KING SAUD UNIVERSITY
Academic year 2016/2017
College of Sciences, Mathematics Department
Course: QMF Actu. 468
Bachelor AFM, Riyadh

Homework 3 Multi-asset one period model

We specify below the basic elements of a financial market with T periods:

- A finite probability space $\Omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$ with k elements.
- A probability measure \mathbb{P} on Ω, such that $\mathbb{P}(\omega)>0$ for all $\omega \in \Omega$.
- A riskless asset (a saving account) $S_{t}^{0}, t \in\{0,1,2, \ldots N\}$ such that $S_{0}^{0}=1$ with a constant interest rate r.
- A d-dimensional price process $S_{t}, t \in\{0,1,2, \ldots N\}$ where $S_{t}=\left(S_{t}^{0}, S_{t}^{1}, \ldots, S_{t}^{d}\right)$ and S_{t}^{i} stands for the price of the asset i at time t.

1. Consider the following model $k=3, d=1, r=\frac{1}{9}$

n	S_{n}^{0}	S_{n}^{1}		
		ω_{1}	ω_{2}	ω_{3}
0	1	5	5	5
1	$\frac{10}{9}$	$\frac{20}{3}$	$\frac{40}{9}$	$\frac{30}{9}$

Question: Is this model arbitrage free ?
Solution : If a RNPM $Q=\left(q_{1}, q_{2}, 1-q_{1}-q_{2}\right)$ exists then it should satisfy

$$
\begin{aligned}
E_{Q}\left[S_{1}^{1}\right] & =\frac{10}{9} S_{0}^{1} \Longleftrightarrow \frac{20}{3} q_{1}+\frac{40}{9} q_{2}+\frac{30}{9}\left(1-q_{1}-q_{2}\right)=5 \frac{10}{9} \\
& \Longleftrightarrow 6 q_{1}+4 q_{2}+3\left(1-q_{1}-q_{2}\right)=5 \\
& \Longleftrightarrow 3 q_{1}+q_{2}+3=5 \Longleftrightarrow q_{2}=2-3 q_{1}
\end{aligned}
$$

Then $Q=(q, 2-3 q, 1-q-2+3 q)=(q, 2-3 q, 2 q-1)$ provided that

$$
\begin{aligned}
0 & <q<1 ; 0<2-3 q<1 \text { and } 0<2 q-1<1 \\
& \Uparrow \\
0 & <q<1 ; \frac{1}{3}<q<\frac{2}{3} \text { and } \frac{1}{2}<q<1 .
\end{aligned}
$$

Therefore a RNPM $Q=(q, 2-3 q, 2 q-1)$ exists if and only if $\frac{1}{2}<q<\frac{2}{3}$. So the model is arbitrage free. Remark that there is infinitely many RNPM.
2. Consider now, the following model: given by $k=3, d=2, r=\frac{1}{9}$ and the discounted price

n	S_{n}^{0}	\widetilde{S}_{n}^{1}			\widetilde{S}_{n}^{2}		
		ω_{1}	ω_{2}	ω_{3}	ω_{1}	ω_{2}	ω_{3}
0	1	5	5	5	10	10	10
1	$\frac{10}{9}$	6	6	3	12	8	8

Question: Is this model arbitrage free ?
Solution: If a RNPM $Q=\left(q_{1}, q_{2}, 1-q_{1}-q_{2}\right)$ exists then it should satisfy

$$
\text { i) } E_{Q}\left[\widetilde{S}_{1}^{1}\right]=\widetilde{S}_{0}^{1} \text { and ii) } E_{Q}\left[\widetilde{S}_{2}^{1}\right]=\widetilde{S}_{0}^{1}
$$

A probability satisfying i) and ii) should satisfy

$$
\begin{aligned}
6\left(q_{1}+q_{2}\right)+3\left(1-q_{1}-q_{2}\right) & =5 \text { and } 12 q_{1}++8 q_{2}+8\left(1-q_{1}-q_{2}\right)=10 \\
& \hat{\mathbb{y}} \\
3 q_{1}+3 q_{2} & =2 \text { and } 4 q_{1}=2 \Longleftrightarrow q_{1}=\frac{1}{2}, q_{2}=\frac{1}{6} \text { and } q_{3}=\frac{1}{3} .
\end{aligned}
$$

So there exisist a unique RNPM $Q=\left(\frac{1}{2} ; \frac{1}{6} ; \frac{1}{3}\right)$.
3. Consider the following model $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ and that the volatility is given by

$$
\sigma(\omega)=\left\{\begin{array}{l}
h \text { if } \omega \in\left\{\omega_{1}, \omega_{2}\right\} \\
\ell \text { if } \omega \in\left\{\omega_{3}, \omega_{4}\right\}
\end{array}\right.
$$

where $0<\ell<h<1$ and l stands for low volatility whereas h stands for high volatility. The stock price S_{1} is then modeled by:

$$
S_{1}(\omega)= \begin{cases}S_{0}(1+\sigma) & \text { if } \omega \in\left\{\omega_{1}, \omega_{3}\right\} \\ S_{0}(1-\sigma) & \text { if } \omega \in\left\{\omega_{2}, \omega_{4}\right\}\end{cases}
$$

where S_{0} denotes the initial stock price.
The riskless asset is model by $S_{0}^{0}=1$ and $S_{1}^{0}=1+r$.
Question: Is this model arbitrage free?
Solution: If a RNPM $Q=\left(q_{1}, q_{2}, q_{3}, 1-q_{1}-q_{2}-q_{3}\right)$ exists then it should satisfy

$$
\begin{aligned}
(1+r) S_{0} & =E_{Q}\left[S_{1}\right] \\
(1+r) S_{0} & =S_{0}\left(q_{1}(1+h)+q_{2}(1-h)+q_{3}(1+\ell)+\left(1-q_{1}-q_{2}-q_{3}\right)(1-\ell)\right) \\
& \Uparrow \\
\ell+r & =(h+\ell) q_{1}-(h-\ell) q_{2}+2 \ell q_{3} \Longleftrightarrow q_{1}=\frac{\ell+r+(h-\ell) q_{2}-2 \ell q_{3}}{h+\ell}
\end{aligned}
$$

Therefore there infinitly many solutions under some conditions on r, h and ℓ. Then the mrket model may be free of arbitrage but not complete. See the notes of chapter 3 .

Understanding questions (See course notes for definitions)

1. Give the definition of a portfolio in this market
2. Recall the self-financing property for this model
3. Give the definition of attainable payoffs for this model
4. Give the definition of a RNPM (risk neutral probability measure) in this setting.
5. Give the definition of a complete market
6. Give the definition of an incomplete market

Problem 1.

Assume that $T=1$ and let $\left(S_{t}^{1}\right)_{t \in\{0,1\}}$ be the price of a stock with initial price $S_{0}^{1}=100 \mathrm{SAR}$ and has two possible values a time $T=1$:

$$
S_{1}^{1}=\left\{\begin{array}{l}
200 S A R \text { with probability } p \\
75 S A R \text { with probability } 1-p
\end{array}\right.
$$

1. Denote by F the payoff of an European put option with strike price $K=150 S A R$. Give the value of F at time $T=1$.
Solution :

$$
F=\left(K-S_{T}^{1}\right)^{+}=\left(150-S_{1}^{1}\right)^{+}=\left\{\begin{array}{lcc}
0 & \text { if } & S_{1}^{1}=200 \\
75 & \text { if } & S_{1}^{1}=75
\end{array}\right.
$$

2. Find RNPM of the market $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$ if it exists.

Solution : If a RNPM $Q=(q, 1-q)$ exists then it should satisfy

$$
E_{Q}\left[\frac{S_{1}^{1}}{1+r}\right]=S_{0}^{1} \Longleftrightarrow 200 q+75(1-q)=100(1+r)
$$

Hence $125 q=25(1+4 r)$, then $q=\frac{1+4 r}{5}$ such that $0<\frac{1+4 r}{5}<1$.
3. What are the values of r for which there is no arbitrages ?

Solution: $-\frac{1}{4}<r<1$.
4. Compute the price of the option at time 0 for a fixed r.

Solution: For fixed r in] $-\frac{1}{4} ; 1$ [a RNPM exists and the price of the put option at time 0 is given by

$$
P_{0}=E_{Q}\left[\frac{\left(150-S_{1}^{1}\right)^{+}}{1+r}\right]=\frac{1-q}{1+r} 75=75 \times \frac{4}{5} \times \frac{1-r}{1+r}=60 \frac{1-r}{1+r} .
$$

5. Is the option F attainable or not? If yes find the replicating portfolio.

Solution. The RNPM is unique hence the market model is complete, therefore the put option $\left(150-S_{1}^{1}\right)^{+}$is attainable. Then there exist a replicating portfolio $\phi=(\alpha, \Delta)$ such that $\alpha(1+$ $r)+\Delta S_{1}^{1}=\left(150-S_{1}^{1}\right)^{+}$. This relationship leads to the following system

$$
\left\{\begin{array}{l}
\alpha(1+r)+\Delta 200=0 \\
\alpha(1+r)+\Delta 75=75
\end{array}\right.
$$

Hence $\Delta=-\frac{75}{125}=-\frac{3}{5}$ and $\alpha=\frac{60}{1+r}$ the replicating portfolio is $\phi=\left(\frac{60}{1+r},-\frac{3}{5}\right)$.

Problem 2.

Now assume that $k=3, r=0, S_{0}^{1}=100$ SAR and assume that the stock S_{1}^{1} can take the values $200 \mathrm{SAR}, 150 \mathrm{SAR}$ and 75 SAR .

1. Find RNPM if any for the model $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$?

Solution : If a RNPM $Q=\left(q_{1}, q_{2}, 1-q_{1}-q_{2}\right)$ exists then it should satisfy

$$
\begin{aligned}
E_{Q}\left[S_{1}^{1}\right] & =S_{0}^{1} \Longleftrightarrow 200 q_{1}+150 q_{2}+75\left(1-q_{1}-q_{2}\right)=100 \\
& \Longleftrightarrow 125 q_{1}+75 q_{2}=25 \Longleftrightarrow 5 q_{1}+3 q_{2}=1 \Longleftrightarrow q_{2}=\frac{1-5 q_{1}}{3}
\end{aligned}
$$

and

$$
1-q_{1}-\frac{1-5 q_{1}}{3}=\frac{2}{3} q_{1}+\frac{2}{3}
$$

then

$$
\begin{aligned}
q_{3} & =1-q_{1}-q_{2}=1-q_{1}-\frac{1-5 q_{1}}{3} \\
& =\frac{2+2 q_{1}}{3}
\end{aligned}
$$

hence $Q=\left(q, \frac{1-5 q}{3}, \frac{2+2 q}{3}\right)$ such that $\left.Q \in\right] 0,1\left[{ }^{3}\right.$. Remark that there is infinitely many RNPM.
2. Is the market $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$ arbitrage free ?

Solution: The market $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$ arbitrage free because for risk neutral probability measures $Q=\left(q, \frac{1-5 q}{3}, \frac{2+2 q}{3}\right)$ such that $0<q<1,0<\frac{1-5 q}{3}<1$ and $0<\frac{2+2 q}{3}<1$ which is equivalent $0<q<\frac{1}{5}$ and $0<q<\frac{1}{2}$, hence q should satisfy $0<q<\frac{1}{5}$
3. Is the market $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$ complete ?

Solution: The market is not complete because Q in not unique.
4. Find the set of attainable contingent claims.

Solution: Let F be a contingent claim on $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ with possible values x_{1}, x_{2} and x_{3}. If F is attainable there there exist a replicating portfolio $\phi=(\alpha, \Delta)$ such that $\alpha+\Delta S_{1}^{1}=F$ which leads to the following system

$$
\left\{\begin{array}{c}
\alpha+\Delta 200=x_{1} \\
\alpha+\Delta 150=x_{2} \\
\alpha+\Delta 75=x_{3}
\end{array}\right.
$$

Therefore

$$
\left\{\begin{array} { l }
{ \Delta = \frac { x _ { 1 } - x _ { 2 } } { 5 0 } } \\
{ \alpha = x _ { 2 } - \frac { x _ { 1 } - x _ { 2 } } { 5 0 } 1 5 0 = 4 x _ { 2 } - 3 x _ { 1 } } \\
{ 4 x _ { 2 } - 3 x _ { 1 } + \frac { x _ { 1 } - x _ { 2 } } { 5 0 } 7 5 = x _ { 3 } . }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ \Delta = \frac { x _ { 1 } - x _ { 2 } } { 5 0 } } \\
{ \alpha = 4 x _ { 2 } - 3 x _ { 1 } } \\
{ \frac { 5 } { 2 } x _ { 2 } - \frac { 3 } { 2 } x _ { 1 } = x _ { 3 } . }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\Delta=\frac{x_{1}-x_{2}}{50} \\
\alpha=4 x_{2}-3 x_{1} \\
2 x_{3}=5 x_{2}-3 x_{1} .
\end{array}\right.\right.\right.
$$

Consequently the set of all attainable contingent claim is given by $\left\{F=\left(x_{1}, x_{2}, \frac{5}{2} x_{2}-\frac{3}{2} x_{1}\right) ; x_{1}, x_{2} \in\right.$ $\mathbb{R}\}$.
5. Show that the value at time zero of an attainable claim is the same for all RNPM.

Solution: Let F be an attainable contingent claim then is of the $F=\left(x_{1}, x_{2}, \frac{5}{2} x_{2}-\frac{3}{2} x_{1}\right)$. The value of F at time zero is given by

$$
V_{0}=E_{Q}[F]=q x_{1}+x_{2}\left(\frac{1-5 q}{3}\right)+\left(\frac{5}{2} x_{2}-\frac{3}{2} x_{1}\right)\left(\frac{2+2 q}{3}\right)=2 x_{2}-x_{1}
$$

which is independent from q.

Problem 3.

Consider now a second stock $\left(S_{t}^{2}\right)_{t \in\{0,1\}}$ with the values at time 1 are given by:
a) $S_{0}^{2}=50 S_{1}^{2}=\left\{\begin{array}{l}60 \mathrm{SAR} \text { with probability } p_{1} \\ 60 \mathrm{SAR} \text { with probability } p_{2} \\ 40 \mathrm{SAR} \text { with probability } p_{3} .\end{array}\right.$ and b) $S_{0}^{2}=5 S_{1}^{2}=\left\{\begin{array}{l}5 \mathrm{SAR} \text { with probability } p_{1} \\ 3 \mathrm{SAR} \text { with probability } p_{2} \\ 4 \mathrm{SAR} \text { with probability } p_{3} .\end{array}\right.$

1. Find a RNPM for the model $\left(S_{t}^{0}, S_{t}^{1}, S_{t}^{2}\right)_{t \in\{0,1\}}$.

Solution: a) If a RNPM $Q=\left(q_{1}, q_{2}, 1-q_{1}-q_{2}\right)$ exists then it should satisfy
i) $E_{Q}\left[S_{1}^{1}\right]=S_{0}^{1}$ and ii) $E_{Q}\left[S_{1}^{2}\right]=S_{0}^{2}$.

A probability satisfying i) is given by $Q=\left(q, \frac{1-5 q}{3}, \frac{2+2 q}{3}\right)$ such that $0<q<\frac{1}{5}$. But Q should satisfy also ii) then we get

$$
60\left(q+\frac{1-5 q}{3}\right)+40 \frac{2+2 q}{3}=50 \Longleftrightarrow \frac{140}{3}-\frac{40}{3} q=50
$$

which implies that $\left.q=-\frac{1}{4} \notin\right] 0, \frac{1}{5}\left[\right.$. Hence there is no RNPM for the model $\left(S_{t}^{0}, S_{t}^{1}, S_{t}^{2}\right)_{t \in\{0,1\}}$.
b) A probability satisfying i) is given by $Q=\left(q, \frac{1-5 q}{3}, \frac{2+2 q}{3}\right)$ such that $0<q<\frac{1}{5}$. But Q should satisfy also ii) then we get $\left(1-\frac{5}{2}\right) \frac{1}{3}=-\frac{1}{2}$

$$
5 q+3\left(\frac{1-5 q}{3}\right)+4\left(\frac{2+2 q}{3}\right)=5 \Longleftrightarrow \frac{8}{3} q+\frac{11}{3}=5 \Longleftrightarrow q=\frac{1}{2}
$$

Therefore $Q=\left(\frac{1}{2},-\frac{1}{2}, 1\right)$ impossible, there no RNPM.
2. Conclude:

Solution: The market $\left(S_{t}^{0}, S_{t}^{1}, S_{t}^{2}\right)_{t \in\{0,1\}}$ presents arbitrage opportunities. Hence incomplete.

