following observations:

Line Bearing Length (m)

A-1 86°37′ 128.88

1-2 165°18′ 208.56

2-3 223°15′ 96.54

3-B 159°53′ 145.05

Calculate the bearing and distance of point B from point A.
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35. Calculate the lengths of the lines BC and CD from the following observations made for a closed
traverse ABCDE.

Line Length (m) Bearing ∆E (m) ∆N (m)

AB 104.85 14°31′ + 26.29 + 101.50

BC – 319°42′ – –

CD – 347°15′ – –

DE 91.44 5°16′ + 8.39 + 91.04

EA 596.80 168°12′ + 122.05 – 584.21

36. The following table giving lengths and bearings of a closed-loop traverse contains an error  in
transcription of one of the values of length. Determine the error.

Line AB BC CD DE EA

Length (m) 210.67 433.67 126.00 294.33 223.00

Bearing 20°31′30″ 357°16′00″ 120°04′00″ 188°28′30″ 213°31′00″
37. A traverse was run between two points P and Q having the coordinates as E1268.49 m, N1836.88

m, and E1375.64 m, N1947.05 m, respectively. The field observations yielded the following values
of eastings and northings of the traverse lines.

Line Length (m)
       ∆E (m)            ∆N (m)

+ – + –

AB 104.65 26.44 – 101.26 –

BC 208.96 136.41 – 158.29 –

CD 212.45 203.88 – – 59.74

DE 215.98 – 146.62 – 158.59

EA 131.18 – 112.04 68.23 –

Calculate the adjusted coordinates of A, B, C, and D using Bowditch’s method.

38. The two legs AB and BC of a traverse and the angle ABC as measured are 35.50 m, 26.26 m, and
135°, respectively. Calculate the resulting maximum error in the measurement of the angle due  to
the centering error of ± 2 mm.

39. In a certain theodolite it was found that the left-hand end of the trunion axis is higher than the
right-hand end making it to incline by 30″ to the horizontal. Determine the correct horizontal angle
between the targets A and B  at the theodolite station from the following observations.

Pointings Horizontal circle Vertical circle
reading (face right) reading

A 246°18′53″ + 63°22′00″
B 338°41′28″ + 12°16′20″

40. The bearing and length of a traverse line are 38°45′20″ and 169.08 m, respectively. If the standard
deviations of the two observations are ±20″ and ±50 mm, respectively, calculate the standard
deviations of the coordinate differences of the line.

41. In some levelling operation, rise (+) and fall (–) between the points with their weights given in
parentheses, are shown in Fig. 3.
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θ1 

θ2 

θ3 

θ4 

θ5 

θ6 

A 

B 

C 

D 

Fig. 3

Given that the reduced level of P as 134.31 m above datum, determine the levels of Q, R, and
S.

42. In a triangulation network shown in Fig. 4, the measured angles are as follows:

θ1 = 67°43′04″, θ4 = 29°38′52″
θ2 = 45°24′10″, θ5 = 63°19′35″
θ3 = 37°14′12″, θ6 = 49°47′08″

Adjust the angles to the nearest seconds assuming that  θ1 and θ6 are of twice the weight of
the other four.

43. Three stations A, B, and C have the coordinates E 2000.00 m, N 2000.00 m, E 1000.00 m, N 267.95
m, and E 0.00 m, N 2000.00 m, respectively. The following readings have been recorded by a
theodolite set up at a station P very near to the centre of the circle circumscribing stations A,
B, and C :

Pointings on A B C

Horizontal circle 00°00′00″ 119°59′51.0″ 240°00′23.5″
reading

Determine the coordinates of P.

44. By application of the principle of least squares Determine the most probable values of x and y
from the following observations using the least squares method. Assume that the observations
are of equal weights.

2x + y = + 1.0

x + 2y = – 1.0

  x + y = + 0.1

  x – y = + 2.2

      2x = + 1.9.

45. In a braced quadrilateral shown in Fig. 5, the angles were observed as plane angles with no
spherical excess:

θ1 = 40°08′17.9″, θ2 = 44°49′14.7″
θ3 = 53°11′23.7″, θ4 = 41°51′09.9″

        Fig. 4
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θ5 = 61°29′34.3″, θ6 = 23°27′51.2″
θ7 = 23°06′37.3″, θ8 = 71°55′49.0″

   Fig. 5

Determine the most probable values of the angles by rigorous method.

46. Directions ware observed from a satellite station S, 200 m from a station C, with the following
results:

∠ A = 00°00′00″
�B = 62°15′24″
∠ C = 280°20′12″.

The approximate lengths of AC and BC are 25.2 km and 35.5 km, respectively. Calculate the ∠ACB .

47. The altitudes of the proposed triangulation stations A and B, 130 km apart are respectively
220 m and 1160 m. The altitudes of two peaks C and D on the profile between A and B, are
respectively 308 m and 632 m, the distances AC and AD being 50 km and 90 km. Determine
whether A and B are intervisible, and if necessary, find the minimum height of scaffolding at B,
assuming A as the ground station.

48. Calculate the data for setting out the kerb line shown in Fig. 6 if R = 12 m and ∆ = 90°. Calculate
the offsets at 2 m interval.

Fig. 6

49. Derive data needed to set out a circular curve of radius 600 m by theodolite and tape (deflection
angle method) to connect two straights having a deflection angle 18°24′, the chainage of the
intersection point being 2140.00 m. The least count of the is 20″.

50. A circular curve of radius 300 m is to be set out using two control stations A and B, their
coordinates being E 2134.091 m, N 1769.173 m and E 2725.172 m, N 1696.142 m, respectively. The
chginage of the first tangent point having coordinates E 2014.257 m, N 1542.168 m is 1109.27 m.
If the coordinates of the point of intersection are E 2115.372 m and N 1593.188 m, calculate the
bearing and distance from A required to set out a point X on the curve at chainage 1180 m.

51. Two straights AB and CD having bearings as 30° and 45°, respectively, are to be connected CD
by a continuous reverse curve consisting of two circular curves of equal radius and four
transition curves. The straight BC, 800 m long, having bearing of 90°, is to be the common tangent
to the two inner transition curves. What is the radius of the circular curves if the maximum speed
is to be restricted to 80 km/h and a rate of change of radial acceleration is 0.3 m/s3 ? Give (a)
the offset, and (b) the deflection angle with respect to BC to locate the intersection of the third
transition curve with its circular curve.

θ1 θ2 θ3 

θ4 
θ5 θ6 

θ7 

θ8 
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52. It is required to connect two straights having a total deflection angle of 18°36′  right by a circular
curve of 450 m radius and two cubic spiral transition curves at the ends. The design velocity
is 70 km/h, and the rate of change of radial acceleration along the transition curve is not to exceed
0.3 m/s3. Chainage of the point of intersection is 2524.20 m. Determine (a) length of the transition
curve, (b) shift of the circular curve, (c) deflection angles for the transition curve to locate the
points at 10 m interval, and (d) deflection angles for the circular curve at 20 m intervals.

53. If the sight distance equals half the total length of the curve, g1 = +4% and g2 = –4%, and the
observer’s eye level h = 1.08 m, calculate the length of the vertical curve.

54. A gradient of +2% is to be joined to a gradient –4/3% by a vertical curve with a sight distance
of 200 m at 1.05 m above ground level. Determine the chainage and level of the two tangent points
for the highest point on the curve at chainage 2532.00 m and level 100.23 m.

55. In a modification, a straight sloping at –1 in 150 is to be changed to a gradient of +1 in 100, the
intervening curve being 400 m in length. Assuming the curve to start at a point A on the negative
gradient, calculate the reduced levels of pegs at 50 intervals which you set out in order to
construct the curve, assuming the reduced level of A to be 100 m.

56. Determine the area in hectares enclosed by a closed traverse ABCDE from the following data.

Station Easting Nothing
(m)  (m)

A 181.23 184.35

B 272.97 70.05

C 374.16 133.15

D 349.78 166.37

E 288.21 270.00

57. Using the data given below to determine the volume of earth involved a length of the cutting
to be made in ground:

  Transverse slope = 1 in 5

  Formation width = 8.00 m

  Side slopes = 1 in 2

  Depths at the centre lines of three sections, 20 m apart = 2.50, 3.10, 4.30 m.

Get the results considering

(a) The whole cutting as one prismoid.

(b) End-areas formula with prismoidal correction.

58. A 10 m wide road is to be constructed between two point A and B, 20 m apart, the transverse
slope of the original ground being 1 in 5. The cross-sections at A and B are partly in cut with
0.40 m cut depth at the centre line and partly in fill with 0.26 m fill at the centre line. The respective
side slopes of cut and fill are 1 vertical in 2 horizontal, and the centre line of the road AB is a
curved line of radius 160 m in plan. Determine the net volume of earthworks between the two
sections.

59. A dam is to be constructed across a valley to form a reservoir, and the areas in the following
table enclosed by contour loops were obtained from a plan of the area involved.

(a) If the 660 m level represents the level floor of the reservoir, use the prismoidal formula to
calculate the volume of water impounded when the water level reaches 700 m.
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(b) Determine the level of water at which one-third of the total capacity  is stored in the reservoir.

(c) On checking the calculations it was found that the original plan from which the areas of
contour loops had been measured had shrunk evenly by approximately 1.2 % of linear
measurement. What is the corrected volume of water?

Contour (m) 660 665 670 675 680 685 690 695 670

Area 5200 9400 16300 22400 40700 61500 112200 198100 272400

60. A point X having the cordinates as E1075.25 m, N 2000.25 m, is to be set out using two control
points P (E 1050.25 m, N 2050.25 m) and Q (E 1036.97 m, N 1947.71 m) by two linear mesurements
alone. Calculate the necessary data to fix X.

61. A length of sewer PRQ is to be constructed in which the bearings of RP and RQ are 205°02′  and
22°30′, respectively. The coordinates of the manhole at R are E 134.17 m, N 455.74 m. A station
A  on the nearby traverse line AB has coordinates E 67.12 m, N 307.12 m, the bearing of AB being
20°55′. Considering a point M on AB such that MR is at right angles to AB, derive the data to
set out the two lengths of sewer.

62. The coordinates of three stations A, B, and C are respectively E 11264.69 m, N 21422.30 m, E
12142.38 m, N 21714.98 m, and E 12907.49 m, N 21538.66 m. Two unknown points P and Q lie to
the southerly side of AC with Q on the easterly side of point P. The angles measured are ∠APB
= 38°15′47″, ∠ BPC = 30°38′41″, ∠ CPQ = 33°52′06″, and ∠CQP = 106°22′20″. Calculate the length
and bearing of the line PQ.

63. During a shaft plumbing exercis, two surface reference stations A (E 1000.00 m, N 1000.00 m) and
B (E 1300.00 m, N 1500.00 m) were observed with a theodolite placed at a surface station X near
to the line AB. The observations were also made on two plumb wires P and Q, the distances XA,
XP, and PQ being 269.120 m, 8.374 m, and 5.945 m, respectively, when P is nearer to X than Q.
The measured horizontal angles at X from a reference mark M are as ∠ MXA = 273°42′24″ ,
∠MXB  = 93°42�08″ , ∠MXP  = 98°00′50″, and ∠ MXQ = 98°00′40″. Calculate the bearing of PQ.



ANSWERS TO SELECTED PROBLEMS

1. 17.8635 m, ± 2.128 × 10–4 m. 2. ± 82 cm3. 3. 5138.82 m2, 2.43 m2, ± 2.34 m2

4. 8. 5. 6. 6. 128.34 m.

7. 144.38 m. 8. 299.92 m. 9. 16.95 kg.

10. 1 in 1.32. 11. 160.835 m. 12. 712.512 m.

13. 142.54 m, 14.58m. 14. 1.122, 1.072, 94.73 m. 15. 1/60.33.

16. 3420.65 m. 17. 204.43 m, 263.092 m, 244.783 m, 1 in 18.

18. (i) 0.8969 m, (ii) 0.8966 m. 19. 14.62 m. 20. 111.496 m.

21. R.L.’s: 102.30 m, 101.50 m, 109.70 m, 103.30 m, Closing error:  + 0.30 m, Adjusted  values:
102.30 m, 101.40 m, 109.50 m, 103.10 m.

22. B.S.: 1.43 m, I.S.: 1.01 m, F.S.: 0.68 m, H.I.: 282.05 m, R.L.’s: 277.07 m, 279.07 m.

23. 2.584 m. 24. 100.49 m. 25. Line of collimation up by + 2′4″.

26. 0.758 m, 2.224 m. 27. 19 mm, 20.627 m.

28. 73.858 m, 74.392 m, 4 mm, No, Clearance under bridge: 5.473 m.

29. 0.02, 0.03, 0.03, 0.02, 0.01. 30. 27.9 mm, 185.984 m. 31. (a) 367.21 m, (b) 13.4″.

32. E 730.630 m and N 342.553 m, E 774.351 m and N 273.541 m, E 738.688 m and N 178.933 m.

33. E 4042.93 m and N 6055.88 m. 34. 157°35′, 433.41 m. 35. 143.73 m, 289.15 m.

36. BC = 343.67 m. 37. Coordinates of C: E 1634.67 m, N 2037.13 m.

38. 25.3″. 39. 92°23′28″. 40. σ∆E = ±34 mm, σ∆N = ±40 mm.

41. Q 138.64 m, R 141.78 m, S 144.34 m.

42. 45°23′59″, 29°38′51″, 67°42′59″, 37°14′11″, 63°19′45″, 49°47′13″.

43. E 999.92 m, N 1422.57 m. 44. x = + 1.02, y = – 1.05.

45. θ1 = 48°08′15.23″, θ8 = 71°55′52.62″. 46. 62°00′31″.

47. 5.50 m. 48. At x = 2 m, y = 3.34 m.

49. At chainage 2100.00 m, 02°44′00″. 50. 194°47′01″, 209.791 m.

51. 758.5 m, 0.51 m, 00°36′20″.

52. (a) 54.44 m, (b) 0.27 m, (c) At chainage 2450.00 m, 00°16′40″, (d) At chainage 2560.00 m, 05°14′20″.

53. 216 m. 54. 2443.20 m, 2591.20 m, 99.34 m, 99.83 m.

55. 99.719, 99.541, 99.469, 99.500, 99.635, 99.875, 100.219, 100.667.

56. 1.944 hectares. 57. (a) 2283.3 m3, (b) 2331.9 m3.

58. 2.23 m3 (cut). 59. (a) 29.693 × 106 m3, (b) 669.8 m, (c) 30.406 × 106 m3.

60. AS = 55.90 m, BS = 65.01 m.

61. AR = 163.04 m, AM = 162.76 m, PM = 9.59 m, ∠MRP  = 85°53′, ∠MRQ  = 91°35′.
62. 1013.27 m, 68°10′10″. 63. 35°16′00″.
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Accuracy, 3 

Adjustment of survey observation, 122 

condition equation, 122 

correlates, 124 

general method for polygons, 125 

method of differences, 124 

method of least squares, 122 

method of variation of coordinates, 124 

normal equations, 123 

observation equation, 122 

Areas, 256 
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Confidence interval, 3 

Confidence limit, 3 

Correlates, 124 

Correction 

absolute length, 20 

alignment, 22 

eye and object correction, 68 

phase, 167 

prismoidal, 259 

pull,21 

sag, 21 

sea level, 22 

slope, 22 

slope and height, 36 

temperature, 20 

Curves, 202 

circular, 202 
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D 

compound, 204 

reverse, 205 

setting out, 203 

transition, 207 

vertical, 208 

Datum, 59 

Departure, 93 

Digital terrain model (DTM), 261 

Digital elevation mod~l (DEM), 261 

E 

Eccentricity of signal, 168 

Electromagnetic distance measurement 
(EDM),30 

effect of atmospheric conditions 34 , 
refractive index ratio, 34 

slope and height correction, 36 

Elongation of steel tape, 24 

Error 

G 

due to maladjustment of theodolite, 90 

most probable, 3 

propagation, 3 

pull, 23 

root mean square, 2 

standard, 2 

types of, 1 

Geodetic triangle, 176 
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L 

Latitude, 93 

Levelling, 59 

back sight, 61 

balancing of sights, 61 

booking and reducing the levels, 61 

change point, 61 

datum, 59 

differential, 60 

eye and object correction, 68 

fore sight, 61 

height of instrument method, 61 

intermediate sight, 61 

level line, 59 

level surface, 59 

loop closure, 64 

reciprocal, 64 

reduced level, 62 

rise and fall method, 62 

section, 62 

sensitivity of level tube, 67 

trigonometric, 65 

two peg test, 67 

Level surface, 59 

M 

Mass-haul diagram, 262 

free-haul, 263 

haul, 263 

overhaul, 263 

Most probable error, 3 

Most probable value, 1 

N 

Normal distribution, 5 

Normal equations, 123 

o 
Omitted observations, 95 

Optical method, 26 

p 

Phase difference, 31 

Planimeter, 258 

Precision, 3 

Probability distribution, 1 

Profile board, 290 

Propagation of error, 3 

R 

SURVEYING 

Reduction to mean sea level, 22 

Reciprocal levelling, 64 

Reduced level, 62 

Reduction to centre, 168 

Root mean square error, 2 

S 

Satellite station, 168 

Sensitivity of level tube, 67 

Setting out, 287 

Sight rails, 289 

Simpson's rule, 257 

Spherical triangle, 176 

errors due to mahtdjustment of, 90 

Stadia tacheometry, 26 

Standard error, 2 

Standard deviation, 2 

Subtense tacheometry, 27 

T 

Tacheometric method, 26 

stadia, 26 

sutense, 27 

Tape correction, 21 



INDEX 

absolute length, 20 

alignment, 22 

pull,21 

sag, 21 

sea level, 22 

slope, 22 

temperature, 20 

Theodolite, 89 

horizontal circle, 89 

line of collimation, 89 

line of sight, 89 

plate level, 89 

telescope level, 89 

vertical circle, 89 

Trapezoidal rule, 257 

Traversing, 92 

balancing, 94 

Bowditch's method, 94 

closed, 92 

closed-loop, 92 

consecutive coordinates, 93 

departure and latitude, 93 

omitted observations, 95 

open, 92 

transit rule, 95 

types of traverse, 92 

Triangulation, 166 

convergence of meridians, 178 

Earth's curvature, 177 

eccentricity of signal, 168 

geodetic triangle, 176 

intersected point, 170 

phase correction, 167 

reduction of slope distance, 173 

reduction to centre, 168 

resected point, 170 

satellite station, 168 

spherical triangle, 176 

strength of figure, 166 

Trigonometric levelling, 65 

Trilateration, 166 

Two peg test, 67 

v 
Variance, 2 

Volumes, 258 

end-areas rule, 258 

free-haul, 263 

haul,263 

mass-haul diagram, 262 

overhaul, 263 

prismoidal rule, 258 

prismoidal correction, 259 

W 

Weight, 3 

Weisbach triangle 288 
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