King Saud University: Mathematics Department
Math-254
First Semester 1442 H Midterm Examination
Maximum Marks $=\mathbf{3 0}$
\qquad

Name of the Teacher:
Section No.

Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 15 : Marks: 1 for each one $(1 \times 15=22.5)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d										

Q. No.	11	12	13	14	15
a,b,c,d					

Quest. No.	Marks Obtained	Marks for Question
Q. 1 to Q. 15		22.5
Q. 16		3.5
Q. 17		4
Total		30

Question 1: The first approximation of the square root of 19 using a quadratic convergent method with $x_{0}=5$ is:
(a) 4.4
(b) 4.44
(c) 4.36
(d) None of these

Question 2: The first approximation of $x=\cos (x)$ using Secant method for $x_{0}=0.5$ and $x_{1}=\pi / 4$ is:
(a) 0.7853
(b) 1.5544
(c) 0.5544
(d) None of these

Question 3: The order of convergence of $x_{n+1}=2 x_{n}^{2}+\frac{4}{x_{n}}-5, n \geq 0$, to $\alpha=1$ is:
(a) Quadratic
(b) Linear
(c) Cubic
(d) None of these

Question 4: The iterative scheme $x_{n+1}=2+(3+a) x_{n}-a x_{n}^{3}, n \geq 0$ converges at least quadratically to the root $\alpha=-1$ if a is:
(a) $\frac{3}{2}$
(b) 1
(c) $\frac{1}{2}$
(d) None of these

Question 5: The first approximation of the solution of the system of nonlinear equations $x y-1=0$ and $x y^{2}-1=0$ using Newton's method with initial approximation $\left(x_{0}, y_{0}\right)=(-1,1)$ is:
(a) $\left(x_{1}, y_{1}\right)=(1,1)$
(b) $\left(x_{1}, y_{1}\right)=(-0.5,0.5)$
(c) $\left(x_{1}, y_{1}\right)=(0,-0.5)$
(d) None of these

Question 6: The Jacobian matrix of the nonlinear system of the equations $x^{3}+y=1$, $-x+y^{3}=-1$ at $x_{0}=0.5=y_{0}$ is:
(a) $\left(\begin{array}{rr}0.75 & 1 \\ -1 & 0.75\end{array}\right)$
(b) $\left(\begin{array}{rr}1 & 0.75 \\ 0.75 & 1\end{array}\right)$
(c) $\left(\begin{array}{cc}-1 & 0.75 \\ 0.75 & 1\end{array}\right)$
(d) None of these

Question 7: Let $A=\left(\begin{array}{cc}1 & \alpha \\ \alpha & 4\end{array}\right)$, and $\mathbf{b}=[1,2]^{t}$. If $\alpha=-2$, then using the simple Gaussian elimination the system $A \mathbf{x}=\mathbf{b}$ is:
(a) Inconsistent (b) has a unique solution (c) has many solutions (d) None of these

Question 8: Let $A=\left(\begin{array}{cc}1 & \alpha^{2} \\ \alpha & 1\end{array}\right), \mathbf{b}=[1,1]^{t}$ and s is any real number. If $\alpha=1$, then using the simple Gaussian elimination the solution of the system $A \mathbf{x}=\mathbf{b}$ is:
(a) $[1-s, s]^{t}$
(b) $[1+s, s]^{t}$
(c) $[s, 1+s]^{t}$
(d) None of these

Question 9: If the matrix $A=\left(\begin{array}{ll}3 & 1 \\ 6 & 1\end{array}\right)$ is factored as $L U$ using Doollitle's method, where L is a lower triangular matrix, and U is an upper triangular matrix, then the solution of the system $L \mathbf{y}=[-1,0]^{t}$ is:
(a) $[-1,2]^{t}$
(b) $[-1,-2]^{t}$
(c) $[-1,6]^{t}$
(d) None of these

Question 10: If the matrix $A=\left(\begin{array}{cc}2 & 4 \\ -3 & 2\end{array}\right)$ is factored as $L U$ using Crouts method, where L is a lower triangular matrix, and U is an upper triangular matrix, then the matrix L is:
(a) $\left(\begin{array}{cc}2 & 0 \\ -3 & 8\end{array}\right)$
(b) $\left(\begin{array}{ll}2 & 0 \\ 3 & 8\end{array}\right)$
(c) $\left(\begin{array}{cc}8 & 0 \\ -3 & 2\end{array}\right)$
(d) None of these

Question 11: If the matrix $A=\left(\begin{array}{ll}2 & -1 \\ 2 & -2\end{array}\right)$ is factored as $L U$ using Doolittle's method, where L is a lower triangular matrix, and U is an upper triangular matrix, then U^{-1} is:
(a) $\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ 0 & -1\end{array}\right)$
(b) $\left(\begin{array}{cc}-\frac{1}{2} & \frac{1}{2} \\ 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ 0 & 1\end{array}\right)$
(d) None of these

Question 12: The second approximation for solving linear system $A X=\binom{1}{1}$ using Jacobi iterative method where $A=\left(\begin{array}{rr}1 & -1 \\ 2 & 1\end{array}\right)$ and $X^{(0)}=\binom{1}{1}$ is :
(a) $X^{(2)}=\binom{0}{-3}$
(b) $X^{(2)}=\binom{2}{-1}$
(c) $X^{(2)}=\binom{3}{3}$
(d) None of these

Question 13: The norm $\left\|T_{J}\right\|_{\infty}$ of the Jacobi matrix T_{J} of the linear system $A X=\left(\begin{array}{r}2 \\ -1 \\ 1\end{array}\right)$ where $A=\left(\begin{array}{rrr}2 & 1 & 2 \\ 1 & 3 & -1 \\ -1 & 3 & 4\end{array}\right)$ is :
(a) $\frac{3}{2}$
(b) $\frac{2}{3}$
(c) 1
(d) None of these

Question 14: The number of iterations needed to achieve accuracy 10^{-4} using Gauss-Seidel iterative method if $\left\|T_{G}\right\|=\frac{1}{3}, X^{(0)}=(1,0,-1)^{T}$ and $X^{(1)}=(1.2,2.3,3.1)^{T}$ is :
(a) 11
(b) 9
(c) 8
(d) None of these

Question 15: The error bound of $\left\|x-x^{(4)}\right\|_{\infty}$ using Jacobi iterative method with $x^{(0)}=(0,0)^{T}$ for solving linear system $A \mathbf{x}=\mathbf{b}$, where $A=\left(\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right), \mathbf{b}=\binom{2}{1}$ is:
(a) $\frac{1}{8}$
(b) $\frac{2}{7}$
(c) $\frac{2}{5}$
(d) None of these

Question 16: Find the rate of convergence of the Newton's method at the root $x=0$ of the equation $x^{2} e^{x}=0$. Use quadratic convergent method to find second approximation x_{2} to the root using $x_{0}=0.1$. Compute the absolute error.

Solution. Given $f(x)=x^{2} e^{x}$ and so $f^{\prime}(x)=\left(x^{2}+2 x\right) e^{x}$. Using Newton's iterative formula, we get

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}^{2} e^{x_{n}}\right)}{\left(x_{n}^{2}+2 x_{n}\right) e_{n}^{x}}=\frac{\left(x_{n}+x_{n}^{2}\right)}{\left(2+x_{n}\right)}, \quad n \geq 0
$$

The fixed point form of the developed Newton's formula is

$$
x_{n+1}=g\left(x_{n}\right)=\frac{\left(x_{n}+x_{n}^{2}\right)}{\left(2+x_{n}\right)}
$$

Then

$$
g(x)=\frac{\left(x+x^{2}\right)}{(2+x)}, \quad g^{\prime}(x)=\frac{\left(x^{2}+4 x+2\right)}{(2+x)^{2}}, \quad g^{\prime}(0)=\frac{1}{2} \neq 0
$$

Thus the method converges linearly to the given root.
The quadratic convergent method is modified Newton's method

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n \geq 0
$$

where m is the order of multiplicity of the zero of the function. To find m, we do

$$
f^{\prime \prime}(x)=\left(x^{2}+4 x+2\right) e^{x}, \quad \text { and } \quad f^{\prime \prime}(0)=2 \neq 0
$$

so $m=2$. Thus

$$
x_{n+1}=x_{n}-2 \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-2 \frac{x_{n}^{2} e^{x_{n}}}{\left(x_{n}^{2}+2 x_{n}\right) e_{n}^{x}}=x_{n}-2 \frac{x_{n}^{2}}{\left(x_{n}^{2}+2 x_{n}\right)}, \quad n \geq 0
$$

Now using initial approximation $x_{0}=0.1$, we have

$$
x_{1}=x_{0}-2 \frac{x_{0}^{2}}{\left(x_{0}^{2}+2 x_{0}\right)}=0.00476, \quad x_{2}=x_{1}-2 \frac{x_{1}^{2}}{\left(x_{1}^{2}+2 x_{1}\right)}=0.0000311
$$

the required two approximations and the possible absolute error,

$$
\left|\alpha-x_{2}\right|=|0.0-0.0000311|=0.0000311
$$

Question 17: Use LU decomposition by Crout's method to find the value(s) of α for which the following matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & 3 \\
4 & 2 & 2 \\
-2 & \alpha & 3
\end{array}\right)
$$

is singular. Compute the unique solution of the linear system $A \mathbf{x}=[2,8,2]^{T}$ by using the smallest positive integer value of α.
solution. Using the factored of the matrix A as

$$
\begin{gathered}
A=\mathbf{I} A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
2 & -1 & 3 \\
4 & 2 & 2 \\
-2 & \alpha & 3
\end{array}\right) \equiv\left(\begin{array}{rrr}
2 & 0 & 0 \\
4 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 / 2 & 3 / 2 \\
0 & 4 & -4 \\
0 & \alpha-1 & 6
\end{array}\right) \\
\equiv\left(\begin{array}{rrr}
2 & 0 & 0 \\
4 & 4 & 0 \\
-2 & \alpha-1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 / 2 & 3 / 2 \\
0 & 1 & -1 \\
0 & 0 & 5+\alpha
\end{array}\right) \equiv\left(\begin{array}{rrr}
2 & 0 & 0 \\
4 & 4 & 0 \\
-2 & \alpha-1 & 5+\alpha
\end{array}\right)\left(\begin{array}{rrr}
1 & -1 / 2 & 3 / 2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)=L U .
\end{gathered}
$$

Since $|A|=|L|=8(5+\alpha)=0$, gives, $\alpha=-5$, which make A singular. To find unique solution we have to choose $\alpha=1$, and then solve the lower-triangular system

$$
L \mathbf{y}=\left(\begin{array}{rrr}
2 & 0 & 0 \\
4 & 4 & 0 \\
-2 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
8 \\
2
\end{array}\right)=\mathbf{b}
$$

and it gives, $y_{1}=1, \quad y_{2}=1, \quad y_{3}=2 / 3$. Now solve the upper-triangular system

$$
U \mathbf{x}=\left(\begin{array}{rrr}
1 & -1 / 2 & 3 / 2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
2 / 3
\end{array}\right)=\mathbf{y}
$$

and we obtained $\mathbf{x}=[5 / 6,5 / 3,2 / 3]^{T}$, the unique solution of the given system.

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box. Math-254

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d	b	d	b	a	c	b	a	c	c	b

Q. No.	11	12	13	14	15
a,b,c,d	b	a	c	a	b

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box. MAth-254

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d	a	d	a	b	a	c	c	a	a	c

Q. No.	11	12	13	14	15
a,b,c,d	a	b	b	c	a

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box. MATh-254

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d	c	d	c	c	b	a	b	b	b	a

Q. No.	11	12	13	14	15
a,b,c,d	c	c	a	b	c

