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Thenotionof standard triples plays a central role in the theoryofma-

trix polynomials. We study such triples for matrix polynomials P(λ)
with structure S , where S is the Hermitian, symmetric, .-even, .-

odd, .-palindromic or .-antipalindromic structure (with . = ∗, T).
We introduce the notion of S-structured standard triple. With the

exception of T-(anti)palindromicmatrix polynomials of even degree

with both−1 and 1 as eigenvalues, we show that P(λ) has structure
S if and only if P(λ) admits an S-structured standard triple, and

moreover that every standard triple of a matrix polynomial with

structure S is S-structured. We investigate the important special

case of S-structured Jordan triples.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Standard and Jordan triples for matrix polynomials were introduced and developed by Gohberg,

Lancaster andRodman (see for example [4–6]). Jordan triples extend tomatrix polynomials of degreem

P(λ) =
m∑
j=0

λjAj, Aj ∈ F
n×n, det(Am) �= 0, (1)
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Table 1

Matrix polynomials P(λ) = ∑m
j=0 λjAj with structure S ∈ S.

Structure S Definition Coefficients property

Hermitian P(λ) = P∗(λ) Aj = A∗
j

symmetric P(λ) = PT (λ) Aj = AT
j

.-Even P(λ) = P.(−λ) Aj = (−1)jA.
j

.-Odd P(λ) = −P.(−λ) Aj = (−1)j+1A.
j

.-Palindromic P(λ) = λmP.( 1
λ
) Aj = A.

m−j

.-Antipalindromic P(λ) = −λmP.( 1
λ
) Aj = −A.

m−j

the notion of Jordan pair (X, J) for a single matrix A ∈ C
n×n, where X ∈ C

n×n is nonsingular, J is a

Jordan canonical form for A, and A = XJX−1. Thematrix X in a Jordan triple (X, J, Y) for P(λ) is n×mn

and, as for the single matrix case, it contains the right eigenvectors and generalized eigenvectors of

P(λ). The matrix J ∈ C
mn×mn is in Jordan canonical form, displaying the elementary divisors of P(λ),

and the matrix Y ∈ C
mn×n plays the role of X−1 for a single matrix, i.e., the columns of Y∗ determine

left eigenvectors and generalized eigenvectors of P(λ). A Jordan triple is a particular standard triple

(U, T , V) in which thematrix T is in canonical form. Standard and Jordan triples are defined precisely

in Section 2.2.

Our objective is to study the standard and Jordan triples of structured matrix polynomials P(λ) of
the types listed in Table 1, where we use . to denote the transpose T for real matrices and either the

transpose T or the conjugate transpose ∗ for matrices with complex entries. The structure of standard

and Jordan triples are well understood for Hermitian matrix polynomials [4,5] and more recently real

symmetric matrix polynomials [2,11]. With no assumption on the sizes of the Jordan blocks, Gohberg,

Lancaster and Rodman [4] show that if (X, J, Y) is a Jordan triple for a Hermitian matrix polynomial

then Y = SX∗ for some nonsingular mn × mn matrix S such that S = S∗ and JS = (JS)∗. We show in

Section 3 that results of this type also hold for the structures in S, where

S = {Hermitian, symmetric, ∗-even, ∗-odd, T-even, T-odd, (2)

∗-palindromic, ∗-antipalindromic, T-palindromic, T-antipalindromic}.
For S ∈ S, we introduce the notion of S-structured standard triples. With the exception of T-

(anti)palindromic matrix polynomials of even degree with both −1 and 1 as eigenvalues, we show

that P(λ) has structure S if and only if P(λ) admits an S-structured standard triple, and that for any

P(λ) with structure S , all standard triples for P(λ) are S-structured. Finally, we study in Section 4 the

special case of S-structured Jordan triples.

Two important features of this work are (a) a distinction, when necessary, between triples and

matrix polynomials defined over the complex (C) or real (R) fields, and (b) a unified presentation of

the results, except in Section 4, wherewe provide explicit expressions for the S-matrix of S-structured
Jordan triples that are structure-dependent.

2. Preliminaries

The set of all matrix polynomials with coefficient matrices in F
n×n (F = R or C) is denoted by

P(Fn). When the polynomials are structured with structure S , the corresponding set is denoted by

PS(F
n) (see Table 1). Throughout this paperwe assume that P(λ) has a nonsingular leading coefficient

matrix as in (1). Recall that λ is an eigenvalue of P(λ)with corresponding right eigenvector x �= 0 and

left eigenvector y �= 0 if P(λ)x = 0 and y∗P(λ) = 0. We denote by Λ(P) the set of eigenvalues of

P(λ).
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2.1. Structured linearizations

Linearizations play amajor role in the theory ofmatrix polynomials. They aremn×mn linearmatrix

polynomials L(λ) = λA + B related to P(λ) ∈ P(Fn) of degree m by

E(λ)L(λ)F(λ) =
⎡
⎣P(λ) 0

0 I(m−1)n

⎤
⎦

for some matrix polynomials E(λ) and F(λ) with constant nonzero determinants. For example, the

companion form

C = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A−1
m Am−1 A−1

m Am−2 . . . A−1
m A0

−In 0 . . . 0

. . .
. . .

...

0 −In 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

of P(λ) = ∑m
j=0 λjAj defines a linearization λI − C of P(λ).

Some of the results in Section 3 and all the results in Section 4 rely on the construction of lineariza-

tions that preserve the structure of P(λ) ∈ PS(F
n). The vector space of pencils

L1(P) = {
L(λ) : L(λ)(Λ ⊗ In) = v ⊗ P(λ), v ∈ F

m }
,

introduced in [14], provides a rich source of such linearizations. Here Λ =
[
λm−1 . . . λ 1

]T
. It is

shown in [7,12,13] that for some v ∈ F
m satisfying the admissible constraint

(i) v ∈ R
m if S = Hermitian,

(ii) v = Σmv if S ∈ {T-even, T-odd} or v = Σmv̄ if S ∈ {∗-even, ∗-odd},
(iii) v = Fmv if S ∈ {T-palindromic, T-antipalindromic} or v = Fmv̄ if S ∈ {∗-palindromic,

∗-antipalindromic},
where

Σm = diag((−1)m−1, . . . , (−1)0), Fm =

⎡
⎢⎢⎢⎣

1

. .
.

1

⎤
⎥⎥⎥⎦ ,

there exists a unique pencil λAS + BS ∈ L1(P) with structure S ∈ S. This pencil is a linearization of

P(λ) if the roots of the v-polynomial

p(x; v) = v1x
m−1 + v2x

m−2 + · · · + vm−1x + vm

are not eigenvalues of P [13, Theorems 6.3 and 6.5]. The vector v = em, where em is the mth column

of them×m identity matrix, is an admissible vector for S ∈ {Hermitian, symmetric, .-even, .-odd}
since em ∈ R

m and Σmem = em. Also, the roots of p(x; em) are all equal to ∞ and since det(Am) �= 0

then ∞ /∈ Λ(P). Hence the structured pencils λAS + BS ∈ L1(P) with vector em are linearizations

of P. They are given by (see [7,13] for the construction)

λAS + BS =
⎧⎨
⎩

λA(1) + B(1) when S ∈ {Hermitian, symmetric},
λA(−1) + B(−1) when S ∈ {.-even, .-odd}, (4)
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where

A(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 εm−1Am
... . .

.
εm−2Am−1

... . .
.

. .
. ...

ε0Am ε0Am−1 · · · ε0A1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and

B(ε) = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 εm−1Am 0
... . .

.
εm−2Am εm−2Am−1

...

0 . .
.

. .
. ...

...

εAm εAm−1 · · · εA2 0

0 . . . . . . 0 −A0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that for .-(anti)palindromic P(λ), we have 0 /∈ Λ(P) since ∞ �∈ Λ(P). When m = 2k + 1,

v = ek+1 satisfies v = Fmv = Fmv̄ and 0, ∞ are the only roots of the v-polynomial. The corre-

sponding .-(anti)palindromic pencils in L1(P) are linearizations. They are given by (see [13] for the

construction)

λAS + BS =
⎧⎨
⎩

λAodd + (Aodd). when S = .-palindromic withm = 2k + 1,

λAodd − (Aodd). when S = .-antipalindromic withm = 2k + 1,
(5)

where

Aodd =
⎡
⎣Aodd

11 Aodd
12

Aodd
21 Aodd

22

⎤
⎦ , (6)

with Aodd
11 = (Aodd

22 )T = 0nk×n(k+1) and

Aodd
12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A.
m 0 . . . 0

−A.
m−1

. . .
...

...
. . .

. . . 0

−A.
k+2 . . . −A.

m−1 −A.
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Aodd
21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Am Am−1 . . . Ak+1

0
. . .

. . .
...

...
. . .

. . . Am−1

0 . . . 0 Am

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For .-(anti)palindromic polynomials of even degreem = 2k, a nonzero vector v satisfying Fmv = v

when . = T or Fmv = v̄ when . = ∗ can be taken of the form v = zek + z.ek+1. The corresponding

.-(anti)palindromic pencil in L1(P) is a linearization of P(λ) if −z/z. is not an eigenvalue of P and is

given by (see [13])

λAS + BS =
⎧⎨
⎩

λAeven− (z) + (Aeven− (z)). when S = .-palindromic,m = 2k,

λAeven− (z) − (Aeven− (z)). when S = .-antipalindromic,m = 2k,
(7)

where

Aeven− (z) =
⎡
⎣Aeven

11 (z) Aeven
12 (z)

Aeven
21 (z) Aeven

22 (z)

⎤
⎦ , (8)
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with

Aeven
11 (z) = z

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

...
...

...

0 0 . . . 0

Am Am−1 . . . Ak+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Aeven
22 (z) = z

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ak+1 0 . . . 0

...
...

...

Am−1 0 . . . 0

Am 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Aeven
12 (z) = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z.A0 zA0 0 · · · · · · 0

z.A1 z.A0 + zA1
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

z.Ak−2 z.Ak−2 + zAk−1 · · · z.A1 + zA2 z.A0 + zA1 zA0

−zAk + z.Ak−1 z.Ak−2 . . . z.A1 z.A0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Aeven
21 (z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z.Am zAm + z.Am−1 zAm−1 + z.Am−2 . . . . . . zAk+2 + z.Ak+1

0
. . .

. . .
. . .

...

...
. . .

. . .
. . .

...

...
. . .

. . .
. . . zAm−1 + z.Am−2

...
. . . z.Am zAm + z.Am−1

0 . . . . . . . . . 0 z.Am

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that when . = ∗, we can always pick a z ∈ F such that −z/z. /∈ Λ(P). But when . = T ,

−z/z. = −1 so if −1 ∈ Λ(P) the corresponding .-(anti)palindromic pencil in L1(P) is not a

linearization of P(λ). In fact it is shown in [13] that some T-(anti)palindromic matrix polynomials

of even degree do not have T-(anti)palindromic linearizations. Instead, we allow a linearization with

“anti" structure: palindromic becomes antipalindromic and vice versa. For this, let v = ek+1 − ek
satisfying v = −Fmv. If P(λ) is T-palindromic then there is a unique T-antipalindromic pencil in

L1(P)with vector v. Similarly if P(λ) is T-antipalindromic then there is a unique T-palindromic pencil

in L1(P) with vector v. Such pencils are linearizations of P if 1 /∈ Λ(P) and are given by

λAS + BS =
⎧⎨
⎩

λAeven+ − (Aeven+ )T when S = T-palindromic withm = 2k,

λAeven+ + (Aeven+ )T when S = T-antipalindromic when m = 2k,
(9)

where Aeven+ (z) has a block structure similar to that of Aeven− (z) in (7) with z replaced by −1 and z.

replaced by 1. In particular, when m = 2,

Aeven+ =
⎡
⎣−A2 −A1 − A0

A2 −A2

⎤
⎦ .

The next result, useful later, shows that the linearizations (4)–(9) share a property.

Lemma 2.1. Let S ∈ S and P(λ) ∈ PS(F
n) with nonsingular leading coefficient. If λAS + BS is a

structured linearization of P(λ) as in (4)–(9) then C = −A−1
S BS , where C is the companion form of P(λ)

given in (3).
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Proof. Some easy calculations show that −ASC = BS . �

Hence, with the exception of T-(anti)palindromic P(λ) of even degree with both −1 and 1 as

eigenvalues, the companion form of P(λ) can be factorized as C = −A−1
S BS , where λAS + BS =

AS(λI − C) is a structured linearization of P(λ).

2.2. Standard triples

Recall that (U, T ) is an (m, n)-standard pair over F if T ∈ F
mn×mn and U ∈ F

n×mn are such that

Q = Q(U, T ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

UT m−1

...

UT

U

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

is nonsingular [11, Definition 2.1]. The triple (U, T , V) forms an (m, n)-standard triple over F if (U, T )
is an (m, n)-standard pair over F and V ∈ F

mn×n is such that UT m−1V is nonsingular and, if m � 2,

UT jV = 0, j = 0 : m − 2, (11)

or equivalently,

QV = e1 ⊗ N (12)

for some nonsingular n × n matrix N, where e1 is the first column of the m × m identity matrix [11,

Definition 2.3]. Note that the definitions of standard pairs and triples make no reference to matrix

polynomials.

An (m, n)-standard pair (U, T ) over F is a standard pair for P(λ) = ∑m
j=0 λjAj if

AmUT m + Am−1UT m−1 + · · · + A1UT + A0U = 0 (13)

[6, p. 46]. A standard triple (U, T , V) is a standard triple for P(λ) if (13) holds and Am = (UT m−1V)−1

(i.e., N = A−1
m in (12)). Any P(λ) ∈ P(Fn) with nonsingular leading coefficient admits a standard

triple. For example, it is easy to check that

(eTm ⊗ In, C, e1 ⊗ A−1
m ) (14)

with C as in (3) is a standard triple for P(λ). We refer to (14) as the primitive standard triple for P(λ).
Let Ui ∈ F

n×mn, Ti ∈ F
mn×mn and Vi ∈ F

mn×n, i = 1, 2. Then (U1, T1, V1) is similar to (U2, T2, V2)
if there exists a nonsingular G ∈ F

mn×mn such that

U2 = U1G, T2 = G−1T1G, V2 = G−1V1. (15)

It is easy to check that Q(U1, T1)G = Q(U2, T2). Hence G is uniquely defined by (U1, T1), (U1, T2) and
is given by

G = Q(U1, T1)−1Q(U2, T2). (16)

Also, (U2, T2, V2) defined in (15) is a standard triple if (U1, T1, V1) is a standard triple [5, Proposi-

tion 12.1.3]. Moreover if (U, T , V) is a standard triple for P(λ) then, with Q = Q(U, T ) as in (10), we

find that

(eTm ⊗ In)Q = U, Q−1CQ = T , Q−1(e1 ⊗ A−1
m ) = V . (17)

Hence any standard triple (U, T , V) for P(λ) is similar to the primitive standard triple (eTm⊗ In, C, e1⊗
A−1
m ). Note that because T is similar to C, λI − T is a linearization of P(λ) and Λ(P) = Λ(T ). The

following result [5, Theorem 12.1.4] will be needed.
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Lemma 2.2. Let U ∈ F
n×mn, T ∈ F

mn×mn, V ∈ F
mn×n and let P(λ) ∈ P(Fn) be of degree m with

nonsingular leading coefficient. Then (U, T , V) is a standard triple for P(λ) if and only if P(λ)−1 =
U(λI − T )−1V for λ ∈ C \ Λ(P).

A Jordan triple (X, J, Y) over F for P(λ) is a standard triple for P(λ) for which the matrix J is in

Jordan form or real Jordan form ifF = R. By (13) and [6, Proposition 2.1], we have that
∑m

j=0 AjXJ
j = 0

and
∑m

j=0 J
jYAj = 0. The columns of X and Y∗ determine right and left eigenvectors and generalized

eigenvectors of P(λ). The matrix J is the Jordan form of the companion form C of P(λ).

3. S-structured standard triples

Wenowconsider standard triples in thecontextof structuredmatrixpolynomials.Westartby listing

two assumptions used in our analysis. Let S ∈ S, P(λ) ∈ PS(F
n) have degree m with nonsingular

leading coefficient and let T ∈ F
mn×mn.

Assumption (a): ifS ∈ {T-palindromic, T-antipalindromic} and P(λ)has degreem = 2k then either

−1 /∈ Λ(P) or 1 /∈ Λ(P).
Assumption (b): if S ∈ {T-palindromic, T-antipalindromic} andm = 2k then either−1 /∈ Λ(T ) or
1 /∈ Λ(T ).

Assumption (a) ensures the existence of a structured linearization. Assumption (b) ensures the exis-

tence of α ∈ F such that α.α = 1 and −α /∈ Λ(T ). Also, for .-(anti)palindromic structures, the

eigenvalues of T come in pairs (λ, λ−.). Hence 0 /∈ Λ(T ) since ∞ /∈ Λ(T ) and T −. is well defined.

So for some T satisfying assumption (b) we define uS(T ), tS(T ), vS(T ) as in Table 2. We note that

assumptions (a) and (b) are equivalent when λI − T is a linearization of P(λ).
Before stating our main result in Theorem 3.4, we provide a few lemmas and introduce the notion

of S-structured standard triple. The first lemma of this section extends to all structures in S a result in

[6, Theorem 10.1] for Hermitian structure.

Lemma 3.1. Let (U, T , V) be an (m, n)-standard triple for P(λ) ∈ P(Fn) with nonsingular leading

coefficient and let S ∈ S. Assume that T satisfies assumption (b). Then P(λ) has structure S if and only if

(V.uS(T ), tS(T ), vS(T )U.) is a standard triple for P(λ).

Proof. (⇒) Assume that P(λ) is structured with structure S . Since any standard triple for P(λ) is

similar to the primitive standard triple (U0, C, V0) := (eTm ⊗ In, C, e1 ⊗ A−1
m ) (see comment before

Lemma 2.2), it suffices to show that (U0, C, V0) is similar to (V.
0 uS(C), tS(C), vS(C)U

.
0 ). Note that

under assumption (b), P(λ) has a structured linearization λAS + BS , which is one of (4)–(9) and by

Lemma 2.1, A−1
S BS = −C. Define

Table 2

Definition of uS (T ), tS (T ), vS (T ) for some T ∈ F
mn×mn satisfying assumption (b), where α is

some scalar in F such that α.α = 1 and −α /∈ Λ(T ).

Structure S uS (T ) tS(T ) vS (T )

Hermitian/symmetric I T . I

.-Even −I −T . I

.-Odd I −T . I

.-Palindromic,m = 2k + 1 −T .(k−1) T −. T .k

.-Palindromic,m = 2k −T .(k−1)(I + αT .)−1 T −. (I + αT .)T .(k−1)

.-Antipalindromic,m = 2k + 1 T .(k−1) T −. T .k

.-Antipalindromic,m = 2k T .(k−1)(I + αT .)−1 T −. (I + αT .)T .(k−1)
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G−1 :=
⎧⎨
⎩

z−.Aeven− (z) if P is .-(anti)palindromic, m = 2k, −z/z. /∈ Λ(P),

AS otherwise,
(18)

with Aeven− (z) as in (8). We aim to show that

V.

0 uS(C) = U0G, G−1CG = tS(C), vS(C)U
.

0 = G−1V0, (19)

that is, (U0, C, V0) is similar to (V.
0 uS(C), tS(C), vS(C)U

.
0 ) for all S ∈ S. That (19) holds for S ∈

{Hermitian, symmetric, .-even, .-odd} is easy to check.

For S ∈ {.-palindromic, .-antipalindromic}, the proof that G−1CG = C−. = tS(C) follows from

the definition of G and C = εA−1
S A.

S , where ε = ±1 depends on whether BS = A.
S or BS = −A.

S .
To prove that the first and third equalities in (19) hold for palindromic structures, we consider three

cases.

(i) m = 2k + 1. In that case, G−1 = Aodd, with Aodd as in (6). Then

G−1V0 = G−1(e1 ⊗ A−1
m ) = ek+1 ⊗ I = (C.)k(em ⊗ I) = vS(C)U

.

0 ,

from which it follows that V.
0 = (eTm ⊗ I)CkG. so that, on using G−1CG = C−.,

V.

0 uS(C)G
−1 = (eTm ⊗ I)CkG.(−C.(k−1))G−1

= (eTm ⊗ I)CkC(1−k)(−G.G−1)

= (eTm ⊗ I) = U0.

(ii) m = 2k, . = T and −1 ∈ Λ(T ). In that case, G−1 = Aeven+ with Aeven+ as in (9). Then

vS(C)U
T
0 = (I − CT )CT(k−1)(em ⊗ In) = ek+1 ⊗ I − ek ⊗ I = G−1(e1 ⊗ I)A−1

m = G−1V0.

From V0 = GvS(C)U
T
0 it follows that VT

0 = U0C(k−1)(I − C)GT , so that

VT
0 uS(C) = −U0C(k−1)(I − C)GTCT(k−1)(I − CT )−1

= −U0C(k−1)(I − C)C(1−k)GT (I − CT )−1

= U0G(I − CT )(I − CT )−1 = U0G,

where we used CGT = G and GTCT(k−1)G−T = C−(k−1).

(iii) m = 2k, . = ∗, T and if . = T then −1 /∈ Λ(T ). The proof is similar to that in (ii) with

α = z/z. in the definition of uS and vS , and G−1 = z−.Aeven− (z) with Aeven− (z) as in (8).

The case of antipalindromic structures is proved similarly.

(⇐) Suppose that (U, T , V) and (V.uS(T ), tS(T ), vS(T )U.) are standard triples for P(λ). By
Lemma 2.2, we have that

U(λI − T )−1V = P(λ)−1 = V.uS(T )
(
λI − tS(T )

)−1
vS(T )U.. (20)

As shown in the proof of [6, Theorem 10.1] for Hermitian structure, (20) implies that

(
P∗(λ)

)−1 = (
P(λ̄)

)−∗ = (U(λ̄I − T )−1V)∗ = V∗(λI − T ∗)−1U∗ = P(λ)−1

showing that P(λ) is Hermitian. This proof extends easily to structures S ∈ {symmetric, .-even,

.-odd}.

We now concentrate on palindromic structures. Using the left hand side of (20) we find that

λ−m(P(λ−.))−. = λ−m(U(λ−.I − T )−1V). = λ1−mV.(I − λT .)−1U..
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If ‖λT .‖ < 1 for some subordinate matrix norm ‖ · ‖ then

(I − λT .)−1 = I + λT . + λ2T .2 + · · · . (21)

Using (21) and the fact that V.T .jU. = 0, j = 0 : m − 2 (see (11)), we obtain

λ−m(P(λ−.))−. = V.T .(m−1)(I + λT . + λ2T .2 + · · · )U.

= V.T .(k−1)(I − λT .)−1T .(m−k)U.

= −V.T .(k−1)(λI − T −.)−1T .(m−k−1)U. (22)

for all |λ| < ‖T .‖−1. When m = 2k + 1, (22) and the right hand side of (20) yield

λ−m(P(λ−.))−. = V.uS(T )(λI − T −.)−1vS(T )U. = P(λ)−1. (23)

Note that (λI − T −.)−1 commutes with T .k−1, (I + αT .) and (I + αT .)−1 so when m = 2k,

(22) can be rewritten to yield (23). Since λ−m(P(λ−.))−. = P(λ)−1 holds for many values of λ,
P(λ) = λmP.(λ−1) for all λ, that is, P(λ) is .-palindromic.

That P(λ) = −λmP.(λ−1) for the .-antipalindromic structure is proved in a similar way. �

Lemma 3.1 naturally leads to the following definition.

Definition 3.2 (S-structured standard triple). Let S ∈ S. An (m, n)-standard triple (U, T , V) with T
satisfying assumption (b) is said to be S-structured if it is similar to (V.uS(T ), tS(T ), vS(T )U.).

If (U, T , V) is an S-structured standard triple then there is a nonsingular S ∈ F
mn×mn such that

US = V.uS(T ), S−1T S = tS(T ), S−1V = vS(T )U.. (24)

The matrix S is unique and is given by (see (16))

S = Q(U, T )−1Q
(
V.uS(T ), tS(T )

)
.

We refer to S as the S-matrix of the S-structured standard triple (U, T , V).
The next lemma shows that any standard triple that is similar to an S-structured standard triple is

itself S-structured.

Lemma3.3. Let (U, T , V)bea standard triple similar to (U1, T1, V1), that is, (U1, T1, V1)=(UG, G−1T G,
G−1V) for some nonsingular matrix G. Let S ∈ S and assume T satisfies assumption (b). If (U, T , V) is

S-structured with S-matrix S then (U1, T1, V1) is S-structured with S-matrix S1 = G−1SG−..

Proof. If (U1, T1, V1) = (UG, G−1T G, G−1V) with (U, T , V) S-structured then

(V.

1 G.uS(GT1G
−1), tS(GT1G

−1), vS(GT1G
−1)G−.U.

1 ) = (V.uS(T ), tS(T ), vS(T )U.)

= (US, S−1T S, S−1V)

= (U1G
−1S, S−1GT1G−1S, S−1GV1).

Since uS(GT1G
−1) = G−.uS(T1)G

., tS(GT1G
−1) = G−.uS(T1)G

., and vS(GT1G
−1) = G−.vS(T1)

G., it follows that (U1, T1, V1) is S-structured with S-matrix G−1SG−.. �

We can now state our main result, which is a direct consequence of Lemma 3.1 and Lemma 3.3. It

extends a result for Hermitian structure [5, Theorem 12.2.2] to all structures in S.

Theorem 3.4. Let S ∈ S and P(λ) ∈ P(Fn) with nonsingular leading coefficient satisfying assumption

(a). Then P(λ) has structure S if and only if P(λ) admits an S-structured standard triple, in which case

every standard triple for P(λ) is S-structured.
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The relations in (24) imply certain properties of S, as shown in the next theorem.

Theorem 3.5. Let S ∈ S. An (m, n)-standard triple (U, T , V) with T satisfying assumption (b) is S-
structured with matrix S if and only if V = SvS(T )U. and S satisfies the following properties:

• S = S., T S = (T S). when S ∈ {Hermitian, symmetric},
• S = −S., T S = (T S). when S = .-even,
• S = S., T S = −(T S). when S = .-odd,
• T S. = −S when S = .-palindromic and m = 2k + 1 or T S. = −αS when S = .-palindromic and

m = 2k,
• T S. = S when S = .-antipalindromic and m = 2k + 1 or T S. = αS when S = .-antipalindromic

and m = 2k,

for some α ∈ F such that α.α = 1 and −α /∈ Λ(T ).

Proof. (⇐) Assume that V = SvS(T )U. and that S satisfies the properties listed in the theorem. We

show that (24) holds. The last equality follows from V = SvS(T )U. and the second equality follows

from the properties of S. Now fromV = SvS(T )U. wehave thatV.uS(T ) = U(vS(T )).S.uS(T ). That
(vS(T )).S.uS(T ) = S for S ∈ {Hermitian, symmetric, .-even, .-odd} follows from the definition of

uS, vS and the properties of S. For palindromic structures, S−1T S = tS(T ) implies that

S.(T .)(k−1) = T −(k−1)S.. (25)

Hence, when m = 2k + 1,

(vS(T )).S.uS(T ) = −T kS.T .(k−1) = −T kT −(k−1)S. = −T S. = S,

where we used (25) and the assumption that T S. = −S. When m = 2k,

(vS(T )).S.uS(T ) = −T (k−1)(I + α.T )S.T .(k−1)(I + αT .)−1

= −(I + α.T )S.(I + αT .)−1

= (S − S.)(I + αT .)−1 = S(I + αT .)(I + αT .)−1 = S.

In a similar way we can show that (vS(T )).S.uS(T ) = S for antipalindromic structures. Hence

V.uS(T ) = US.

(⇒) Assume that (U, T , V) is S-structured with S-matrix S so that (24) holds and hence V =
SvS(T )U.. By [11, Theorem 2.4] there exists a unique matrix polynomial P(λ) = ∑m

j=0 λjAj for which

(U, T , V) is a standard triple. This triple is similar to theprimitive triple (U0, T0, V0) = (eTm⊗In, C, e1⊗
A−1
m ), where A−1

m = UT m−1V . The proof of Lemma 3.1 shows that (U0, T0, V0) is S-structured with

S-matrix S0 = G defined in (18). It is easy to check that S0 = G and T0 = C satisfy the properties

displayed in the bullet points of the theorem. By Lemma 3.3, S = Q−1S0Q
−. and since T = Q−1T0Q

(see (17)), we have that T S = Q−1T0S0Q−., T S. = Q−1T0S.
0 Q

−.. This completes the proof since

the properties of S0 and T0S0 are preserved by .-congruences and it is easy to check that T S. is the

appropriate multiple of S for the (anti)palindromic structures. �

We point out that Hermitian and symmetric structured standard triples are called self-adjoint stan-

dard triples in the literature (see for example [5, p. 244]). For (anti)palindromic structures, the matrix

T of an S-structured standard triple (U, T , V)with S-matrix S is S−1-unitary, that is, T .S−1T = S−1.

With additional constraints on T ’s structure, Lancaster, Prells and Rodman refer to (U, T , V) as a uni-

tary standard triple [8, Definition 4]. Hence a unitary standard triple is S-structured but the converse

is not true in general.

The S-matrix of an S-structured standard triple (U, T , V) for P(λ) can be expressed in terms of

U, T and the matrix coefficients of P(λ) as the next result shows.
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Proposition 3.6. Let S ∈ S and P(λ) ∈ PS(F
n) be of degree m with nonsingular leading coefficient and

satisfying assumption (a). If (U, T ) is a standard pair for P(λ) then (U, T , SvS(T )U.) is an S-structured
standard triple for P(λ) with S-matrix S given by

S−1 =
⎧⎨
⎩

z−.Q.Aeven− (z)Q if P is .-(anti)palindromic, m = 2k, −z/z. /∈ Λ(P),

Q.ASQ otherwise,

where Q := Q(U, T ) is as in (10), and AS and Aeven− (z) are as in (4)–(9).

Proof. Theprimitive standard triple (eTm⊗In, C, e1⊗A−1
m ) isS-structuredwithmatrixGdefined in (18).

Since (U, T ) is a standard pair of P(λ), we easily check that Q−1CQ = T and
(
eTm ⊗ In

)
Q = U. Define

V = Q−1
(
e1 ⊗ A−1

m

)
. Then (U, T , V) is a standard triple for P(λ) similar to

(
eTm ⊗ In, C, e1 ⊗ A−1

m

)
.

By Lemma 3.3, (U, T , V) is S-structured with matrix S = Q−1GQ−. and V = SvS(T )U.. �

4. S-structured Jordan triples

We now explain how to obtain explicit expressions for the Jordan matrix and S-matrix of S-
structured Jordan triples (X, J, SJvS(J)X

.) of P(λ) ∈ PS(F
n). We note that the matrix SJ displays

the sign characteristic of P(λ), whose definition we now give.

Let (U, T , ST vS(T )U.) be a standard triple for P(λ) ∈ PS(F
n). The sign characteristic of P(λ) is

defined as the sign characteristic of the pair (T , S−1
T ), which is a list of signs, with a sign (+1 or −1)

attached to each partial multiplicity of

• real eigenvalues of Hermitian or real symmetric matrix polynomials,

• purely imaginary eigenvalues of ∗-even, ∗-odd, real T-even and real T-odd matrix polynomials,

• eigenvalueswith unitmodulus of∗-(anti)palindromic and real T-(anti)palindromicmatrix poly-

nomials.

These signs can be read off the canonical decomposition of λS−1
T − S

−1
T T via .-congruence (see [5,

Section 12.4] for Hermitian structure). Note that the definition of the sign characteristic for P(λ) is

independent of the choice of standard triple. Indeed if (Ui, Ti, STi vS(Ti)U
.
i ), i = 1, 2 are S-structured

standard triples for P(λ), then by Lemma 3.3 there exists a nonsingular G such that T2 = G−1T1G and

ST2 = G−1ST1G
−.. Hence,λS−1

T2 −S
−1
T2 T2 = G.(λS−1

T1 −S
−1
T1 T1)G, that is, the pencilsλS−1

Ti −S
−1
Ti Ti, i =

1, 2 are .-congruent. They share the same canonical decomposition via .-congruence and therefore

the same sign characteristic.

We know that the triple
(
(eTm ⊗ In), C, (e1 ⊗ A−1

m )
)
is a standard triple for P(λ) and by Theorem

3.4, it is S-structured with S-matrix as in Proposition 3.6 with Q = Imn. Hence, on using Lemma 2.1,

we find that

λS−1
C − S−1

C C = λz−.AS + z−.BS,

where λAS + BS is a structured linearization of P(λ) as in (4)–(9), and z = 1 except when AS =
Aeven− (z), in which case z ∈ F is chosen such that −z/z. /∈ Λ(P). So what we need is a canonical

decomposition of λAS + BS via .-congruence,

Z.(λAS + BS)Z = λ(Z.ASZ) − (Z.ASZ)
(
Z−1CZ

) = z.(λS−1
J − S−1

J J),

where J = Z−1CZ is the Jordan form of C. Fortunately, such decompositions are available in the litera-

ture for all the structures in S. We use these canonical decompositions to provide explicit expressions

for J and SJ in Appendix A. These expressions show that SJ and J have the same block structure and

that we can read the sign characteristic of P(λ) from certain diagonal blocks of SJ .
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5. Concluding remarks

The results in this paper represent a first step towards the solution of the structured inverse polyno-

mial eigenvalue problem: given a list of admissible elementary divisors for the structure, and possibly,

corresponding right eigenvectors and generalized eigenvectors, construct a structuredmatrix polyno-

mial having these elementary divisors and eigenvectors/generalized eigenvectors. Indeed, using the

results in Sections 3 and4we show in [1] how to construct anS-structured (2, n)-Jordan triple (X, J, Y)
from a given list of 2n prescribed eigenvalues and n linearly independent eigenvectors and generalized

eigenvectors, and use the fact that an S-structured (2, n)-Jordan triple defines a unique structured

quadratic Q(λ) = λ2A2 + λA1 + A0 ∈ PS(F
n), where A2 = (XJSvS(J)X

.)−1,

A1 = −A2XJ
2SvS(J)X

.A2, A0 = −A2(XJ
2SvS(J)X

.A1 + XJ3SvS(J)X
.A2),

and vS(·) as in Table 2.

Finally, we note that standard triples have been useful to describe structure preserving transfor-

mations (SPTs) for matrix polynomials, and in particular quadratic matrix polynomials [3]. We believe

that the notion of S-structured standard triples will further our understanding of SPTs for structured

matrix polynomials.
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Appendix A. Explicit expressions for J and SJ

Using the canonical decompositions of structured pencils via .-congruences, we provide in this

appendix an explicit expression for the Jordan matrix and S-matrix of S-structured Jordan triples

(X, J, SJvS(J)X
.) of P(λ) ∈ PS(F

n) for each S ∈ S. We assume that P(λ) is of degree m with non-

singular leading coefficient matrix. To facilitate the description of J and SJ , we introduce the matrices

E1 = F1 = [1] and for integers k > 1

Ek =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

. .
.

1

(−1)k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k×k

= (−1)k−1ETk , Fk =

⎡
⎢⎢⎢⎣

1

. .
.

1

⎤
⎥⎥⎥⎦
k×k

.

We denote by

J�k(λk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λk 1

λk

. . .

. . . 1

λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
�k×�k ,

the Jordan block of size �k associated with λk , and by

K2mk
(λk, λ̄k) = K2mk

(Λk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λk I2

Λk

. . .

. . . I2

Λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
2mk×2mk , Λk =

⎡
⎣ αk βk

−βk αk

⎤
⎦ ,
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the 2mk × 2mk real Jordan block associated with the pair of complex conjugate eigenvalues (λk, λ̄k),
where λk = αk + iβk with αk, βk ∈ R, βk �= 0. We use the notation

⊕r
j=1 Fj to denote the direct sum

of the matrices F1, . . . , Fr .
Note that there are restrictions on the Jordan structure of P. For instance, a regular n × n matrix

polynomial cannot have more than n elementary divisors associated with the same eigenvalue [6,

Theorem 1.7]. Also, the elementary divisors have certain pairing, which depends on the structure

S ∈ S and the eigenvalue. Hence we describe for each S ∈ S the elementary divisors arising from

P(λ) ∈ PS(F
n) and then provide an expression for J and SJ .

A.1. Hermitian structure

Suppose P(λ) is Hermitian with

• r real elementary divisors (λ − λj)
�j , j = 1 : r, and

• s pairs of nonreal conjugate elementary divisors (λ − μj)
mj , (λ − μj)

mj , j = 1 : s,

with �j,mj such that
∑r

j=1 �j + 2
∑s

j=1 mj = mn. It follows from [9, Theorem 6.1] that

J =
r⊕

j=1

J�j(λj) ⊕
s⊕

j=1

(Jmj
(μ̄j) ⊕ Jmj

(μj)), SJ = S−1
J =

r⊕
j=1

εjF�j ⊕
s⊕

j=1

F2mj
.

Here {ε1, . . . , εr} with εj = ±1 is the sign characteristic associated with the real eigenvalues λj ,

j = 1 : r of P(λ). We easily check that SJ = S∗
J and JSJ = (JSJ)

∗.

A.2. Real symmetric structure

Suppose P(λ) is real symmetric with

• r real elementary divisors (λ − λj)
�j , j = 1 : r, and

• s pairs of nonreal conjugate elementary divisors (λ − μj)
mj , (λ − μj)

mj , j = 1 : s,

with �j,mj such that
∑r

j=1 �j + 2
∑s

j=1 mj = mn. On using [9, Theorem 9.2] we find that

J =
r⊕

j=1

J�j(λj) ⊕
s⊕

j=1

K2mj
(μj, μ̄j), SJ = S−1

J =
r⊕

j=1

εjF�j ⊕
s⊕

j=1

F2mj
,

where the scalars εj = ±1 form the sign characteristic associated with the real eigenvalues of P(λ).

Note that SJ = STJ and JSJ = (JSJ)
T .

A.3. Complex symmetric structure

Suppose P(λ) is complex symmetric with q elementary divisors (λ − λj)
mj , λj ∈ C, j = 1 : q, with

mj such that
∑q

j=1 mj = mn. Then [18, Proposition 4.3] leads to

J =
q⊕

j=1

Jmj
(λj), SJ = S−1

J =
q⊕

j=1

Fmj
,

which satisfy SJ = STJ and JSJ = (JSJ)
T .
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A.4. ∗-Even structure

Suppose P(λ) is ∗-even with

• r purely imaginary (including 0) elementary divisors (λ − iβj)
�j , j = 1 : r, and

• s pairs of nonzero and non-purely imaginary elementary divisors (λ − iμj)
mj , (λ − iμj)

mj ,

j = 1 : s,

with �j,mj such that
∑r

j=1 �j + 2
∑s

j=1 mj = mn. With the change of eigenvalue parameter λ = −iμ,

the ∗-even linearization of P(λ), λAS +BS = μ(−iAS)+BS becomes a Hermitian pencil inμ. Using

Appendix A.1 we obtain that

J = −i
( r⊕

j=1

J�j(−βj) ⊕
s⊕

j=1

(
Jmj

(−μ̄j) ⊕ Jmj
(−μj)

))
, SJ = −i

( r⊕
j=1

εjF�j ⊕
s⊕

j=1

F2mj

)
.

Here {ε1, . . . , εr}withεj = ±1 is the sign characteristic associatedwith thezeroandpurely imaginary

eigenvalues of P(λ). Note that SJ = −S∗
J and JSJ = (JSJ)

∗.

A.5. Real T-even structure

Suppose P(λ) is real T-even with (see [15])

• t zero elementary divisors λnj with nj even, j = 1 : t,

• r pairs of real elementary divisors (λ + αj)
pj , (λ − αj)

pj with pj odd if αj = 0, j = 1 : r,

• s pairs of purely imaginary elementary divisors (λ + iβj)
kj , (λ − iβj)

kj with βj > 0, j = 1 : s,

and

• q quadruples of nonzero and non-purely imaginary elementary divisors (λ+μj)
mj , (λ−μj)

mj ,

(λ + μj)
mj , (λ − μj)

mj , j = 1 : q,

with nj, pj, kj,mj such that
∑t

j=1 nj + 2
∑r

j=1 pj + 2
∑s

j=1 kj + 4
∑q

j=1 mj = mn. Using [10, Theo-

rem 16.1], we find that

J =
t⊕

j=1

Jnj(0) ⊕
r⊕

j=1

(
Jpj(αj) ⊕ −Jpj(αj)

T
)

⊕
s⊕

j=1

K2kj(iβj, −iβj) ⊕
q⊕

j=1

(
K2mj

(μj, μ̄j) ⊕ −K2mj
(μj, μ̄j)

T
)
,

SJ =
t⊕

j=1

εjEnj ⊕
r⊕

j=1

⎡
⎣ 0 −Ipj

Ipj 0

⎤
⎦ ⊕

s⊕
j=1

εj(Ekj ⊗ E
kj
2 ) ⊕

q⊕
j=1

⎡
⎣ 0 −I2mj

I2mj
0

⎤
⎦ ,

where the scalars εj = ±1 form the sign characteristic associated with the purely imaginary eigen-

values and zero eigenvalues of even partial multiplicities (see [17]). We easily check that SJ = −STJ

and JSJ = (JSJ)
T .

A.6. Complex T-even structure

Let λj ∈ C \ {0} and suppose P(λ) is complex T-even with (see [15])

• t zero elementary divisors λmj withmj even, j = 1 : t,

• q pairs of elementary divisors (λ − λj)
kj , (λ + λj)

kj with kj odd if λj = 0, j = 1 : q,
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withmj, kj such that
∑r

j=1 mj + 2
∑q

j=1 kj = mn. Then, by [18, Proposition 4.7 (b)], we obtain that

J =
t⊕

j=1

Jmj
(0) ⊕

q⊕
j=1

(Jkj(λj) ⊕ Jkj(−λj)), SJ =
t⊕

j=1

⎡
⎢⎣

0 −F 1
2
mj

F 1
2
mj

0

⎤
⎥⎦ ⊕

q⊕
j=1

⎡
⎣ 0 −Fkj

Fkj 0

⎤
⎦ .

Note that SJ = −STJ and JSJ = (JSJ)
T .

A.7. ∗-odd structure

Suppose P(λ) is ∗-odd with

• r purely imaginary (including 0) elementary divisors (λ − iβj)
�j , j = 1 : r and

• s pairs of nonzero and non-purely imaginary elementary divisors (λ − iμj)
mj , (λ − iμj)

mj ,

j = 1 : s,

with �j,mj such that
∑r

j=1 �j + 2
∑s

j=1 mj = mn. Note that for the ∗-odd linearization λAS + BS of

P(λ) in (4), the pencil i(λAS + BS) is ∗-even and the structure for SJ and J follows from Appendix A.4.

We find that

J = −i
( r⊕

j=1

J�j(−βj) ⊕
s⊕

j=1

(
Jmj

(−μ̄j) ⊕ Jmj
(−μj)

))
, SJ = S−1

J =
r⊕

j=1

εjF�j ⊕
s⊕

j=1

F2mj
,

which satisfy SJ = S∗
J and JSJ = −(JSJ)

∗. Here {ε1, . . . , εr} with εj = ±1 is the sign characteristic

associated with the zero and purely imaginary eigenvalues of P(λ).

A.8. Real T-odd structure

Suppose P(λ) is real T-odd with (see [15])

• t zero elementary divisors λ�j with �j odd, j = 1 : t,

• r pairs of real elementary divisors (λ + αj)
pj , (λ − αj)

pj with pj even if αj = 0, j = 1 : r,

• s pairs of purely imaginary elementary divisors (λ + iβj)
kj , (λ − iβj)

kjwith βj > 0, j = 1 : s,

and

• q quadruples elementary divisors (λ + μj)
mj , (λ − μj)

mj , (λ + μ̄j)
mj , (λ − μ̄j)

mj , j = 1 : q,

with �j, pj, kj,mj such that
∑t

j=1 �j + 2
∑r

j=1 pj + 2
∑s

j=1 kj + 4
∑q

j=1 mj = mn. On using [10, Theo-

rem 17.1] we find that

J =
t⊕

j=1

J�j(0) ⊕
r⊕

j=1

(
Jpj(αj) ⊕ −Jpj(αj)

T
)

⊕
s⊕

j=1

K2kj(iβj, −iβj) ⊕
q⊕

j=1

(
K2mj

(μj, μ̄j) ⊕ −K2mj
(μj, μ̄j)

T
)
,

SJ = S−1
J =

t⊕
j=1

εjE�j ⊕
r⊕

j=1

⎡
⎣ 0 Ipj

Ipj 0

⎤
⎦ ⊕

s⊕
j=1

εj(Ekj ⊗ E
kj−1

2 ) ⊕
q⊕

j=1

⎡
⎣ 0 I2mj

I2mj
0

⎤
⎦ ,

where the scalars εj = ±1 form the sign characteristic associated with the purely imaginary eigen-

values and the zero eigenvalues with odd partial multiplicities. We easily check that SJ = STJ and

JSJ = −(JSJ)
T .
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A.9. Complex T-odd structure

Let λj ∈ C \ {0} and suppose P(λ) is complex T-odd with (see [15])

• s zero elementary divisors λ�j with �j odd, j = 1 : s, and

• q pairs of elementary divisors (λ + λj)
kj , (λ − λj)

kj with kj even if λj = 0, j = 1 : q,

with �j, kj such that
∑s

j=1 �j + 2
∑q

j=1 kj = mn. It follows from [18, Proposition 4.7(b)] that

J =
s⊕

j=1

J�j(0) ⊕
q⊕

j=1

(
−Jkj(λj) ⊕ Jkj(λj)

)
, SJ = S−1

J =
s⊕

j=1

E�j ⊕
q⊕

j=1

F2kj .

Clearly, SJ = STJ and JSJ = −(JSJ)
T .

Notice the difference between the zero elementary divisors associated with T-even and T-odd

pencils (see [15, Corollary 4.3]).

A.10. ∗-(anti)palindromic structure

Suppose P(λ) is complex ∗-palindromic with −1 /∈ Λ(P) and (see [16])

• q pairs of elementary divisors (λ − λj)
kj , (λ − 1/λj)

kj with λj ∈ C \ {0}, |λj| �= 1, j = 1 : q,

• t elementary divisors (λ − λj)
2�j+1 with λj ∈ C such that |λj| = 1, j = 1 : t, and

• s elementary divisors (λ − λj)
2mj with λj ∈ C, |λj| = 1, j = 1 : s,

with kj, �j,mj such that 2
∑q

j=1 kj +
∑t

j=1(2�j + 1) + 2
∑s

j=1 mj = mn. Then using either [19, Theo-

rem 5] or [20, Section 2.2.2] we find that

J = −SJS
−∗
J

with

SJ =
q⊕

j=1

⎡
⎣0kj Fkj Jkj(−λj)

Fkj 0kj

⎤
⎦ ⊕

t⊕
j=1

εj

⎡
⎢⎢⎢⎣

0 0 F�j J�j(−λj)

0 (−λj)
1/2 eT1

F�j 0 0

⎤
⎥⎥⎥⎦ ⊕

s⊕
j=1

εj

⎡
⎣0mj

Fmj
Jmj

(−λj)

Fmj
e1e

T
1

⎤
⎦

has the above elementary divisors. Here e1 is the first column of the identity matrix. The scalars

εj = ±1 form the sign characteristic associatedwith the eigenvalues of unitmodulus of P(λ) (see [8]).

For the ∗-antipalindromic structure, J = SJS
−∗
J with SJ as above but with −λj replaced by λj .

A.11. Real T-(anti)palindromic structure

Suppose P(λ) is real T-palindromic with −1 /∈ Λ(P), λj ∈ C \ {0}, and (see [16])

• r pairs of real elementary divisors (λ − λj)
kj , (λ − 1/λj)

kj with λj ∈ R, |λj| �= 1, j = 1 : r,

• q quadruples of nonreal elementary divisors (λ − λj)
nj , (λ − λj)

nj , (λ − 1/λj)
nj , (λ − 1/λj)

nj

with |λj| �= 1, j = 1 : q,

• s elementary divisors (λ − 1)2mj , j = 1 : s,

• t pairs of elementary divisors (λ − 1)2�j+1, (λ − 1)2�j+1, j = 1 : t,

• u pairs of elementary divisors (λ − λj)
�′
j , (λ − λj)

�′
j with |λj| = 1, λj �= 1, �′

j odd, j = 1 : u, and

• p pairs of elementary divisors (λ − λj)
m′

j , (λ − λj)
m′

j with |λj| = 1, λj �= 1, m′
j even, j = 1 : p.

We have that 2
∑r

j=1 kj + 4
∑q

j=1 nj + 2
∑s

j=1 mj + 2
∑t

j=1(2�j + 1) + 2
∑u

j=1 �′
j + 2

∑p
j=1 m

′
j = mn.
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Using [20, Theorem 2.8] we find that J = −SJS
−T
J has the above list of elementary divisors, where

SJ =
r⊕

j=1

⎡
⎣0kj Fkj Jkj(−λj)

Fkj 0kj

⎤
⎦ ⊕

q⊕
j=1

⎡
⎣ 02nj K2nj

(−Λj)

Fnj ⊗ I2 02nj

⎤
⎦ ⊕

s⊕
j=1

⎡
⎣ 0 Fmj

Jmj
(−1)

Fmj
0

⎤
⎦

⊕
t⊕

j=1

εj

⎡
⎢⎢⎢⎣

0�j 0 F�j J�j(−1)

0 1 eT1

F�j 0 0�j

⎤
⎥⎥⎥⎦ ⊕

t⊕
j=1

εj

⎡
⎢⎢⎢⎣

0�j 0 F�j J�j(−1)

0 1 eT1

F�j 0 0�j

⎤
⎥⎥⎥⎦

⊕
u⊕

j=1

εj

⎡
⎢⎢⎢⎢⎣

0�′
j−1 0 K�′

j−1(−Λj)

0
(−Λj

) 1
2 eT1 ⊗ I2

F 1
2
(�′

j−1) ⊗ I2 0 0�′
j−1

⎤
⎥⎥⎥⎥⎦

⊕
p⊕

j=1

εj

⎡
⎢⎣

0m′
j

Km′
j
(−Λj)

F 1
2
m′

j
⊗ I2 e1e

T
1 ⊗ I2

⎤
⎥⎦ .

Here
(−Λj

) 1
2 is the principal square root of −Λj . The scalars εj are signs ±1 and form the sign

characteristic associated with the eigenvalues of unit modulus of P(λ) except the eigenvalues 1 with

even partial multiplicities (see [8]).

For the T-antipalindromic P(λ), J = SJS
−T
J where SJ is as above but with −λj, −1, −Λj replaced

by λj, 1, Λj , respectively.

A.12. Complex T-(anti)palindromic structure

Suppose P(λ) is complex T-palindromic with −1 /∈ Λ(P) and (see [16])

• t elementary divisors (λ − 1)mj with mj even, j = 1 : t,

• q pairs of elementary divisors (λ − λj)
kj , (λ − 1/λj)

kj with kj odd when λj = 1, j = 1 : q,

withmj, kj such that
∑t

j=1 mj +2
∑q

j=1 kj = mn. On using either [19, Theorem 1] or [20, Theorem 2.6],

we find that with

SJ =
t⊕

j=1

⎡
⎣0mj/2 Fmj/2Jmj/2(−1)

Fmj/2 e1e
T
1

⎤
⎦ ⊕

q⊕
j=1

⎡
⎣0kj Fkj Jkj(−λj)

Fkj 0kj

⎤
⎦

the matrix J = −SJS
−T
J has the above elementary divisors.

Now if P(λ) is complex T-antipalindromic with −1 /∈ Λ(P) and (see [16])

• t elementary divisors (λ − 1)�j with �j odd, j = 1 : t,

• q pairs of elementary divisors (λ − λj)
kj , (λ − 1/λj)

kj with kj even if λj = 1, j = 1 : q,

with �j, kj such that
∑t

j=1 �j + 2
∑q

j=1 kj = mn. On using [20, Theorem 2.6], we find that the matrix

J = SJS
−T
J with

SJ =
t⊕

j=1

⎡
⎢⎢⎢⎣

0�j 0 F�j J�j(1)

0 1 eT1

F�j 0 0�j

⎤
⎥⎥⎥⎦ ⊕

q⊕
j=1

⎡
⎣0kj Fkj Jkj(λj)

Fkj 0kj

⎤
⎦

has the above elementary divisors.

Note that J in Appendices A.10–A.12 is “almost" in Jordan canonical form.
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