PHYS 454
$1^{\text {st }}$ Midterm Exam
Wednesday $10^{\text {th }}$ October 2012

Instructor: Dr. V. Lempesis

Student Name: \qquad

Student ID Number

Student Grade: \qquad /15

Please answer all questions

1. The ground state for a particle in an infinite well has energy equal to 2 eV . If the state of the particle is $\psi=A \psi_{1}+2 A \psi_{2}$, where A is a real constant.
a) What is A ?
b) What is the average energy?
c) What is the uncertainty of energy?

Solution: From normalization condition we calculate the constant A.

$$
\begin{aligned}
& \int_{0}^{a}|\psi(x)|^{2} d x=1 \Rightarrow A^{2} \underbrace{\int_{0}^{a}\left|\psi_{1}(x)\right|^{2} d x}_{=1}+4 A^{2} \underbrace{\int_{0}^{a}\left|\psi_{2}(x)\right|^{2} d x+2 A^{2} \underbrace{\int_{0}^{a} \psi_{1}(x) \psi_{2}(x) d x}_{=0}=1}_{=1} \\
& \Rightarrow 5 A^{2}=1 \Rightarrow A= \pm 1 / \sqrt{5}
\end{aligned}
$$

Where we can keep the positive value.The probabilities for the particle to be in states 1 and 2 are:

$$
P_{1}=\left(\frac{1}{\sqrt{5}}\right)^{2}=\frac{1}{5} \text { and } P_{2}=\left(2 \sqrt{\frac{1}{5}}\right)^{2}=\frac{4}{5}
$$

Thus the average energy is given by

$$
\langle E\rangle=P_{1} E_{1}+P_{2} E_{2}=\frac{1}{4} E_{1}+\frac{4}{5} E_{2}
$$

but in an infinite well $E_{n}=E_{1} n^{2}$ thus $E_{2}=4 E_{1}$. So

$$
\langle E\rangle=\frac{1}{5} E_{1}+\frac{4}{5} 4 E_{1}=\frac{17}{5} E_{1}=\frac{34}{5} \mathrm{eV}=6.8 \mathrm{eV}
$$

Similarly

$$
\left\langle E^{2}\right\rangle=P_{1} E_{1}^{2}+P_{2} E_{2}^{2}=\frac{1}{5} E_{1}^{2}+\frac{4}{5} E_{2}^{2}=\frac{1}{5} E_{1}^{2}+\frac{4}{5}\left(4 E_{1}\right)^{2}=13 E_{1}^{2}=52(\mathrm{eV})^{2}
$$

Then

$$
\Delta E=\sqrt{\left\langle E^{2}\right\rangle-\langle E\rangle^{2}}=2.4 \mathrm{eV} .
$$

2. An electron is inside an infinite square well of width equal to 1 Angstrom, and at time $t=0$ is at the state ψ_{2}.
a) What is the average position of the particle at $t=0 \mathrm{~s}$?
b) What is the uncertainty in position at $t=0 \mathrm{~s}$?
c) What is the average momentum?
d) If we do not disturb the system what will be its state at $t=1 \mathrm{~s}$?
(1 mark)

Solution:

The wavefunction of the body is

$$
\psi_{2}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{2 \pi x}{a}\right)
$$

a) The average position is given by

$$
\langle x\rangle=\int_{0}^{a} x\left|\psi_{2}(x)\right|^{2} d x=\frac{2}{a} \int_{0}^{a} x \sin ^{2}\left(\frac{n \pi x}{a}\right) d x=\frac{a}{2}=0.5 \mathrm{~A} .
$$

b) The uncertainty in the position is given by

$$
\begin{aligned}
& \Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} \\
& \left\langle x^{2}\right\rangle=\int_{0}^{a} x^{2}\left|\psi_{2}(x)\right|^{2} d x=\frac{2}{a} \int_{0}^{a} x^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right) d x=\frac{1}{24} a^{2}\left(\frac{8 \pi^{2}-3}{\pi^{2}}\right)=0.32 a^{2}
\end{aligned}
$$

thus

$$
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{0.32 a^{2}-(0.5 a)^{2}}=0.26 a=0.26{ }^{\circ} \mathrm{A}
$$

c) The average momentum is zero because the wavefunction is real.
d) The wavefunction after some time τ is given by

$$
\psi_{2}(x, \tau)=\psi_{2}(x, 0) e^{-i E_{2} \tau / \hbar}=\sqrt{\frac{2}{a}} \sin \left(\frac{2 \pi x}{a}\right) \exp \left(-i \frac{\hbar \pi^{2}}{2 m a^{2}} \tau\right)
$$

3. A proton and an electron are inside identical infinite square potential wells. Which one has the smallest energy?
a) the proton
b) the electron
c) they have equal energies

Solution: From the energy formula $E_{1}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}$ we see that the paertyicle with the largest mass has the smallest energy. Correct answer: (a)
4. Which from the following functions could be acceptable as wavefunctions of a particle?

$$
\psi_{1}(x)=N e^{-\lambda x}, \quad \psi_{2}(x)=N e^{-\lambda|x|}, \quad \psi_{3}(x)=\frac{N x}{\sqrt{x^{2}+a^{2}}}, \quad \psi_{4}(x)=N x e^{-\lambda x^{2}}
$$

a) ψ_{2} and ψ_{4}
b) ψ_{3} and ψ_{4}
c) only ψ_{4}
d) none of them

Solution: A physically acceptable wavefunction must satisfy the condition $\psi(\infty)=\psi(-\infty)=0$. Correct answer: (a)
5. The wave function for a particle in a one-dimensional box is $\psi=A \sin (n \pi x / a)$. Which statement is correct?
a. This wavefunction gives the probability of finding the particle at x.
b. $|\psi(x)|^{2}$ gives the probability of finding the particle at x.
c. $|\psi(x)|^{2} d x$ gives the probability of finding the particle between x and $x+d x$.
d. $\int_{0}^{a} \psi(x) d x$ gives the probability of finding the particle at a particular value of x.
e. $\int_{0}^{a}|\psi(x)|^{2} d x$ gives the probability of finding the particle between x and $x+d x$.

Solution: Correct answer: (c)

$$
\hbar=1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}, 1 \stackrel{o}{A}=10^{-10} \mathrm{~m}, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

For an infinite square well:

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right) \quad E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2}, \quad n=1,2, \ldots, \infty
$$

