Math 316

Solutions of the First Midterm Exam 1434, 1st semester

- Q1 Prove or disprove each of the following statements:
 - (a) If a set $\{x_1, x_2, ..., x_n\}$ is orthogonal in an inner product space X, then it is linearly independent.

Solution: (True)

If $\{x_1, x_2, ..., x_n\}$ is orthogonal in X, then for all $i, j \in \{1, 2, ..., n\}$

$$\langle x_i, x_j \rangle = 0, \|x_i\| \neq 0.$$

Now, let

$$\sum_{i=1}^{n} c_i x_i = 0$$

where c_i 's are scalars. Then, for any $x_j \in \{x_1, x_2, ..., x_n\}$, we have

$$\left\langle \sum_{i=1}^{n} c_i x_i, x_j \right\rangle = \left\langle 0, x_j \right\rangle$$

 \Rightarrow

$$\sum_{i=1}^{n} c_i \left\langle x_i, x_j \right\rangle = 0$$

 \Rightarrow

$$c_j \langle x_j, x_j \rangle = 0$$

$$c_j \left\| x_j \right\|^2 = 0$$

 \Rightarrow

$$c_j = 0$$

for all $j \in \{1, 2, ..., n\}$, which proves that the set $\{x_1, x_2, ..., x_n\}$ is linearly independent.

(b) If $f(x) = \ln x$ and $\rho(x) = \frac{1}{x}$, then $f \in \mathcal{L}^{2}_{\rho}(0,1)$. Solution: (False)

$$\left\|\ln x\right\|_{\frac{1}{x}}^2 = \int_0^1 \left|\ln x\right|^2 \frac{1}{x} dx$$

Using the substitution

$$\begin{array}{rcl} u & = & \ln x, & du = \frac{1}{x} dx, \\ x & = & 0 \Rightarrow u = -\infty, \end{array}$$

$$x = 0 \Rightarrow u = -\infty,$$

$$x = 1 \Rightarrow u = 0,$$

we get

$$\|\ln x\|_{\frac{1}{x}}^2 = \lim_{t \to -\infty} \int_t^0 u^2 du$$

$$= \lim_{t \to -\infty} \frac{u^3}{3} \Big|_{u=t}^{u=0}$$

$$= \lim_{t \to -\infty} -\frac{t^3}{3}$$

$$= \infty$$

Therefore, $f \notin \mathcal{L}_{\frac{1}{x}}^{2}(0,1)$.

Q2 Consider the sequence of functions

$$f_n\left(x\right) = x^n, \quad x \in [0, 1]$$

(a) Find the limit f(x) of $f_n(x)$ as $n \to \infty$. Solution:

$$f(x) = \lim_{n \to \infty} x^n = \begin{cases} 0, & 0 \le x < 1\\ 1, & x = 1 \end{cases}$$

(b) Does $f_n(x)$ converge to f(x) uniformly? Justify your answer. Solution:

 $f_n(x)$ does not converge uniformly to f(x) because the function $f_n(x) = x^n$ is continuous on [0,1] for all $n \in \mathbb{N}$, but f(x) is not.

(c) Does $f_n(x)$ converge to f(x) in $\mathcal{L}^2([0,1])$? Justify your answer. Solution: yes

$$f_n \stackrel{\mathcal{L}^2}{\to} f \quad \Leftrightarrow \quad \lim_{n \to \infty} ||f_n - f|| = 0$$

Now,

$$\lim_{n \to \infty} ||f_n - f|| = \lim_{n \to \infty} ||x^n - 0||$$

$$= \lim_{n \to \infty} \left(\int_0^1 |x^n|^2 dx \right)^{\frac{1}{2}}$$

$$= \lim_{n \to \infty} \left(\int_0^1 x^{2n} dx \right)^{\frac{1}{2}}$$

$$= \lim_{n \to \infty} \left(\frac{x^{2n+1}}{2n+1} \Big|_0^1 \right)^{\frac{1}{2}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2n+1}}$$

$$= 0.$$

Q3 Consider the eigenvalue problem

$$Lu + \lambda u = 0, \quad x \in [a, b],$$

 $u(a) = 0, \quad u(b) = 0$ (1)

(a) Prove that if L is a self-adjoint operator, then $\lambda \in \mathbb{R}$. Solution:

If L is a self-adjoint operator, then

$$\langle Lu, u \rangle = \langle u, Lu \rangle \tag{2}$$

for any $u \in \mathcal{L}^2([a,b])$. Now, let λ be an eigenvalue of -L and let u be the corresponding eigenfunction, then

$$\langle Lu, u \rangle = \langle -\lambda u, u \rangle = -\lambda \langle u, u \rangle = -\lambda \|u\|^2$$

On the other hand, we have

$$\langle u, Lu \rangle = \langle u, -\lambda u \rangle = -\overline{\lambda} \langle u, u \rangle = -\overline{\lambda} \|u\|^2,$$

Using (2), we get

$$-\lambda \left\| u \right\|^2 = -\overline{\lambda} \left\| u \right\|^2$$

but since $||u|| \neq 0$ (because u is an eigenfunction), the above equation leads to

$$-\lambda = -\overline{\lambda}$$

i.e. $\lambda \in \mathbb{R}$.

(b) Show that if $L = (1+3x^2)\frac{d^2}{dx^2} + 6x\frac{d}{dx}$ in problem (1), then L is a self-adjoint operator.

Solution:

If
$$L = (1+3x^2) \frac{d^2}{dx^2} + 6x \frac{d}{dx}$$
, then we have

1)

$$p(x) = 1 + 3x^{2}, q(x) = 6x, r(x) = 0$$

are all real functions.

2)

$$p'(x) = 6x = q(x)$$

3) For any eigenfunctions u and v of (1), we have

$$p(u'v - uv')\Big|_{a}^{b} = p(b)(u'(b)v(b) - u(b)v'(b)) - p(a)(u'(a)v(a) - u(a)v'(a))$$

$$= p(b)(u'(b)(0) - (0)v'(b)) - p(a)(u'(a)(0) - (0)v'(a))$$

$$= 0$$

i.e. L is a self-adjoint operator.

Q4 Consider the eigenvalue problem

$$u'' + 2u' + \lambda u = 0, \quad x \in [0, 1],$$

 $u(0) = 0, \quad u(1) = 0$ (3)

(a) Find the eigenvalues and eigenfunctions of problem (3). Solution:

The auxiliary equation is

$$m^2 + 2m + \lambda = 0,$$

which have the solution

$$m = -1 \pm \sqrt{1 - \lambda}$$
.

Thus, we have the following cases:

1) If $\lambda = 1$, then there is one root m = -1 and the general solution of (3) is given by

$$u(x) = c_1 e^{-x} + c_2 x e^{-x}$$

Using the boundary conditions, we have

$$u(0) = c_1 e^0$$

$$\Rightarrow 0 = c_1$$

and

$$u(1) = c_2 e^{-1}$$

$$\Rightarrow 0 = c_2 e^{-1}$$

$$\Rightarrow 0 = c_2$$

That is, u(x) = 0, which is not acceptable. Thus, $\lambda = 1$ is not an eigenvalue of (3).

2) If $\lambda < 1$, then we have two real roots $m_1 = -1 - \sqrt{1 - \lambda}$ and $m_2 = -1 + \sqrt{1 - \lambda}$, and the general solution is given by

$$u(x) = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

Using the boundary conditions, we have

$$u(0) = c_1 e^0 + c_2 e^0$$

$$\Rightarrow 0 = c_1 + c_2$$

$$\Rightarrow c_2 = -c_1$$

and

$$u(1) = c_1 e^{m_1} + c_2 e^{m_2}$$

$$\Rightarrow 0 = c_1 e^{m_1} - c_1 e^{m_2}$$

$$\Rightarrow 0 = c_1 (e^{m_1} - e^{m_2})$$

but, $e^{m_1} - e^{m_2} \neq 0$ because the exponential function is one-to-one. Therefore, c_1 must be zero, and consequently $u\left(x\right) = 0$. Thus, there are no eigenvalue of (3) in $\left(-\infty,1\right)$.

3) If $\lambda > 1$, we have two complex roots $m_1 = -1 - \sqrt{\lambda - 1}i$ and $m_2 = -1 + \sqrt{\lambda - 1}i$. The general solution is given by

$$u(x) = e^{-x} \left(c_1 \cos \sqrt{\lambda - 1} x + c_2 \sin \sqrt{\lambda - 1} x \right)$$

Using the boundary conditions, we have

$$u(0) = e^{0} (c_{1} \cos 0 + c_{2} \sin 0)$$

$$\Rightarrow 0 = c_{1}$$

and

$$u(1) = e^{-1}c_2 \sin \sqrt{\lambda - 1}$$

$$\Rightarrow 0 = c_2 \sin \sqrt{\lambda - 1}$$

but $c_2 \neq 0$, otherwise we would have a zero eigenfunction. Thus,

$$\sin \sqrt{\lambda - 1} = 0$$

$$\Rightarrow \sqrt{\lambda - 1} = n\pi, \quad n \in \mathbb{N}$$

The eigenvalues of (3) are thus given by

$$\lambda_n = n^2 \pi^2 + 1, \quad n \in \mathbb{N}$$

and the corresponding eigenfunctions are

$$u_n(x) = e^{-x} \sin n\pi x, \quad n \in \mathbb{N}$$

(b) Show that L is not a self-adjoint operator.

Solution:

In (3), L is given by

$$L = \frac{d^2}{dx^2} + 2\frac{d}{dx} \tag{4}$$

and since

$$p'(x) = 0 \neq 2 = q(x)$$

L is not a self-adjoint operator.

(c) Transform L into a self-adjoint operator.

Solution:

We first find the function $\rho(x) > 0$ that produces a formally self-adjoint operator ρL .

$$\rho(x) = \frac{1}{p(x)} e^{\int \frac{q(x)}{p(x)} dx}$$
$$= \frac{1}{1} e^{\int \frac{2}{1} dx}$$
$$= e^{2x}$$

Therefore,

$$\rho L = e^{2x} \frac{d^2}{dx^2} + 2e^{2x} \frac{d}{dx}$$

is a formally self-adjoint operator. It is a self-adjoint operator for the above specific problem since the boundary conditions are separated and homogenous.

(d) Write the orthogonality relation between the eigenfunctions of problem (3).

Solution:

The eigenfunction of the operator -L are eigenfunction of the self-adjoint operator $-\rho L$. Therefore, these eigenfunctions are orthogonal in $\mathcal{L}^2_{\rho}(0,1)$. Namely, for $n \neq m$ we have

$$\langle e^{-x} \sin n\pi, e^{-x} \sin m\pi \rangle_{e^{2x}} = \int_0^1 (e^{-x} \sin n\pi) (e^{-x} \sin m\pi) e^{2x} dx = 0$$

Eyman Alahmadi