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Crystal structure

To discuss crystalline structures it is useful to consider
atoms as being hard spheres with well-defined radii. In this
hard-sphere model, the shortest distance between two like
atoms is one diameter.

We can also consider crystalline structure as a lattice of
points at atom/sphere centers.




Unit Cell

The unit cell isthe smallest structural unit or building block
that can describe the the crystal structure. Repetition of the
unit cell generates the entire crystal.

Example: 2D honeycomb net can
be represented by translation of
two adjacent atoms that form a unit
cell for this 2D crystalline structure

Example of 3D crystalline structure:

Different choices of unit cells possible, generaly choose
parallelepiped unit cell with highest level of symmetry



Metallic Crystal Structures

» Metdls are usualy (poly)crystalline; although formation
of amorphous metals is possible by rapid cooling

» Aswe |learned in Chapter 2, the atomic bonding in metals
IS non-directional = no restriction on numbers or
positions of nearest-neighbor atoms = large number of
nearest neighbors and dense atomic packing

» Atom (hard sphere) radius, R, defined by ion core
radius - typically 0.1 - 0.2 nm

» The most common types of unit cells are the faced-
centered cubic (FCC), the body-centered cubic (FCC)
and the hexagonal close-packed (HCP).



Face-Centered Cubic (FCC) Crystal Structure (1)

» Atoms are located at each of the corners and on the
centers of all the faces of cubic unit cdll

» Cu, Al, Ag, Au have this crystal structure

Two representations
of the FCC unit cell '



Face-Centered Cubic Crystal Structure (I1)
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» The hard spheres or ion cores touch one another across a
face diagonal = the cube edge length, a= 2RV/2

» The coordination number, CN = the number of closest
neighbors to which an atom is bonded = number of
touching atoms, CN = 12

» Number of atoms per unit cell, n = 4. (For an atom
that is shared with m adjacent unit cells, we only count a
fraction of the atom, 1/m). In FCC unit cell we have:

6 face atoms shared by two cells: 6 x 1/2 =3
8 corner atoms shared by eight cells: 8x 1/8 = 1

» Atomic packing factor, APF = fraction of volume
occupied by hard spheres = (Sum of atomic
volumes)/(Volume of cell) = 0.74 (maX| mum possible)



Face-Centered Cubic Crystal Structure (I11)

» Corner and face atoms in the unit cell are equivalent

» FCC crystal has APF of 0.74, the maximum packing for

a system equal-sized spheres = FCC is a close-packed
structure

» FCC can be represented by a stack of close-packed
planes (planes with highest density of atoms)




Body-Centered Cubic (BCC) Crystal Structure (1)

Atom at each corner and at center of cubic unit call
Cr, a-Fe, Mo have this crystal structure




Body-Centered Cubic Crystal Structure (11)
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» The hard spheres touch one another along cube diagonal
— the cube edge length, a= 4R//3

» Thecoordination number, CN =8

» Number of atoms per unit cell, n =2
Center atom (1) shared by noother cells: 1x1 =1
8 corner atoms shared by eight cells: 8x 1/8 = 1

» Atomic packing factor, APF = 0.68

» Corner and center atoms are equivalent



Hexagonal Close-Packed Crystal Structure (1)

» HCP is one more common structure of metallic crystals

» Six atoms form regular hexagon, surrounding one atom
In center. Another plane is situated halfway up unit cell
(c-axis), with 3 additional atoms situated at interstices of
hexagonal (close-packed) planes

» Cd, Mg, Zn, Ti have this crystal structure




Hexagonal Close-Packed Crystal Structure (11)

» Unit cell hastwo lattice parametersaand c. Ideal ratio
c/a=1.633

» The coordination number, CN =12 (sameasin FCC)

» Number of atoms per unit cell, n = 6.

3 mid-plane atoms shared by no other cells: 3x1 =3
12 hexagonal corner atoms shared by 6 cells: 12x 1/6 =2
2 top/bottom plane center atoms shared by 2 cells: 2x 1/2=1

» Atomic packing factor, APF =0.74 (sameasin FCC)

» All atoms are equivalent




Close-packed Structures (FCC and HCP)

» Both FCC and HCP crystal structures have atomic
packing factors of 0.74 (maximum possible value)

» Both FCC and HCP crystal structures may be generated
by the stacking of close-packed planes

> The difference between the two structures is in the
stacking sequence

HCP: ABABAB... FCC: ABCABCABC...



FCC: Stacking Sequence ABCABCABC...

Third plane is placed above the “holes’ of the first plane
not covered by the second plane



HCP: Stacking Sequence ABABAB...

Third plane is placed directly above the first plane of atoms



Density Computations

Since the entire crystal can be generated by the repetition
of the unit cell, the density of a crystalline material, p = the
density of the unit cell = (atoms in the unit cell, n) x (mass
of an atom, M) / (the volume of the cell, V)

Atomsin the unit cell, n=2 (BCC); 4 (FCC); 6 (HCP)

Mass of an atom, M = Atomic weight, A, in amu (or g/mol)
IS given in the periodic table. To trandate mass from amu
to grams we have to divide the atomic weight in amu by
the Avogadro number N, = 6.023 x 102 atoms/mol

The volume of thecell, V=& (FCC and BCC)
a=2RV2 (FCC); a=4R/3(BCC)
where R 1s the atomic radius

Thus, the formulafor the density is: 0= nNA
VN,

Atomic weight and atomic radius of many elements you
can find in the table at the back of the textbook front cover.



Anisotropy

Different directions in a crystal have a different packing.
For instance, atoms along the edge of FCC unit cell are
more separated than along the face diagonal. This causes
anisotropy in the properties of crystals, for instance, the
deformation depends on the direction in which a stress is

applied.

In some polycrystalline materials, grain orientations are
random, so bulk material properties areisotropic

Some polycrystalline materials have grains with preferred
orientations (textur €), so properties are dominated by those
relevant to the texture orientation and the material exhibits
anisotropic properties



Metal Structure-Unit cell Direct
Tutorial
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ExamrPLE ProeLEM 3.1

Calculate the volume of an FCC unit cell in terms of the atomic radius &

SOLUTION
In the FCC unit cell illustrated,

the atoms touch one another across a face-diagonal the length of which is 4 K.
Since the unit cell is a cube, its volume is a°, where a is the cell edge length.
From the right triangle on the face,

a? + al = (4R)?
or, solving for a,
a=2RV2 (3.1)
The FCC unit cell volume Vi may be computed from
Ve=a'=(2RV2)* = 16R*V2 (3.4)




ExaMPLE PrROBLEM 3.2

Show that the atomic packing factor for the FCC crystal structure is 0.74.

SOLUTION
The APF is defined as the fraction of solid sphere volume in a unit cell, or

_ total sphere volume _ V5

A total unit cell volume Vi

Both the total sphere and unit cell volumes may be calculated in terms of the

atomic radius K. The volume for a sphere is #=R*, and since there are four
atoms per FCC unit cell, the total FCC sphere volume is

Ve = {4}%5-:!?3 _ I—;T:H!

From Example Problem 3.1, the total unit cell volume is
Vo= 16R* V2

Therefore, the atomic packing factor is

Vs_ (§)aR’

=—=——=[(.T4
Vo 16R*VZ

APF =




ExaMPLE ProBLEM 3.3

Copper has an atomic radius of 0.128 nm (1.28 A), an FCC crystal structure, and
an atomic weight of 63.5 g/mol. Compute its theoretical density and compare the
answer with its measured density.

SOLUTION

Equation 1.5 is employed in the solution of this problem. Since the crystal
structure is FCC, n, the number of atoms per unit cell, is 4. Furthermore, the
atomic weight Aq, is given as 63.5 g/mol. The unit cell volume Vi for FCC
was determined in Example Problem 3.1 as 16R" V2, where R, the atomic
radius, is 0.128 nm.

Substitution for the various parameters into Equation 3.5 yields

_nAc, _ nAc,

VelNa  (1I6R*™WZ) N,
_ (4 atoms/unit cell) (63.5 g/mol)

[16 /2(1.28 x 10 # cm) ¥/ unit cell] (6.023 x 102 atoms/maol)
= 8.80 g/cm?

The literature value for the density of copper is 8.94 g/cm’, which is in very
close agreement with the foregoing result.




ExamprLE ProBrLEM 3.7

Determine the indices for the direction shown in the accompanying figure.

SOLUTION

The vector, as drawn, passes through the origin of the coordinate system, and
therefore no translation is necessary. Projections of this vector onto the x, y,
and z axes are, respectively, a’2, b, and Oc, which become 3, 1, and 0 in terms
of the unit cell parameters (i.e.. when the a. b, and ¢ are dropped). Reduction
of these numbers to the lowest set of integers is accompanied by multiplication
of each by the factor 2. This yields the integers 1, 2, and 0, which are then
enclosed in brackets as [120].
This procedure may be summarized as follows:

X ¥ z
Projections all b (e
Projections (in terms of &, b, and c) 3 | 0
Reduction l 2 0
Enclosure [120]




ExaMPLE PrROBLEM 3.8

Diraw a [1T0] direction within a cubic unit cell.

SOLUTION

First construct an appropriate unit cell and coordinate axes system. In the
accompanying figure the unit cell is cubic, and the origin of the coordinate
system, point (, is located at one of the cube corners.

|

—r—————— :;:_:::;?!"——“————":-A s

[170] Direction_—1~_~

This problem is solved by reversing the procedure of the preceding example.
For this [1T0] direction, the projections along the x, v, # axes are a, —a, and
Oa, respectively. This direction is defined by a vector passing from the origin
to point P, which is located by first moving along the x axis a units, and from
this position, parallel to the y axis —a units, as indicated in the figure. There
is no z component to the vector, since the z projection is zero.




ExamMprLE PrOBLEM 3.9

Determine the Miller indices for the plane shown in the accompanying
sketch (a).

SOLUTION

Since the plane passes through the selected origin O, a new origin must be
chosen at the corner of an adjacent unit cell, taken as ' and shown in sketch
(£). This plane is parallel to the x axis, and the intercept may be taken as = a.
The yand z axes intersections, referenced to the new origin O, are —b and
cf2, respectively. Thus, in terms of the lattice parameters a, b, and ¢, these
intersections are =, —1, and 5. The reciprocals of these numbers are 0, —1, and
2; and since all are integers, no further reduction is necessary. Finally, enclosure
in parentheses yields (012).
These steps are briefly summarized below:

X ¥ =
Intercepts o g —h clf2
Intercepts (in terms of lattice parameters) ol -1 %
Reciprocals 0 -1 2

Reductions (unnecessary) _
Enclosure (012}




ExamprrLE ProeLEM 3.10

Construct a (0T1) plane within a cubic unit cell.

SO0LUTION

To solve this problem, carry out the procedure used in the preceding example
in reverse order. To begin, the indices are removed from the parentheses, and
reciprocals are taken, which yields ==, —1, and 1. This means that the particular
plane parallels the x axis while intersecting the v and = axes at —b and c,
respectively, as indicated in the accompanying sketch (a). This plane has been
drawn in sketch (b5). A plane is indicated by lines representing its intersections
with the planes that constitute the faces of the unit cell or their extensions. For
example, in this figure, line afis the intersection between the (0T1) plane and

=)

the top face of the unit cell; also. line g represents the intersection between
this same (0T1) plane and the plane of the bottom unit cell face extended.
Similarly, lines eg and M are the intersections between (0T1) and back and
front cell faces. respectively.






