
CSC 215
Structures

Dr. Achraf El Allali

Basic Structure

● A Structure is a collection of related data items,
possibly of different types.

● A structure type in C is called struct.

● A struct can be composed of data of different
types.

Structures

● A Structure holds data that belongs together
● Examples:

○ Student record: student id, name, major,
gender, ..

○ Bank account: account number, name,
balance, ..

○ Date: year, month, day

Structures

● Individual components of a struct type are
called members (or fields).

● Members can be of different types (simple,
array or struct).

● Complex data structures can be formed by
defining arrays of structs.

Struct basics

● Definition of a structure
struct <struct-type>{
 <type> <identifier_list>;
 <type> <identifier_list>;
 ...
 } ;

● Example

Each identifier
defines a member
of the structure

struct studentRec {
int student_idno;
char student_name[20];
int age;
 };

Struct basics

● Declaration of a variable of struct type:
struct <struct-type> <identifier_list>;

● Example:
 struct studentRec s1, s2; s1

s1 and s2 are variables of StudentRec type.

student_name

student_id

age

Struct basics

● Declaration of a variable of struct type:

struct studentRec {
int student_idno;
char student_name[20];
int age;

 } s1, s2;

Struct basics

● A variable of a structure type can be also
initialized by any the following methods:

struct date {
int day, month , year ;
} birth_date = {31 , 12 , 1988};
struct date newyear={1, 1};
struct date republic = {29 , 10 , 1922};

Struct basics
● The members of a struct type variable are accessed

with the dot (.) operator
<struct-variable>.<member_name>; s1

● Example:
strcpy(s1.student_name, "Mohamed Ali");

s1.studentid = 43321313;

s1.age = 20;

printf("The student name is %s", s1.student_name);

student_name

student_id

age

Struct basics

struct date American, revolution = {4, 7, 1776};
American = revolution;

● Assigns 4 to American.day, 7 to American.
month, and 1776 to American.year

Declaring Structure Variables

struct s1 { char c ; int i ; } u ;
struct s2 { char c ; int i ;} v ;
struct s3 { char c; int i ; } w ;
struct s4 { char c; int i ; } x ;
struct s4 y ;

The types of u , v , w , and x are all different,
but the types of x and y are the same.

Nested Structures

struct Client
{

char name[21];
char gender;
int age;
char address[21];

};

struct BankAccount
{

char name[21];
int accNum[20];
double balance;
struct Client aHolder;
};

Nested Structures
● We can define the Client inside the BankAccount
● The Client is not visible outside the BankAccount which makes

its name optional.
struct BankAccount{

char name[21];
int accNum[20];
double balance;
struct{
char name[21];
char gender;
int age;
char address[21];} aHolder; };

Pointers to Structure

● Created the same way we create a pointer to
any simple data type.
struct date *cDatePtr, cDate;

● We can make cDatePtr point to cDate by:
cDatePtr = &cDate

Pointers to Structure
● The pointer variable cDatePtr can now be used to

access the member variables of Date using the dot
operator as:

(*cDatePtr).year
(*cDatePtr).month

(*cDatePtr).day
● The parentheses are necessary because the

precedence of the dot operator (.) is higher than that of
the dereferencing operator(*).

Pointers to Structure
● Pointers are so commonly used with structures.
● C provides a special operator, -> called the structure

pointer or arrow operator, for accessing members of a
structure variable pointed by a pointer.

● The general form for the use of the operator ->
 pointer-name -> member-name

 cDatePtr-> year
 cDatePtr-> month
 cDatePtr-> day

Array of Structures

● Can create an array of sturctures
struct studentRec studentRecords[500];

● studentRecords is an array containing 500
elements of the type studentRec.

● Member variable inside studentRecords can be
accessed using the array subscript and dot
operator.
studentRecords[10].name = “Mohammed”;

Example
#include <stdio.h>

struct Employee {/* declare a global structure type */

int idNum; double payRate; double hours; };

double calcNet(struct Employee *); /* function prototype */

int main() {

struct Employee emp = {6787, 8.93, 40.5};

double netPay;

netPay = calcNet(&emp); /* pass an address*/

printf("The net pay for employee %d is $%6.2f\n", emp.idNum, netPay);

return 0; }

/* pt is a pointer to a structure of Employee type */

double calcNet(struct Employee *pt) {

return(pt->payRate * pt->hours);

}

